СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C323.Y M-96

E2 - 8586

31/11-75

R.M.Muradyan

1168/2-75

EMPIRICAL MASS RATIO OF HADRONS

1975

E2 - 8586

R.M.Muradyan

EMPIRICAL MASS RATIO OF HADRONS

There exists a simple and accurate relation between the masses in the baryon octet, namely,

$$\mathsf{m}_{(\mathfrak{p})}:\mathsf{m}_{(\chi)},\mathsf{m}_{(\Sigma)};\mathsf{m}_{(\Xi)}=(1;\sqrt[4]{2}:\sqrt[3]{2}:\sqrt{2}),$$

It may be noted (Table I), that the ratio $\frac{m}{m_p}$ $\sqrt{2}$ is

almost exact, while the masses of Σ and E are reproduced within several MeV, corresponding to electromagnetic mass differences.

Table I. Baryon octet '

Baryon	Ratio mp		Mass m (MeV)	
	Theory	Expt.	Theory	Expt.
P	1	1	938.28	938.28
Λ	⁴ √2	1.189	1115.61	11.15.60
Σ^+	$\sqrt[3]{2}$	1.267	1182.23	1189.37
Ξ_	_V 2	1.408	1326.73	1321.29

^{*} Experimental masses are taken from Ref. $^{-1/}$. Note that $\sqrt[4]{2}$ =1.189, $\sqrt[3]{2}$ =1.260 and $\sqrt{2}$ =1.414.

The ratio $\frac{m_E}{m_N} \approx \sqrt{2}$ has previously been noticed

by Takabayasi $^{\prime 2/}$, who also proposed the empirical relation

$$m_N^2 + m_{\frac{3}{2}}^2 = m_N^2 + m_{\frac{3}{2}}^2$$

This relation is fulfilled almost identically by our "theoretical" masses

$$1+2=3$$
; $\sqrt{2}+(\sqrt[3]{2})^2=3.002$.

It is interesting to note, that Gell-Mann-Okubo relation

$$\frac{\mathsf{m}_{N} + \mathsf{m}_{\Xi}}{2} = \frac{3\mathsf{m}_{\Lambda} + \mathsf{m}_{\Sigma}}{4}$$

is fulfilled exactly:

$$\frac{1+\sqrt{2}}{2}=1.207=\frac{3\sqrt[4]{2}+\sqrt[3]{2}}{1}.$$

Finally, we note, that the masses of new neutral vector bosons $\psi(3105)$ and $\psi(3695)/3/$ are connected by

$$\frac{m}{\psi}$$
 (3695) $= \frac{472}{2}$

or numerically,

Empirical relations, considered in this note, have striking simplicity and high numerical precision. It may happen, that they are not simply accidental and have yet unknown physical foundation.

References

- Particle Data Group. Review of Particle Properties. Physics Letters, 50B, N. 1 (1974).
 T.Takabeyasi. Progr.Theor.Phys., 29, 474 (1963).
 I.I.Aubert et al. Phys.Rev.Lett., 33, 1404 (1974); I.-E.Augusti et al. Phys.Rev.Lett., 33, 1406 (1974).

Received by Publishing Department on February 6, 1975.