СООБЩЕНИЯ
 OБbEAИHEHHOIO ИНСТИТУТА
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

AYБHA
14/1viss
$\frac{\text { C } 323,56}{B-45}$
E2 - 8542
S.Berceanu
$1331 / 2-75$
ON TAUBERIAN THEOREMS AND INCLUSIVE PROCESSES

1975

E2 - 8542

S.Berceanu*

ON TAUBERIAN THEOREMS
 AND INCLUSIVE PROCESSES

[^0]The experimental data on multiparticle production at high energy indicate that the values of the total average multiplicity and average transverse momentum are systematically smaller than the phase space allows ${ }^{/ 1 /}$. However, theoretically it is not clear if the general principles (like unitarity and analyticity) contro ${ }^{\circ}$ the behaviour of the avegare multiplicity $/ 2,3 /<n>$ and average transverse momentum<pl. Therefore, it is useful to find general conditions for the unsaturation of kinematical limits of $<\mathrm{n}$ > and $<\mathrm{p}$ 上)

In this note, firstly we show that the diffractive processes cannot lead to the saturation of the kinematical bound of $\because n \div$ (Sect. 1). In Sect. 2 we argue that scaling ${ }^{/ 4 /}$ upper bounds for the structure function of one-particle inclusive reactions implies the unsaturation of the kinematical bound of $\because n \cdot$ and $\cdot \mathrm{n} \perp$. Further, if $\because \mathrm{n} \because$ and $\mathrm{p} \perp$ increase asymptotically slower than $\mathrm{r}^{-} \mathrm{s}$, then a separate conservation of the reduced center of mass (c.m.) energy and longitudinal momentum occurs on both c.m. hemispheres, where \sqrt{s} denotes the c.m. energy. The results are also extended to m-particle inclusive reactions (Sect. 3).

The proofs in this paper are mainly based on applications of some Tauberian theorems which seem to be a powerfull tool for dealing with scaling properties.

1. Average Multiplicity of Diffractive Processes

We shall prove that the diffractive processes do not lead to the saturation of kinematical bound of <n>.

Let us denote by σ_{n} the (exclusive) n -particle production cross section and by $\sigma_{\text {tot }}$ the total cross section of
a hadronic ab collision. Introducing the probabilities for: n -particle production

$$
\mathrm{P}_{\mathrm{n}}(\mathrm{~s})=\sigma_{\mathrm{n}}(\mathrm{~s}) / \sigma_{\text {tot }}(\mathrm{s}),
$$

the total avegare multiplicity is defined as

$$
\langle n(s)\rangle=\sum_{n=2}^{\sqrt{s}} n P_{n}(s)
$$

In fact, in the sum rrom the r.h.s. of eq. (1) "runs till the integer part of ($\sqrt{s}-m_{a}-m_{b}$)/m m_{m} but we express \sqrt{s} in pionic masses and neglect the masses m_{a}, m_{b} of the colliding particles a, respectively b.

By diffractive processes we mean processes where

$$
\begin{equation*}
\lim _{s \rightarrow \infty} p_{n}(s)=p_{n}>0 . \tag{2}
\end{equation*}
$$

The average multiplicity of a diffractive process is obviously

$$
\begin{equation*}
\left\langle n_{D}\right\rangle=\sum_{n=2} n p_{n}, \tag{3}
\end{equation*}
$$

where P_{n} are defined by eq. (2).
Now we shall use a Tauberian theorem (due to Ikea$\mathrm{ra}^{/ 5 /}$). If the Dirichlet series

$$
\begin{equation*}
D(\xi)=\sum_{n=0}^{\infty} a_{n} / n \xi, a_{n}>0 \tag{4}
\end{equation*}
$$

is convergent for $R e \xi>1$ and regular at $\xi=1$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{-1} \sum_{n<x} a_{n}=0 . \tag{5}
\end{equation*}
$$

Taking in the Dirichlet series (4) $a_{n}=n p_{n}$, the conditions of the Ikeara theorem are fulfiled "because

$$
D(1)=\sum_{n=2}^{\sqrt{3}} P_{n} \leq 1
$$

Hence, with $x=\sqrt{s}$ in eq. (5) we obtain

$$
\lim _{s \rightarrow \infty} \sum_{n=2}^{\sqrt{s}} n P_{n} / \sqrt{s}=0,
$$

i.e.,

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\langle n_{0}\right\rangle / \sqrt{s}=0, \tag{6}
\end{equation*}
$$

and so we have proved our assertion.
We remember that some models $/ 3 /$ claim the saturation of the kinematical bound of $\langle n\rangle$. Eq. (6) shows that if the saturation occurs, then it could come only from non-diffractive processes. Details will be discussed elsewhere ${ }^{6 /}$. Here we want to stress also the utility of another Tauberian theorem $/ 7 /$ for diffractive processes. This theorem enables to establish (rigorously) the experted asymptotic behaviour of the multiplicity moments,

$$
\begin{equation*}
\left\langle n^{k}\right\rangle \underset{s \rightarrow \infty}{\sim} s^{(k-1) / 2}, k=2,3, \ldots, \tag{7}
\end{equation*}
$$

for diffractive models $/ 8 /$ for which

$$
\begin{equation*}
p_{n}-1 / n^{2} . \tag{8}
\end{equation*}
$$

We express the Tauberian theorem $/ 7$ / in a sufficient form for the present purpose. Let us suppose that the series

$$
\begin{equation*}
Q(1)=\sum_{m=0}^{\infty} q_{m} t^{m}, q_{m} \geq 0 \tag{9}
\end{equation*}
$$

converges for $0 \leq t<1$. If L varies slowly/7/ at ∞, $0 \leq \rho<\infty$, , and the sequence $\left\{\pi_{m}\right\}$ is monotonic, then the relation

$$
\begin{equation*}
\sum_{m=0}^{N} q_{m}-\frac{1}{\Gamma(\rho+l)} N^{\rho} L(N), N \rightarrow \infty \tag{10}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\mathbf{q}_{\mathrm{N}} \cdots \frac{1}{\Gamma(\rho)} \mathbf{N}^{\rho-1} \mathrm{~L}(\mathbf{N}), \mathrm{N} \rightarrow \infty . \tag{11}
\end{equation*}
$$

The series (9) with

$$
\begin{equation*}
q_{m}=m^{k} p_{m}, k=2,3, \ldots \tag{12}
\end{equation*}
$$

is evidently convergent for $0 \leq 1<1$. We proceed to evaluate the multiplicity moments for diffractive processes

$$
\begin{equation*}
\left\langle n^{k}\right\rangle=\sum_{m=2}^{\sqrt{s}} q_{m}=\sum_{m=2}^{\sqrt{s}} m^{k} P_{m}, k=2,3, \ldots ; \tag{13}
\end{equation*}
$$

Supposing for P_{m} the behaviour (8), q_{m} (eq. (12)) takes the form (11) for $\rho=k-1(N=\sqrt{s})$. Then eq. (10) furnishes the behaviour (7) for the multiplicity moments (13) of diffractive processes.
2. Unsaturation of the Kinematical Bound of $<n$ and < p_{\perp} >

We begin with some notations and definitions. Let us denote by $\Gamma_{c}\left(x, p_{1}^{2}, s\right)$,

$$
\begin{equation*}
f_{c}\left(x, p_{\perp}^{2}, s\right)=\frac{2 \pi}{\sigma_{\omega t}(s)} x_{c}^{0} \frac{d \sigma_{c}}{d x d p_{\perp}^{2}}, \tag{14}
\end{equation*}
$$

the structure function of the inclusive reaction

$$
\begin{equation*}
a+b \rightarrow c+a n y t h i n g . \tag{15}
\end{equation*}
$$

Here x is the reduced c.m. longitudinal momentum ($p \|$), $p \perp$ is the transverse momentum and x_{c}^{0} the reduced c.m. energy E of the particle r with mass M_{c},

$$
\begin{equation*}
x_{c}^{0}=2 E_{c} / \sqrt{s}=2 \sqrt{ } p_{\|}^{2}+p_{\perp}^{2}+M_{c}^{2} / \sqrt{s}=\sqrt{x^{2}+1\left(p^{2}+M_{c}^{2}\right) / s} . \tag{16}
\end{equation*}
$$

With these notations the total average multiplicity and total average transverse momentum can be written, respectively,

$$
\begin{align*}
& \langle n\rangle_{1}=\sum_{c}\left\langle n_{c}\right\rangle=\sum_{c} \int \frac{p_{c}\left(x, p_{1}^{2}, s\right)}{x_{c}^{n}} d x d p_{1}^{2} \tag{17}\\
& \left\langle p_{\perp}\right\rangle_{1}=\Sigma \sum_{c}\left\langle p_{\perp}\right\rangle_{c}\left\langle n_{c}\right\rangle=\frac{\Sigma}{c} \int \frac{f_{c}\left(x, p_{1}^{2}, s\right)}{x_{c}^{0}} p_{\perp} d x d p_{\perp}^{2} . \tag{18}
\end{align*}
$$

The index i specifies thot we deal with average values
for the one-particle inclusive reaction (15). Analogously are introduced the total average of $p_{1}^{k}, k=2,3, \ldots$ The generalization to m-particle inclusive reactions is sketched in Sect. 3.

A useful quantity in the following is the average

$$
\begin{equation*}
\left\langle p_{\perp}^{k} x^{0}\right\rangle_{1}=\sum_{c} \int_{p_{1}}^{k} f_{c}\left(x, p_{\perp}^{2}, s\right) d x d p_{1}^{2}, k=0,1,2, \ldots \tag{19}
\end{equation*}
$$

We need also the energy and longitudinal momentum sum rules $/ 9 /$, which in the present notations take the form

$$
\begin{align*}
& \left\langle x^{0}\right\rangle_{1}=2, \tag{20}\\
& \langle x\rangle_{1}=0 . \tag{21}
\end{align*}
$$

With the notations

$$
\begin{align*}
& x_{\perp}=2 r_{\perp} / \sqrt{s}_{s} \tag{22}\\
& \left.<N^{k} \because n_{1}=<n^{k}\right\rangle_{1} / \sqrt{s}, k=1,2, \ldots, \tag{23}
\end{align*}
$$

our purpose is to find conditions in which the following relations hold:

$$
\begin{align*}
& \lim _{s \rightarrow \infty}=\mathbf{N}=0 \tag{24}\\
& \lim _{s \rightarrow \infty}: x \perp 1=0 . \tag{25}
\end{align*}
$$

Now let us suppose that the structure function (14) has the scaling bound

$$
\begin{equation*}
\int f_{c}\left(x, p_{\perp}^{2}, s\right) d x \leq E_{c}\left(p_{j}\right) / 2_{i}, \tag{26}
\end{equation*}
$$

and in the central region has the behaviour
$\max _{x \in[-\epsilon, c} f_{c}\left(x, p_{\perp}^{2}, s\right) \leq \frac{\gamma}{\left(p_{\perp}^{2}+M_{c}^{2}\right)\left[\ln \left(p_{\perp}^{2}+M_{c}^{2}\right) \beta\right.}, \beta=2+\delta, \delta>0$.
It can be noted that the upper bound (27) for the behaviour at large p_{\perp} in the cenrtal region is a weak condition
for the structure function, which is verified by usual models/10/for large p_{f}.

We assert that if the structure functions (14) have the scaling upper bounds (26) and verify the conditions (27) at large p_{+}, then the total average multiplicity and total average transverse momentum increase slower than $\sqrt{\mathrm{s}}$ when $s \rightarrow \infty$ (i.e., the relations (24), (25) hold). Also, if the condition (26) is verified, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left\langle x_{ \pm}^{2}\right\rangle_{1}=0 . \tag{28}
\end{equation*}
$$

For the proof the following Tauberian theorem/11/will be used. If
$\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{b(y)}{y}\left(1-\frac{y}{x}\right) d y=a$,
where b is bounded reas function, then
$\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{\ln (y)}{y} d y=a$.
Introducing in eq. (20) the bound (26) and applying the Tauberian theorem (29)-(3D) with $b(y)=y_{c}(y)$ and $x=\sqrt{s}$, we get readily

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \int_{0}^{\sqrt{s} / 2} d p_{\perp} p_{\perp} g_{c}\left(p_{\perp}\right) / \sqrt{s} / 2=0 \tag{31}
\end{equation*}
$$

With the definitions (16) and (19) for $k=1$, and the bound (26), eq. (28) is obtained immediately. Further, with the bounds (27) for $f_{c}\left(x, p{ }^{2}, s\right)$ in the central region and eq. (31) in the fragmentation region, it can be verified that the relations (24) and (25) hold.
3. Asymptotic Left-Right Conservation of x and $\times 0$

In this Section it will be supposed that eqs. (24) and (25) hold. We argue that separate left-right conservation of the reduced c.m. energy and longitudinal momentum occurs. Also we shall be concerned with the evaluation
of the asymptotic behaviour of more general average quantities for the m-particle inclusive reactions

$$
\begin{equation*}
a+b \rightarrow c+\cdots+c_{m}+\text { anything } \tag{32}
\end{equation*}
$$

Let us consider the average of a function $\mathbb{F}_{c_{1} \cdots c_{m}}\left(\vec{p}_{1}, \ldots, \vec{p}_{m}\right)$
on a given volume of the phase space
$\langle F(R)\rangle{ }_{m}=\sigma_{t o t}^{-1}(s) \underset{c_{1}, \ldots, c_{m}}{\Sigma} \int_{R} F_{c_{1}} \ldots c_{m}\left(\vec{p}_{1}, \ldots, \vec{p}_{m}\right) \frac{d \sigma_{c_{1}} \ldots c_{m}}{d \vec{p}_{i} \ldots d \vec{p}_{m}} d \vec{p}_{1} \ldots d \vec{p}_{m}$,
where \vec{p}_{j} denotes the 3 -momentum vector of the particle $c_{i}(i=1, \ldots, m)$ and $d \sigma_{c_{1}} \ldots c_{m} / \vec{p} p_{1} \ldots d \vec{p}_{m}$ the differential cross section of the process (32). In the following we take F as the monoms
$F_{c_{1} \ldots n_{m}}=\prod_{i=1}^{m}\left(p_{\|} c_{i}\right)^{a_{i}}\left(p_{\perp}^{c_{i}}\right)^{\beta_{i}}\left(E^{c_{i}}\right)^{\gamma_{i}}, a_{i}, \beta_{i}, \gamma_{i} \geq 0$.
If in eq. (33) we introduce F with particular values a, β, γ from eq. (34), we get the averages (17)-(21). When $F_{c} \ldots c_{m}=1(m>1)$, we get the binomial multiplicity moments in the R region of the phase space

It may be remarked that the inequality

$$
\begin{equation*}
\left|\mathbf{p}_{\|}\right| \leq \mathbf{E}_{\mathbf{c}} \leq\left|\mathbf{p}_{\|}\right|+\mathbf{p}_{\perp}+\mathbf{M}_{\mathbf{c}} \tag{36}
\end{equation*}
$$

implies the same asymptotic behaviour of x^{0} and x in the average (33) of the monoms (34), when eq. (25) hulds.

Further we list 4 consequences of eqs. (24), (25) for various averages (33)-(34).
a. If eqs. (24), (25) hold, then
$\lim _{\mathrm{s} \rightarrow \infty}\langle\mathrm{x}(\mathrm{r} / \mathrm{I})\rangle_{1}=1$,
i.e., if the total average multiplicity and total average transverse momentum increase slower than \sqrt{s} when $s \rightarrow \infty$, then a separate right (left) conservation of the reduced c.m. longitudinal momentum (and energy) occurs.

Adding the sum rules (20) and (21) and taking into account ineq. (36), we get easily
$\langle x(r)\rangle_{1}+\left\langle x_{j} \because_{1}+\sum_{c} U_{c}\left\langle n_{c}\right\rangle / \sqrt{s} \geq 1 \geq\langle x(r)\rangle_{1}\right.$.
If eqs. (24), (25) are true, then eq. (37) follows.
b. If eq. (25) holds, then
where

$$
\begin{gather*}
\lambda=\gamma, \quad \text { if } \gamma=0,1 \tag{39}\\
0<\lambda<1,
\end{gather*} \quad \text { if } 0<1 .
$$

Here by γ we denote

$$
y=\lim _{s \rightarrow \infty}\left\langle x^{2}\right\rangle
$$

The behaviour from eqs. (38), (39) can be checked applying the Schwartz inequality.
c. If eq. (24) holds, then

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\langle N^{k}\right\rangle_{1}=0, k=1,2, \ldots ; \lim _{s \rightarrow \infty}\langle 1(R)\rangle_{m} / s^{m / 2}=0, \tag{40}
\end{equation*}
$$

where N is defined by eq. (23) and r by eq. (35).
d. If eqs. (24), (25) hold, then
$\lim _{s \rightarrow \infty} \frac{\left\langle p_{\|}^{k}, 1,0^{\prime} m\right.}{(\sqrt{s} / 2)^{m+k}}=0, m>1, k \geq 1$,
where the index 0 refers to the energy.

For proving eq. (41), the energy-momentum sum rules $/ 9$ / for m-particle inclusive reactions are needed:

$$
\left(P_{-p_{c}}-\ldots-p_{c_{1}}\right) \frac{d \sigma_{c} \ldots c_{m-1}}{d_{1} \ldots \vec{p}_{1} \ldots \vec{p}_{m-1}}=\sum_{c_{m}} \int p_{c_{m}} \frac{d \sigma_{c_{1}} \ldots c_{m}}{d \vec{p}_{1} \ldots \vec{p}_{m}} d \vec{p}_{1} \ldots d \vec{p}_{m},
$$

where pc_{i} denotes the energy-momentum 4-vector of the particle $c_{j}(i=1, \ldots, m)$ and P is the energy-momentum 4-vector of the initial state.

In conclusion, the properties (37)-(41) are consequences of the relations (24) and (25). Using Tauberian theorems we succeeded in Sect. 2 to prove that the scaling properties (26) and (27) of the structure functions are sufficient conditions for eqs. (24), (25). A more general justification of eqs. (24) and (25) will be presented elsewhere ${ }^{/ 6 /}$.

The author acknowledges Dr. A.C.Gheorghe for initiating him in the use of Tauberian theorems.

References

1. D.R.O.Morrison. Proceedings oit the Fourth International Conference on High-Energy Collisions, Oxford, (1972);
D.R.O.Morrison. Review lectures given at the Fifth Hawail Topical Conference in Particle Physics, CERN/ D.Ph.II/PHYS 73-46, CERN preprini (1973).
2. N.N.Khuri. Phys.Rev., D9, 1802 (1974).
3. S.Berceanu, to be published.
4. R.P.Feynman. Phys.Rev.Lett., 23, 1414 (1969).
5. S.Leng. Algebraic numbers, Izdat. Mir, Moscow, § VH (1966) (in Russian).
6. S.Berceanu, A.C.Gheorghe, to be published.
7. W.Feller, An introduction to probability theory and its applications, Izdat. Mir, Moscow, Vol, II, §XII, 513 (1967) (in Russian).
8. C.Quigg, J.H.Wang, C.N.Yang. Phys.Rev.Lett., 28,1290 (1972).
9. L.S.Prown. Phys.Rev., D5, 748 (1972).
10. S.D.Ellis, R.Thun. Ref. TH 1874-CERN, CERN preprint (1974).
11. N.Dunford, J.T.Schwartz. Linear operators, Part II, Izdat. Mir, Moscow, 165 (1966) (In Russian).

Received by Publishing Department on January 20, 1975.

[^0]: - Present address: Institute of Atomic Physics, Eucharest.

