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1. Introduction

In the previous paper we dealt with canonical reali=-
gationg of the complexified Lie algebra ol the orthogonal
group in n - dimensional Euclidean space (%) 1/, By
canonical realization we undera‘i:ood there an igomorphism
mapping ¥ of a given Lie algebra &G into the Veyl al-
gebra qu s i.e. essentially into the algebra of poly-
nomials in N pairs of quantum canonical variables /ﬁ.‘ ,

75 y» ©31,2,00sy N . Among the other results we proved
there that in any canonicsal realization of Lie algebra
e(m,n) of a pseudoorthogonal group Of{m,2), m>2>0 ,
in WAN s N=mrm-2 (for the exception of the cage

m+m = G ), all Casimir operators esre realized by constant
multiples of the identity element x/ {(we ppeak about Schur-
realizations) and if mem>6 they depend on the quadratic
ones in one of the two possible weye only (it isp what we
call "degeneration" of }éalizatioh). It means that to
ramove pertlyA or even fully the mentioned "dageneration"
we must enlarge the number N of canonical pairs. In
contrast to canonical realizations of ¢(m.z) in W,y
¥N=men-2, the realizations with N >msn-2Z need not be
necesearily the Schur-i-ealizations. So we come naturally
to the question whether some realigations of e¢(m,n) exiat
in which the "degeneration" ig at least reduced and which
are at the same time Schur-realisations.

xl Ag to the pﬂ!‘ticulﬂr cagae w! c w ‘aee
/2/ . (n+n ’) £ (m "’l'&)
also .



In this paper we golve this question positively in the
generalized framework of the go=called matrix canonical
realizations in which the generators of considered lLie
algebra ars expressed by matrices with elements from MN
(if the dimension of such matrices is M , we denote such
a generalization of the Weyl algebra by the gymbol WZN, Mde

The matrix canonloal realizations represent one possi-
ble proper algebraical embadding of the Weyl algebra into
a larger structure. It is known that another poesibility
ig to embed the Weyl algebra into ite quotient division
ring. In both these cases the class of allowed functions,
in terme of which the generators of a given lie algebra
can be expressed, is essentlally enriched compared with
the original Weyl algebra. Therefore the possibility of
obtaining the wider class of realizations in these structu-
res arises without necessity of ohanging the pure algebra-
ical approach. .

From the point of view of application to the represente
tion theory we ghall introduce further concept of skew-
hermitean realization though the representation aspecte
are not discussed in this paper. By the ekew-hermitean
matrix canonical realization we shall esaentially imply
the one which after replacement ot/: and 7,_ by their
Schrodinger representatives passee to 8 ekew-gymmetric
representation on a suitable Hilbert space.



The main result of this paper lies in the formulae
deseribing recurrently two mets of matrix canonical skew-
hertit ean Schur-realizations of the Lie algebras o (m,n),

m 3 1. In gome ppecial cases these formulae coincide
with earlier regults of some authora(ses,e.g. Richard /3 ).
Every realigation from the firet set is uniquely detexmi-
ned by some Finite-dimensional irreducible skew-hermitean
repregentation of the compact Lie algetra o'(nn'm)x/ and
the finite sequence of 7t real numbers. If the dimension
of representation of ov(m-n) is M then ¢(m,r)in realized
in %n(‘mq},ﬁf . Realizations from the second pet are usual
canonical realizations in Wzdlmm—d-l) vd=12;,n-1
they are characterized by ¢f=-tuple of real constanta.

We ghall introduce further the concept of roulated -
and non-related realizations by means of which all reali-
zations described ahove will be classified, ¥e prove that
any two realizatione chosen from both the sets are norn-
related if they differ either in characterizing tuples of
real numbers or in the case of realizations of the first
type with ths game characterizing tuples, if the irredu-
cible representations of the algebra ¢(m-m) are non-equ=-
ivalent.

The exact formulation of all thege gtatements is
contained in Theorem 3. Its pfoof is baged mainly on Theo-

rem 1 where the basic recurrent formulae are included.

%/ pe to case m-m=0,1 see following remark.



Theorem 2 shows that any skew=-hermitean matrix canonical
Sohur-realization of a oompact Lie algebra is usual mat=-
rix skew-hermit ean repregentation, which generalizes the
Joseph apsertion /4/.

Again, ag in our previous paper, all considerations
are purely algebralscal. As to the problem of "degenerationy
i.e. mutual dependence or independence of Caeimir operators
in the depcribed realizations, we shall discuss thege ques-

tions in the pecond part of this paper.

2. Preliminaries

A. The (complex) Weyl algebra WZN is the assoclative
algebra with the identity element 4 over the field of
complex numbera‘ € ; its generating elements ?i- /Li .
i=4,...IN . rulf‘ill the usual cancnical commutation relati-

L'/-.'.,/Lj]:[?i'?'j]:O/ [7"‘/‘7",‘ ]"c{;‘i .

As the consequence of tne Poincaré-Birkhoff-¥itt theorem
the monomials

c/"(/u.)“= ?:;... 7,2’.(/:-’)".“ (7«,”)"”

form the basise of W‘!N (aee /5/, p.178), i.e. every ele~
ment we W/, can be uniquely written in the form

w e a,. g 4
2 s gT(p),
where Ay = Ay, 'ﬁ/v"'/’ﬂ/ef'



B. The symbol a(mm), Mmarm3 Qy mtm » 2 , denoten
the Lie algebra of pseudoorthogonal group in (mMm/m ) = di-
mengional pseudoeuclidean space with the metric tengor
v+ Ve 42, oy mim o IF LC“., """L{_w, denotes
ot sm )(men-+) elements of the bapim of ¢=(m,z) then
the commutation relations hold.

[L v, Lff ]=le L(ltf —ft“f Lz "‘jerﬂ. “‘j(ur Lfv. ()
pt=42,..., min . If M4 we can apeuwme without
the loes of generality the metric tensor having the form

(guo)= d‘hg(?"""’i""”"""" s-131). In addition to the ten-
gor basls (L#,) » the gecond one can be chosgen

J ’ L‘ mom Ll moar-d 1 0! l‘t,nn: —Ai,.m-.w-r /

R = Lﬂn‘a-fll.mm; J' i{/‘ ‘l (= 4'21

TN mem-

in which the commutation relationa (1) have the Llorms
[t 1= gjatic - gate fyj, Ly - e Ly

[Lf/" R J:.?/‘E “gely ;) {Ly, G =94 GG (2
[ty R]=05 [RRI=F ,[RGT=-Qe >

71=16i,Q]-0, [7,Q]=-2(15+g,2).

Note that the generatora 7,..., R ,.., and Qy,..,Qm,x., form
the bases of (Msn-2)=dimensional Abelian subalgebras of
oim,n)

Ce Any irreducible finite-dimensional representation
of the compact Lie algebra o'(m,0)sz{=), m>2 , is, for



the exception of m=2 , equivalent to a skew~hermitean
one. Any such representation of ¢m)is uniquely determi-
ned by the go-called signature o = (%, -, N[g]) » where
the numbera Ct,... 0 ra ] for m>2 are sither all integers
or all half-integers such that Ol > 0,2 o 20, > o, )
i m=2V and %02 ... 20,30 1f m2vsd

In the case of commutative Lie algebra «(2) all
irreducible pkew=hermitean raprasentationa are one=dimen-
sional and the generator L, 1is repregented as irE, ,
re R , where £, 1lp identity operator. By the signature
& of this representation we understand the one=-point se~
quence o¢=(r=0e;).

Two equivalent irreducible representations have the
pame signatures and to different signatures there corres-
pond non-equivalent irreducible representationa (/ 6/ N
pe518=519).

3. Bapic congeptp

Definition l: Let WZN be the complex Weyl algebra

in N cenonical pairs and let Jlan be the algebra of
complex MxM -matrices. The tensor product Wiy y =
= W,y ®AMal, we shall call matrix Weyl algebra.

It ip clear that Wiy Wy > N8 E, ¢ Winn
( E, iethe unity Mx/M-matrix) and daf,~d@dat,c W,



Definition 21 A matrix canonical realization of the
Iie algebra G im the homomorphiem 7 : G — MMM .
The homomorphiem 7 extends naturally to the homomorphiam
mapping (denoted by the same ‘aymbol T ) of the envaloping
slgebra UG of G into %NIM. It § ie eimple then any
homemorphicm is either trivial or it is an isomorphism of G

Remember that involution on an aspociative algebra
(over R or ) ip the mapping "+"i1 G -»G obeying the
relations (xa4lb)'= &'a*«/é'b' Jab) = b @ a b G

Definition 31 Let an involution "+ be defined on the
algebra W3y .+ A matrix canonical realization of a resl
Iie algebra G in MIV,M is called gkew-hermitesn, if all
the elements of G are realized by skew-hermitean expresei-
ong, i.e. if T(a)=-T(a) for 8ll ac &G ,

Note 1: An involution on If,, together with the usual
Hermitesn adjoint in Maf, defines involution in Wy, .
In what follows, we conpider puch an involution with a’
ppecial choira induced by

(14 9= %
on the algebra l(/,” .

Definition 4: A matrix canonical realization
v:G—»W, ie called Schur-reallzation if all the central
elements of the enveloping algebra uG of G are reali-
zed by the multiples of the identity element,




For the classification of matrix canonical realizati-
ong we introduce the follewing laat ooncepts:

Definition 5: Matrix canonical realizations 7 end €/
of the Lie algetra G in WM( u are called related if a
congerving identity endomorphism 4 of WZM M exists so
that either -x/'.z-= i or hrier

4. Matrix canonical realizations
of the Iis algebra o-(7.%).

Theorem 11 let gkew-hermitean Schur-realization of the
algebra o (m-i,n-4), m+m»2 x/ s in lfﬁ,,m be given and
let f'fg =- jle”éh',ﬁf denote the resmlization of the basis ele-
ments of & (m-fm-1) . Then

i. the following formulas define the gkew=hermitzan Schur-

realization of ¢im,n) in ‘Vz(mrﬂ-(ZPN),N H
Liil= Gt - 4o s
Chyd= Gipy=gipe v My . 3

T(R) ='(7/(.)—[;,_-'-(mm‘z)-z'a ]72, xe R,
T(Ql:)r'_?’,:/‘i __27‘. T(P)-Z?j/:’/'i , 7: Zf,-nr,m-f"‘"z/

where
()= §pi 1 5= 99 1 fi=ggps 4= 3%

x/ In order to reduce maximally the number of excep=-
tional cases we congider aleo "Lie algebras" ¢(0) and efr)
when we define M=o « In the firat cage the formulae
(3) define the realization Z(R)=ixd of e¢td) din W,
while in the pecond case the realisation of ¢(2,4) in Hpq «




ii. two realizations (3) with different values of the
parameter o¢ are not related,

iii. two realizations (3) differing only in realiza-
tion of o(m-{,m-1) are related if and only if the rea-
ligations of ¢(m-1,m-1) are related.

For the proof of this theorem we ghall ume the follo=-
wing two eapily provable asgertiona:

(a) If an element ae Wiy, commutes with cancnioa®
variable r"( or g; ) » then o does not depend on 7‘-(01-./;") .

(b) If for ac Hfy, and (7/.,)”,59'/t‘r-...+ 9-”,/,,”', Nel

the commutation relation

[(9p)y, 2 ]=ta,
ie valid for some t = 0,Il... 4 then
a = a.,.3"( A -
% re ¥ )
_ rAzt

(ar,97tp)" = ay %o @A) ()

% 'IIQF”“D",,A”,I% ...‘Q‘”'-/; “ee ,l ¥
T-d=r. ,;_....f,;,.,d,_,,__ﬁﬂ,)and 2., does not dapend

’

on 4., ., 7,”‘)/1_1 “‘//'-” .

Proof: One can by direct commutation verify that the
expreassions (3) form a realization T of the bapis o(m.,m).
With respect to involution we use (mee Note 1), all the
exprepalons (3) are ekew-hermitean and therefore they ge=
nerate (through real linear combinations) the skew-hermit- -

ean realization T of ofm,n) . We ghall prove that =
is Schur-realization.



Let us take pome arbitrary centre element x of

Uo(m,n)« Its Teallzationtrs)is a polynomial
1 - » rr, VR
r@) =2 /., (M) g7 ()

(re(fiviPmeined 282308 Aot )) which commutes

with all the expressions (3). The coefiiolents /3 (M )
depend polynomially on the bapls elementas My of tha
realization of o (m-f,m-/). Due to the commutation rela-
ttons [t(2),0(R1]=0, t.es [v(2)ps¢ ] =0+ in socord
with the mgsertion (a), T(X) doee not depend on Der-s Paentn
i.e, T(x) = ;—ﬂ.w (H./)(’t) .. A T(¥) commutes also
with T(R) =- (gfe) #angt , the assertion (b) can be
applied, which gives

T(x) = 4"' (My)

We shall use once more the fact that %(x)  realizes a

oentre element of 'UtrIM,u) » It implies that T(¥) commu-

tes with all ﬂLfﬂ = %./,]. -%./,‘.,/Vy. , and consequently
[‘t“(Z), Mf/. ]= 0.

Due to the apsumption of the theorem the realization of
¢(m-1,m-1) 1g Schur-realization, and therefore each
polynomlal in its bagis elements commuting with all of
them equals some multiple of the identity element,

a,, (M i J=412 ., /3¢ C » which proves the first sta-
tement of the theorem.

12



ii and 1ii. Let ue consider two realizations ¢ and <!
of the type (3) and amoume the eximtence of an endomorphiem
P, M(Mf,,_z,_”)’,, > Wy (men-2enpyBUCh that Mi)=1
and M= 7/ (l.e. T and 7’ are related). ¥e shall show
that ot=o! and that the corresponding realizations of
o(m~1,m-1) are algo related. The equations if'.r{P") =T(R)
and 1P 7(R) «TYR)glve lmmediatelly

Ppi)e pt, =02, mem-2 S
and
"'(7/") = (7/.,) +i(a-x’)1 . (5)
The element t"{%)e W, (m +n-2myn ©80 be Written in the
form
Fig;) ='€_ Biws 97(1)*
where /JiJPA Ep“’.' e Vemed 1A Amei € %”,M )

The polynomial

Pgp) = () = (F(9:)-9: ) p*

i1s either zero or its lowest degree in the "variableg"
h,...,/«.,,,m_,_ is greater or equal to one . Ag this po=-
lynomial equals to f(x-x‘') , the mecond poseibility ie
excluded and the firat cne implies & e«’ , which proves
the assertion ii.

For m+m =23 the theorem is proved completely be-
cause only .tr:l.v:l.al realization of the “Lie algebrasg" o(o)

and o'(1) existe; we shall apsume therefore further -
mem>d o



The polymomial ¢ 74[) -9; commtes with all
}(ja:"(]qj) and therefore due to the assertion (a) does not
depend on 7‘- ;i3 42 mene2, deee

Hgi)= 9 +2_ S0, (/ﬁ)‘.
As ¥ ip an endomorphiem of ﬂé(.m,‘,ﬂ)’, and J’(#,)-(”")
(gee eq. (5), @ =ce)), we know the commutation relations

between ‘l"(?g) and (7/\) ’
[(7/;), J(y,-)]-—-a[t"(;’-}, HKe: /]= 1"(['(#),%' 7)="G.),

go that we can apply the agsertion (b) to obtain:
1,'(7,,):?': / i:.'/,f.,..»,ﬂ» x-2, (6)
The imagese 4"(7/.“_'). ‘#(/umrq-(), w. of the other
cenonical variables commute with all (g ) 3 v‘(/.; )
ict,2,..,, mesm-£ . From the ageertion (a) the independen-
ce of 1”(7,"",.4). v"’(f,“"_,) yeoeof 71“"(71)'/1‘"”/"'-') '

i=4,2,..., mesmn-2 » follows. Therefore the restriction

of 1 to W“”’ c W is the endomorphiem of
¢
v,

2(mem-2iN),M

NN

The equation 1f.r(L,~~) = t"(l.‘,-/-) together with eqa.
(4), (6) lead immediately to J'(My )= N.,-/ . which fi-
nigheg the proof of the first part of the statement 1ii.

The proof of the last statement in the oppoeite direc=

tion is simple: If l" 3 %M” - %MN is an endomor~
phiem of %MM then we can easily extend it to ll{,m_m,'”
putting :

"‘(?i)"f/ij '9'(/‘1‘) =/il £=420., men-2,



If T and T’ are two realizations of the type (3) (with
@ =o’) and o ig the endomorphism of %N,M auoh
that (M ) == M,‘/' the mentioned extension givea sir=t!
and completea the proof.

lemma 1: Iet J‘,-‘,,:,rao,f,..., R v, m ’
be elements of Wz” " obeying the followlng system of

[
equations
R o red
-1 M
2o 3 O o fop= O
m-‘ut

t=0,1,...,2R « Then J’r(a =0 for r=01.,R and
tl. = a’ 1’ ., M

Proof: By induction: a) For N=( the statement con-
cerngs MxM matrices; it can be proved eagily that the
matrix equation -

+
AdA =0
2 Mk

implies /z,‘=0 for (a=f.2. we.M , Ag the firet and the
lagt equation of the system (7) are just of this form,
we conclude J}, = J‘, 2“= @ .Substituting it into the
remaining equations and repeating the procedure we obtain
f"l“ =¢rl—i,‘a""‘ @, otc. b) let us assume that the state-
ment is valid for N-7 and not for N . It weans
that an index r, exists (0«&r<R) such that :
J‘,,(,_ J‘,[‘= —f""'k"' =0 for allcl- and J‘,.Y,_-#o
for some (4- « Then the firet 2, equations of the system
(7) are fulfilled identically whils the (27+7) -at
looks as follows



i

1:-0‘ * ‘.' _ (B)
1) - 4;/’-'!‘ J"w/‘ =0,

The elements J'-'_.# can be written in the form

_ i - K& 4 ) (9
for= 5z % W P T
6}‘,& € Wm_,,',, , K=0,1,... 4is the highest degree of
the polynomials ﬁ«.’"’ ’ #-4,2,.‘.,01. , in the "variables"

ci,” ' /uw , While the highest degree of the polynomial
J";" & considered in the eame way is leee than X .

As the congeguence of our mssumption ( J‘,a’ t“+'- 0 for
some r, end 4 ) eome of the coefficients 0y, differ
from zero. Subatiti.ing now f“rt" from eq. (9) into eq.
£8), we obtain up to the lower order terms

n K
S + a 4 2r-¢-% 244 _
P 02#«0;{,‘( 1) .9y py - =0

from which we have

" "
* L » .
T T (-1)20, 4=0,..
@t gesa ‘
kel=8

However, according to the statement of the lemma for N-1 ,
this equation implies o;w =0 for all £ and ¢ and the-
refore contradicte our agsumption.

As it is shown in ref./4/ » no pkew-hermitean Schur-re-
alization of a compact Lie algebra could exiamt in WZN « By
meang of the proved lemma we shall generalizé now this re-
sult to realizations in Wiywm » M>1 .

Theorem 2: i. Any skew-hermitean Schur-realization
of the compact Iie algebra G in WZN,M does not depend



on 7,,/&., i=42,.,# , i.e. T iea usual matrix

representation of G in .fzf, v C /q” v
ii. Two such realigzations T and ¢/are related if

and only 1f they are equivalent in the ugual matrix repre-

sentation sense.

Proof 4.For //a0 the assertion is trivially right, wé assume
therefore Ny./.

As the algebra G is compaot, a bagis 4£,...,
can be chosen such that [ =A,"+...r X, belongs to a
centre of U/G. The realization 7 is Sohur-realizatian,
and therei;ore T(Iz)=/i-.l » 3 R, Ap the pclynomial in
7” . /L” s every r(.l(’,,) can be written in the torm

R-r -

R
r()((.)=§_d‘,.,(,,-7” o

f" 3 Wzm_”” , where R=0,/, ... denotes the highest
degree in ¢, and /a” of 7(4,),..., T(X, ) and the dota
atand for the lower order terme. Due to skew- hermiticity
of r({a) we have
~
-~ r
A= r(z,)=-‘§_:’ T ) e h,) .

r
Subgtituting here r({,‘ ) and "'('{«) from the above equ-
ation we obtain

t(L)= e o for 7;' A

-1 K A~0 14

7



The agsumption that R is the highest degree in "vari-
ablos" & ,/lw in the set of all elemente Z'(4¢); .-
T (X, ) means that at least one &'n a“ differs from zero.
If R would be greatar than zero, the last equation imp-
lieg eqs (7) and lemma 1 gives immediately Jﬁ"[‘ =0 for
all x and r . The only possibility is therefore R=0,
wliich proves the statement i.

#1. Ag the matrix algebra 4af, has no non-trivial
two=gided ideals, every nonzero endomorphigm of .ﬂatﬁ is
an automorphism (gee,e.g. /7/. p.48). Ae any automorphiem
P of //m!” ig the inner one, the regular matrix
3y € .//('alM exists so that #4)= Jj'ﬂ Js for every
Ae dut, (oee /17, 5.50), so the proof has been completed.

From thie theorem it followe that with our involution
on #;y u (see Note 1) any skew-hermitean Schur-realiza=
tion of compact Lie algebra is a upual matrix skew-hermi-
tean representation in which all Casimir operators are
multiples of the ldentity matrix. Such representations,
however, are equivalent to a direct =um of irreducible
mutually equivalent representations and without essential
loss of generality we can limit oureselves to the irredu-
cible ones only. '

As we pointed out in Preliminaries, every irreducible
skew~hermitean representation of the compact iie algebra
e(m) is uniquely, up to equivalence, detzrmined by its
signature. Now we shall generalize this concept in the
way eguitable for our further use:



Definition 6: Let m»»n >0 be pair of natural num-

bers and A =42,.., 2 . The finite sequence of the real
nunbers dm",l = fd;m1,..-.l&[2_u‘_..:5]l Q[:,‘;‘]", veey Q[»_nzgj)
ig called gigmature if
i, for da<m, Xy=... =X ooy 4 =C
i1, for d=m, ("fu---;"‘[m_])iﬂ a signature of irre-
ES
ducible skew-hermitean representation of the compact Lie

algebra ofm-n) |

Now woe are in a position to formulate end prove our
main theorem.

Theorem 3: i+ To every signature OL,.",F(“,'“,:--VQ-’[%J)
the relations (3) define recurrently skew-hermitean Schur-
realization 7 = T(«,,,) of the Lie algebra ¢ (m,n)in

%Nm),md) . Here the rumber M(d) is for o =m
and m-m 3> Z the dimension of the irreducible skew-her—
mitean repressntation of the lLie slgebra o (m-n) with
the mignature (%, ..., % m-n7) and M(d)=4 otherwise.
The number ¥(d) im given s N(d) =d(mim-d-i}

i1, Two puch realizatione are non-related if and only
if their signatures are different.

Eroof: By inductions a) Pirstly we ehell prove the
theorem for o (m,1) . Por m=12 the aseertions are con=
tained in theorem ). Let us mssume >3 end teke a signa-

ture &, ,=(1;q,.. “[%—']l“[‘-',_‘—']) « The sequence



(%), ul’r"]) determines the irreducible skew-hermite-
an representation of the compact Lie algebra o'(m-¢)(ite
dimeneion we denote as M ), l.e. the gkew-hemitean
Schur-realizgation of «(m-7) in ”{,, 4 ¢ Using the formulae
(3) with =°‘[’i"] we can define the gkew~harmitean
Schur-realization of the Lie algebua otm,1) in Wi )y o
Using further the assertions ii. and 1ii, of theorem 1,

ii. of theorem 2 and the part (. of Preliminaries, we
have the agsertion ii. of the theorem for o(m,s)

b) Assume further that the statements of tha theorem
are valid for-the algebra ¢ fm-/2-/) . let ue take the
signature a“'m'—'tdia’”"'lal‘—‘iﬂ])‘ For 4 >{ we ghall
use the roa_lization of ofm-1x-7) in %Nld-fl, H(d-1)
corresponding to the pignature (d-1; yyoee X o 7 ) to
ingert it in the formulae (3) with & =o [men] e I =4
we shall uee for the pame purpose the trivial realization
of ofm-f,#n-f) in #,, . Due to the assertion i. of
theorem 1 we obtain in thia way the skew-hermitean Schur-
realization 7= t‘(a(,.") of o(m,a) in %MH R whare_

M= M(@-1)= M) ana N=men-2ZrN(d-1)= M«) , whioch
proves the assertion i. of the theorem. The assertions ii.,
iil. of theorem 1 together with agsumed validity of the the-
orem for &(m-f,m-/) imply the aseertion ii.

5. Congclusion
Al considersd algebras o (m,n) , men= N, N=wnat

are different real form of their common complexification

(%) X, It is not aifficult to eee that all results

*/ Note that in the Cartan classification of semi-
simple Lie algsbras qlin)x B, and oz (2rat) 2 By, o



contained in theoremg 1 and 3 remain valid also for o (#) ,
il we ignore the skew-hermiteanproperty and its consequs=
enceg. As we are not forced now to regpect theorem 2 rela-
tions (3) dei‘i:ne recourently a usual canonical Schur-rea=-
lization of oz (¥) in u@m_,,‘ for odd N or in Wiy
for even N depending on the [%] free parameters. As to
real forms, the same gituation ariges for algebraa o(nr2,n),
rinriin)and  ¢{~n) while in the remaining cases the des-
cribed canonical realizationa depend at most on [L_._ﬂ] -
- %J:a free parameters only. To obtain in these
cases the "full" number [ﬂ:ﬂ'] of the parameters in
realizations described, we have to use the signature
Qm"_=(m]/z,,...,a[%_u])and realizations are right matrix cano-
nical realigations.

It is algo clear, that instead of realizations of the
auxiliary lie algebra o(m-d,».d) , A<m that we used
in reduction of formulae (3), any other realization of
o (m-ol, m-al ) can be taken. So, the pommibility of
deriving further, new, realizations of Lie algebra o(m,x)
may arige.

The concept of matrix cancnical realization, espsci-
ally the realizations of the Lie algebras ¢’(»,n) described
in thip paper, have the direct application in the repre=
sentation theory.Replacing here M and y by their Schro-
dinger representations we obtain immediately a skew-symmet-



ric re.preaentation of otmm) with “oonstant" Casimir ope-
rators. It hag to be etressed that these representations
were obtained purely in the algebraical way. }\a the second
advantage r{ this approach, one can congider the fact that
the analytical properties of representatione can be in-
veutigated separately as the esecond step.

We ot'ten work, for exsmple, with skew=symmetric repre-
sentaticne of lLie algebras whioh are differentlals of gome
unitary representation of the corresponding (connected,
gimple connected) Lle group, i.e. with the integrable oneg.
By means of gome known methods /B/, we can try to solve
the integrabllity for the above described representations
too. It may happen that some meaningful part of the set
of all integrable representations of the Lie algebra ¢“(m,x)
would be obtained in this way. The other posaibility of
obtaining representations both integravle or not arises,
when we replace the Schrodinger representation of }«i , 7,;
by some other,e.g.,by representation on the space of analy-
tical i’uncfiona.

As was pointed out by Doebner and Melgheimer 19/ » the
integrability condition on representation of Lie algebra
is often from the physical point of view not necessaiy.

So, some classes of non~integrable representations of lLie
algebras could aleo be interesting for phyelce, esg.

partly integrable representations with respect to chomen



subalgebra or those in which some, phyeically interprete.
generators are essentially self-adjoint, eto. In mairix
canonioal approach to the repressntation theory we are
not limited by any sort of integrability conditions so
that the wide clagpa of repremsentations could be obtained.
This fact represents the third advantege of the deacribed
approach.
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