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1. Introduction 

In the last few years a lot of experimental data on 
multiparticle production at high energies have become 
available from Serpukhov, ISR (CERN), and Fermilab 
(Batavia) /'Л It is relatively easy to measure the average 
multiplicity and higher moments, although usually only 
the charged multiplicities are determined. Parallelly, the 
dependence of the average multiplicity (and higher mo
ments) on primary energy is intensively studied theore
tically. However, there are unknown any rigorous results 
on the behaviour of the average multiplicity excepting the 
trivial kinematical bound, of course. Till now it is not 
clear if the general principles (like unitarity and analy-
ticity) could control the average multiplicity behaviour / 2 / . 
In a recent paper, with some general assumptions and the 
Jin-Martin bound '3' , Khuro / ' 2 / ' finds a logarithm of 
s upper bound for the average multiplicity < n> .where 
s is the squared center of mass energy. We remember 

the main assumptions of ref. ''2'': A. The convergence of 
the perturbation series of the n -particle production cross 
sections in the (unphysical) neighbourhood of the renor-
malized coupling constant. B. The temperedness of the 
n -particle production cross sections. Pointing out that 

both assumptions have not been rigorously proven, Khuri 
shows that the bound <n><Jns is , in fact, specific to multi-
peripheral-type models, independent of their dynamical 
details. Similar results are obtained in refs. / V for 
general classes of multiperipheral models. However, al
though both hypotheses A and В are accepted by many 
models, especially hypothesis A is very likely to be not 
true in realistic field models (see refs. included in /2 / ). 
So far, it seems that other (upper or lower) bounds are 
not excluded by the present status of the theory. 
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In this paper we present a method to classify various 
asymptotic behaviours of the average multiplicities and 
higher moments. The method is similar to that used to 
deduce the Froissart bound (see, e.g., / s / ) for the total 
cross section (Sect. 2). Section 3 deals with an outline 
of the main model predictions for < n > and their realiza
tion in the presented scheme. Finally, we briefly discuss 
the classification of models against experimental data 
(Sect. 4). 

2. Bounds on Multiplicity Moments 

We start with some definitions and notations. Let us 
denote by »» the (exclusive) cross section of a hadronic 
a b collision with n particles in the final state and by 
" ( n t the total cross section for this collision. We have 

obviously the relation о l o t 

n = 2 

^In fact, in relation (1) n runs till the integer part of 
(\Z8-ma-mb)/i%, but we take \fs in pionic masses and ma, 
on, are negligible because we shall be concerned with 

asymptotic behaviours. Defining the probabilities of n -
particle production p n = "„ / a ,eq. (1) can be written 

Let <n> denotes the average multiplicity 

<n> = 2 np , (2) 
n=2 n 

and<np> the multiplicity moments 

<nP> = 1 8 n P P n > p=2,3 (3) 
n=2 

We introduce also the generating multiplicity func
tion /6/ . 

4 



E(z+1) Л* (z + l ) n p , (4) 
n = 2 n 

where z is a real number. The function E has evidently 
the normalization E(C)= I. Let us consider that 

E(z + 1) < T ( z , s ) , (5) 

and for simplicity we shall denote by T the function 
T(z,s). . 

Further, we shall deduce upper bounds for <nfl>(p=l,2,..) 
(eqs. (2), (3)) using the generating function (4), the norma
lization (Г) and supposing various behaviours for T . The 
idea of the proof is similar to that used for the Froissart 
bound, where it is supposed the temperedness of the 
amplitude and the Martin-Lehmannanalyticity domain (see, 
e.g., / 5 / ). 

Eqs. (4) and (5) imply 

or P , , * ! * 2 ) " ^ . n«2,3.... 

P n < £ > T ~ n y

1 n = 2 3 ( 6 ) 

where 

Y = fn (z + 1) . (7) 

It is clear that for n >N, where 

N = a n T / y , (8) 

and C=constant»l,we get 

P n < e * n T = 1 / T C ~ 1 . (9) 

With the notation 

1

P

= ^ 8 n P P n > P =0,1,2,.. . , (10) 
N+l 

the relations (2) and (3) take the form 
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s P +i„ =1 , W 
n=2 n » 

i* nl'p .1 =<nP> , p =1,2,... . (12) 

Introducing eq. (11) in eq. (12) we obtain. 

<n'S < N P ( 1 - 1 0 ) + I | I , p =1,2,. . . (13) 

In particular, if 1 -.0(p=0,l,2,...) as s .«..then 

•:nP> cNl", p =1,2,... . (14) 

If in eq. (8) we take >' - 0 and choose various behaviours 
for T such that 1 ,,-0 (p = 0,1,2,...), then we get asymp
totically the bounds (14) for the multiplicity moments. 
This is our main result. Moreover, we shall prov^ that 
if T is asymptotically unbounded, a sufficient condi
tion for l p -0 (p = 1,2,..)is that I o - 0 . 

We now proceed to evaluate the asymptotic beha
viour of I (p=0,1,2,..). We write 

, < > = -- Ь P„ = J p ( n ) d n . 
n=N+l N =('.('nT/y 

Here p(n) =ptnl .where n is a real number and t n ] is 
the smallest integer greater than n. We obtain easily 

1 , , 1 1 / v T ' - 1 . (15) 

For I (p=l,2,...) we get readily the recurrence rela
tion P 

Jp^NP I o + p l ^ / y , p = l,2,..., 
which explicated leads to the inequality 

I < I 0 ( | N i Z j _ E l _ ) , p = 1 ) 2 . . . . 
P- о j=o y j ( p _ i ) ! v 

With the definition (8) we arrive at 
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l p<l oN l ,[l+0((l/Ct'nT) I ' ) l ,T-*»fc>r s . , 0 . l i P = 1 > 2 i . . .(16) 

Introducing ineq. (16) in ineq. (13) it may be seen that 
if I o->0, then we get the bounds (14). So far, with this 
method, if N is an upper bound for<n> , then eq. (14) 
furnishes automatically bounds for <nP> (p =2,3,...) .Note 
that in this proof it is not needed the Jin-Martin lower 
bound on a 

3. Model Predictions 

In order to get various possible bounds for ,- n ., we 
shall particularize the results from Sect. 2 and after this 
we briefly show how the models realize these behaviours. 

Supposing different asymptotic behavious for T (eq. 
(5)) and у (eq. ("?)) such that 1<>>0 (eq. (15)), we get 
various possible bounds for < n > and<n P> (eq. (14), resp. 
eq. (8)). Some typical situations a re illustrated in Table 1. 
In fact, any possible asymptotic behaviour for <n > can be 
reproduced. The case )' c ' - ( e q s . (17)-(19)) has been con
sidered in ref. 2 • In eq. (17) the polynomial boundness is 
supposed for E (eq. (4)), and the case (18) corresponds 
to the Cheng-Wu model ' 7 . ' which violates the logarithmic 
bound from ref. ,'2,' An interesting case is obtained in 
eq. (19) where a constant bound is predicted for ^ n , .Eqs. 
(IT), (18') repeat the behaviour N -fns, s"from eq. (17), 
respectively (18), but T ( у) is asymptotically unbounded 
(resp. 0 ). The cases (19a,b,c) particularize eqs. (19d,e) 
and are presented only to point out that different beha
viours of T and j could give the same bound for 
<n>.Note that all the bounds from eqs. (17)-(19) are of 
the type s« (tns)P, 0_а<Л/2. Eqs. (20), (21) represent 
other possible behaviours for < n > claimed by some 
models. 

In Table 2 we display some model predictions for 
multiplicity moments, fk denote the multiplicity correla
tion moments 
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Table 1 
Various upper bounds N (eq. (8)) for the average multi
plicity <n> corresponding to different asymptotic beha
viours of T (eq. (5)) and у (eq. (7)). In all cases the 
condition 1 0 -> 0 is fulfilled (eq. (15)). See the text. 

и l«> T (~) * ( • - > Condition!) Eq. 

Ins я* ot a>0 (17) 
a в »xp(e s) ot a»0 (18) 

at ot ot (19) 

Ine Vne 1п1пв/1пв (17<) 

rf* в(***)/г a l i - * > / 2 *>/>•> 0 < i a > ) 
A *J . ^ / , / > 0 (19a) 

вАиоУ* exp(lne) a"" / > l , / > 0 (19b) 

e x P ( m e ) t r f ^ > / ? l l » ) " ^ £<fi,t+fi>? (19c) 

/ ( 1 п в ) ' exp( аЛ ( т е ) " ' J,/S^O (19d) 

</( lne>-^ e x p ( e ' ( l n e ) - M ) ( l n a ) - ' •C,/>0 ( l^e) 
lnlna ._.. i lnlna » 

е ^ ( 1втаьв ' 
( ln ln lna)" 1 (?0) 

exp( lna) 1 ' ' 2 oxpexp(lna) ' e x p ( - ( l n s ) V ? ) <?1> 

Г к = / ^ - ^ - С ' - . . к

 ( ?1 ? •> • (22) 

and F k are the binomial moments ^ 
F k = <n(n-l) . . . ( 'n-k+l)> . (23) 

The models are classified in diffractive (D), multi-
peripheral (M) and mixed (D-M). Also considered are 
statistical (S) and hybrid models (H) (in H models the 
clusters arise unstatistically and decay statistically / 8 7 ) . 
A review could be found, e.g., in / 9 / . 

It may be remarked that all possible dependences of 
<n > from Table 1 are indeed predicted by various models 
(Table 2). Different power predictions are obtained by 
taking particular values a, a , /3 in Table 1. 
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Table 2 
Summary of model predictions for the asymptotic behaviour 
of the average multiplicity and higher moments. U and 
F k are defined by eq. (22), respectively (23). Here V is 
the "interaction volume", Vo is a constant "interaction 
volume", у is the usual kinematical factor, p( f) denotes 
the "preasure" (energy) density, f(E ) represents the 
energy distribution function, and у =7/ (-?? ) in Griboy 
Reggeon calculus (respectively in absorbtive model)/ 3 3/. 

% Model 
1-

<r\>~ otiaorvationo Vuthor 

Uremsntrhnlung ^ « ^ - ( I n e ) 2 ielaanbarp' * 

Perfect пли 
Perfect ряв 

"tntirtin covnriant a * * 

V'VQ/Г Permi/1*^ 
V.=ot Permi/ 1 2 / 

Perm!, Захгг ' 

Stat i s t ic Pomprnnchuk 
И 

^vOrodynnmic 

Kydrodynamio Renernllred 

V=rfnV0 Pomeraiiohul/ 1 1' 

ti=l/3e Landau/1^/ 

p=BF Suhanan at a l ' ' 

Jncorrelaied ,-Jet 

Stat i s t ica l bootstrap 

rhermodynamieal 

lna 

e ^ d n a ) " 5 

JS 
i lnB 

*=г J 
Van H o v e / 1 6 ' , 
t r eywick l / 1 7 / 

« o n t v a / 1 8 / 

l a g e a o r t / 1 9 / 
Nuclear cascade 

Two f irebal l s 

e x p ( l n e ) 1 / 2 

. 3 /8 
i m o l d / " 0 / 

[aKagl / 2 1 / 
X Baryon Isobar 

Varayen 
a tba ' 
a r t e 1 / " 

/«i /г Pal, P a t e r a / 2 2 / 

•агвуав/ 2 3 ' ' 
S tat i s t ica l d i f fract ive 

Я ova 

я Limiting fragmentation 
Multiperipheral 

Short range correlations 

ins 1 

lna 

lna < 
Inn 

lna 

f 2 « /5 - , f f n « i / n 2 

<n*>-* 

n IV..P-l) /2 
f r i -V M * b n 
P~fJ (n>n0) 

• » • / » / 

Jaeob, 31anek^ 2 5' 
f a n , / 2 6 / 

xre/"/ 
m i a o . / 6 / ' / 2 8 / 

XKueller-Regge lna r n ~(01na) n J u e l l a / 2 9 / 
Wultiperinhernl lna f 2 - 0 

1 

Ohan Plgnottl / 3 0 ' 
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Table II (centlnuad) 

] 
,Classes of multlperipheral. 

nodale Ins 
f n «O n ( lnB)« 

V 0? 
Baseettt/ 4^ 

Baasetto,Purtn* "' 

д Гво components lna • tying)* W i l W 8 / . ' ' » / 
>lsln n*Mnn/ .07«Л.Ш Chnnr " i / 7 ' 1 ' 

hutomodelity ot 
-S.7?</<-?.«l 

Mntvecv ot cl^?/ 

Interacting Pomernno CnVW ( 1 + > / 33 / 
Сялооеп! ,-lori/ro 

4. Discussion 

From Table 2 it may be observed that completely 
different models have the same predictions for <n>, e.g., 
both M and D models could predict a fns behaviour. This 
means that n is not enough to <J*4tinguish between the 
model predictions, such that higher moments are necessary 
to be taken into account. Unfortunately, our scheme from 
Sect. 2 establishes for the higher multiplicity moments 
a bound which is always a power of the bound of <n>.This 
is the ease only in some models, e.g., Mueller-Regge and 
some generalized classes of multiperipheral models /•».«/. 

It is also interesting to note (Table 2) that the brems-
strahlung, hydrodynamical, generalized, Pomeranchuk 
statistical .bootstrap and Narayan models predict the satu
ration of the kinematical bound for<n>. We remember that 
new data on average charged multiplicity from Fermilab 
are described by a logarithm of s' 1', but on the whole 
interval from accelerator till cosmic ray energies the 
power 1/4 ^'(predicted by the hydrodynamical model / ' ^ 
or greater / '5 / describes the data better. Also a domi
nant (fns) 2 dependence seems acceptable f o r f / i / , 
ruling out for the moment the use of diffractive models 
in the initial formulation at available energies /24-26/ 
and giving apparent support for two-component mo
dels /28,29,31/. 
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However, because the theory (and also some models) 
does not exclude the asymptotic saturation of the kinemati -

cal bound of < n> , it is important to establish the condi
tions for this saturation. This will be done elsewhere' 3 5 '-
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