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The experimental data on multiparticle production at 
high energy indicate that the values of the total average 
multiplicity and average transverse momentum are sys
tematically smaller than the phase space allows'1'. How
ever, theoretically it is not clear if the general princip
les (like unitarity and analyticity) centre* the behaviour 
of the avegare multiplicity /z,i/<\i> and average transverse 
momentum <p|;. Therefore, it is useful to find general 
conditions for the unsaturation of kinematical limits of 
<n> a n d <!>]_>• 

In this note, firstly we show that the diffractive pro
cesses cannot lead to the saturation of the kinematical 
bound of <»• (Sect. 1). In Sect. 2 we argue that scaling^^ 
upper bounds for the structure function of one-particle 
inclusive reactions implies the unsaturation of the kine
matical bound of <n~ and •: |ij_: further, if n. and ^ i n 
crease asymptotically slower than y™, then a separate 
conservation of the reduced center of mass (cm.) energy 
and longitudinal momentum occurs on both c m . hemi
spheres, where \f» denotes the cm. energy. The results 
are also extended to m-particle inclusive reactions 
(Sect. 3). 

The proofs in this paper are mainly based on applica
tions of some Tauberian theorems v/hich seem to be a 
powerfull tool for dealing with scaling properties. 

1. Average Multiplicity of Diffractive Processes 

We shall prove that the diffractive processes do not 
lead to the saturation of kinematical bound of < n > . 

Let us denote by an the (exclusive) n -particle produc
tion cross section and by alol the total cross section of 
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a hadronic ab collision. Introducing the probabilities for 
n -particle production 

p n ( s ) = <7„(s) la t o t ( s ) , 

the total avegare multiplicity is defined as 

<n(s ) > = S n p n ( s ) . (1) 
n = 2 

In fact, in the sum from the r.h.s. of eq. (1) n runs 
till the integer part of (V в - m a-mb )/mn>but we express \fk 
in pionic masses and neglect the masses mft , mbof the 
colliding particles a , respectively b . 

By diffractive processes we mean processes where 

?im p (s ) =p > 0 . (2) r n r n v ' 
S->oc 
The average multiplicity of a diffractive process is 

obviously г-
< n D > =

n ? 2 "Pn- (3) 

where P„ are defined by eq. (2). 
Now we shall use a Tauberian theorem (due to Ikea-

r a / 5 / ) . If the Dirichlet series 

D(f)= 2 ajJ , a„ >0 (4) 
n=0 " ° 

is convergent for Re£>l and regular at £ = i , then 

ftm х - 1 2 a =0 . (5) 
X-*oo П < Х П 

Taking in the Dirichlet series (4) n = np , tlie condi
tions of the Ikeara theorem are fulfiled'beca'use 

D(l) . 2 P n < 1. 
n = 8 

Hence, with x = \JT in eq. (5) we obtain 
VS _ 

£im 2 np / v ' s = 0 , 
S-»oo n = 2 

i.e., 
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ftm < i i D > / v / « = 0 , (6) 
S->oa 

and so we have proved our assertion. 
We remember that some models '3' claim the satura

tion of the kinematical bound of <n> . Eq. (6) shows that 
if the saturation occurs, then it could come only from 
non-diffractive processes. Details will be discussed else
where '6( Here we want to stress also the utility of another 
Tauberian theorem/7/ for diffractive processes. This 
theorem enables to establish (rigorously) the expected 
asymptotic behaviour of the multiplicity moments, 

<„k> - s(k-D/2 k = 2 ) 3 , . . . , (7) 

for diffractive models / 8 / for which 

P„ - Vn 2 . (8) 

We express the Tauberian theorem / ? / in a sufficient 
form for the present purpose. Let us suppose that the 
series 

Q(l) = I , / , q > 0 (9) 

converges for о <_t< 1. If L varies slowly/ 7/ at ~ , 
0 < p <°o , , and the sequence iqm! is mono tonic, then the 
relation 

* 4m- — ^ — N P L ( N ) . N - ~ ( 1 0 ) 

m = 0 Г ( р t 1) 
is equivalent to 

4N ~ - ~ - N p - 1 L ( N ) , N - . = < . . (11) 
™ Г(р) 

The series (9) with 
q = m k

P , k= 2,3,... (12) 
m m 

is evidently convergent for 0< t < 1. We proceed to evalua
te the multiplicity moments for diffractive processes 
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< „ k > = 2 q, - 2 8 m h p m , к = 2,3 (13) 

Supposing for P m the behaviour (8), q (ещ.(12)) takes 
the form (11) for p=k-l(N=vs).Then eq. (10) furnishes the 
behaviour (7) for the multiplicity moments (13) of diftrac
tive processes. 

2. Unsaturation of the Kinematical Bound of <n and <pi > 

We begin with some notations and definitions. Let us 
denote by Г (x,p, 2 , s) , c I 

2тг О d ( 7 -
•I « t o t (s) «Ixdpf 

the s tructure function of the inclusive reaction 

a + Ь -> i- fanything. (15) 

Here x is the reduced c m . longitudinal momentum 
( р ц ) , pj_ is the t ransverse momentum and x° tiie reduc
ed c m . energy E of the particle <• with mass M c , 

xj= 2Ec/s/T= 2\/p,| I P J + M ^ V S V K P ^ M V S .(16) 

With these notations the total average multiplicity and 
total average transverse momentum can be written, res
pectively, 

f c(x,pf.s) 
<n> ,= 1 <nc>= S / =L dxdp.2, ( 1 7 ) "1 

с 

<'!> 1 - f < P 1 > с < n c > - £ / - - - V - " ! * * I • ( 1 8 ) 

x с 

The index i specifies th?t we deal with average values 

6 



for the one-particle inclusive reaction (15). Analogously 
are introduced the total average of p k , к = 2,3,... The gene
ralization to m -particle inclusive reactions is sketched 
in Sect. 3. 

A useful quantity in the following is the average 

< P |

k x°> = 2 / p k f (x ,p. 8 , 8 )dxdp. 8 , k=0,l,2 (19) 
1 » с I C 1 1 

We need also the energy and longitudinal momentum sum 
rules^ 9 / , which in the present notations take the form 

<x»> = 2 , (20) 

<v-> = 0 . (21) 
l 

With the notations 

XJ_ - 2]t± /y/7, (22) 

<N k , - <•*>, / \ / Г , к- 1,2 (23) 

our purpose is to find conditions in which the following 
relations hold: 

Pim N - , = 0. (24) 

Pirn <xi ! - » • ( 2 5 ) 

Now let us suppose that the structure function (14) has 
the scaling bound 

И с ( х , р ^ , s ) « l x < g c ( p i ) / 2 P , (26) 

and in the central region has the behaviour 

max Mx.p f . s ) < - - , /J = 2 + 6,S>0. 
«&[-«,elC l (pf+M^fPntpf +M2

C!.I^ ( 2 7 ) 

It can be noted that the upper bound (27) for the beha
viour at large pj_ in the cenrtal region is a weak condition 



for the structure: function, which is verified by usual 
models/ 1 0 / for large p| . 

We assert that if the structure functions (14) have the 
scaling upper bounds (26) and verify the conditions (27) at 
large p| , then the total average multiplicity and total 
average transverse momentum increase slower than \ /7 
when s -.» (i.e., the relations (24), (25) bold).Also.if the 
condition (26) is verified, then 

ftm<x?>,= 0. (28) 
X->°0 * 

For the proof the following Tauberian theorem/' */ will 
be used. If 

x b(y) у 
ftm / ( 1 - — ) dy = a , (29) 
X-.OOJ у X 

where b is bounded rea, function, then 
X b(y) 

ftm / _ - d y = a . (30) 
X->tw l У 

Introducing in eq. (20) the bound (26) and applying the 
Tauberian theorem (29)-(30) with b(y)=yg (y) and x=\As",we 
get readily c 

>/S"/B _ 
ftm / dp, p. f (p , ) /v / S / 2 = 0 . (31) 
к-юо n 1 1 c J. 

With the definitions (16) and (19) for к = 1, and the 
bound (26), eq. (28) is obtained immediately. Further, with 
the bounds (27) for fc(x,pf ,s) in the central region and 
eq. (31) in the fragmentation region, it can be verified 
that the relations (24) and (25) hold. 

3. Asymptotic Left-Right Conservation of x and x° 

In this Section it will be supposed that eqs. (24) and 
(25) hold. We argue that separate left-right conservation 
of the reduced cm. energy and longitudinal momentum 
occurs. Also we shall be concerned with the evaluation 
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of the asymptotic behaviour of more general average 
quantities for the m -particle inclusive reactions 

a+b -» с ji ... + c m + anything . (32) 

Let us consider the average of a function F c i i i C(p ,.•••.? ) 
on a given volume of the phase space *•" m m 

<HR)> =a~\s) S / F (̂  . .^J_! lZj!Ldp 1 . . .dp . 
«n tot 0 ,.„,c „ о,... с rV Km.^ f> r l ' и 

(33) 

where р ( denotes the 3-momentum vector of the particle 
с ( ( | = 1,...,т) and Arc c /dPi—dPm тое differential 
cross section of the process^32). In the following we take 
F as the monoms 

m о. а с, В с. у. „ i x 
F c ...„ - П (p ) » ( p ' P (E « Л ,« 0 ..У ,>_0. (34) Г m 1 = 1 II l i i I -

If in eq. (33) we introduce F with particular values 
a , 8 , у from eq. (34) , we get the averages (17)-(21). 

When Fci...cm = Um>l), we get the binomial multiplicity 
moments in the R region of the phase space 

<„( R) > = a" \ Ы £ / * c l ' " 4 , «IP ,.» dpL . (35) 
m tot c , , . . . ,c R dp,... dp * m 

1 m *i *m 
It may be remarked that the inequality 

IP,| l<E 0 <IP | , I +PX +MC (36) 

implies the same asymptotic behaviour of \ ° and x in 
the average (33) of the monoms (34), when eq. (25) hold?. 

Further we list 4 consequences of eqs. (24), (25) for 
various averages (33)-(34). 

a. If eqs. (24), (35) hold, then 
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Й т < х ( г / 1 ) > = 1 , (37) 
S->co 

i.e., if the total average multiplicity and total average 
transverse momentum increase slower than \[в when s->», 
then a separate right (left) conservation of the reduced 
c m . longitudinal momentum (and energy) occurs. 

Adding the sum rules (20) and (21) and taking into 
account ineq. (36), we get easily 

<x(r) > , + < x j > ( +1 V l c <n c >/ \ / s > l > < x ( r ) > j . 
с 

If eqs. (24), (25; are true, then eq. (3?) follows, 

b. If eq. (25) holds, then 
„. , « н. .O.when ti >u 
IIP ^ X X'I . \ = . ' 
s->» x ' A, when ft = 0 , 

(38) 

where 

A = y, if у =-0,1 (39) 
0<A< I , if 0 <y<\. 

Here by у we denote 

)' = rim < x > j . 

The behaviour from eqs. (38), (39) can be checked 
applying the Schwartz inequality. 

с If eq. (24) holds, then 

ftm<Nk> = 0 , k = l , 2 , . . . ; tim <.-(!{) > m / s

m / ? = 0 , (40) 
8-*°° S-*oo 

where N is defined by eq. (23) and > by eq. (35). 

d. If eqs. (24), (25) hold, then 

Eim • Р | | 4 ' ° т - 0 , ш > 1 , к > 1 . . (41) 
**» ( N / s / 2 ) m + h 

where the index 0 refers to the energy. 
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For proving eq. (41), the energy-momentum sum 
rules^9' for m -particle inclusive reactions are needed: 

d ( 7 c . . . c m , d t T c . . . . с 
(P-Pc - " * . ) 7 r ^ r = 1 ~ = 2 / p c - J - - ^ d ? 1 . . . d ? l n , 

1 m-1 d P l . . . d P m _ 1 c m щ d P l . . . d p m 

where p c , denotes the energy-momentum 4-vector of the 
particle сД i = l,„. ,m) and P is the energy-momentum 
4-vector of the initial state. 

In conclusion, the properties (37)-(41) are consequences 
of the relations (24) and (25). Using Tauberian theorems 
we succeeded in Sect.2 to prove that the scaling properties 
(26) and (27) of the structure functions are sufficient 
conditions for eqs. (24), (25). A more general justification 
of eqs. (24) and (25) will be presented elsewhere / 6 / . 

The author acknowledges Dr. A.C.Gheorghe for initia
ting him in the use of Tauberian theorems. 
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