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ON COHERENT STATES.

3. CLASSICAL FORM OF QUANTUM
FIELD THEORY EQUATHINS
(COHERENT STATE REPRESENTATION)



I. INTRODUCTION

It has teen shownrin refs.fl'zl , Lhat in ihsorilecs of
three klnds:

1) theory of a freo guantized fleld,

2) iheory of a quantlzed field, interacting with an
external ourrent, and

3) ikeory of a spimor { or any other) charged field, ianterac-
ting with an externmal cleotromagnetio fleld, -~
transition {rom field operators, say, Q(A . and ff(xj ") to
goherent stale expesctation values 1f(x) 5(‘?\‘/-\?(*3“9) and
Gy =<V 39D Lransforms the rallen-Yeng-Feldman equations
for Lhe field operators inte ecquations of a iype of classical ones.

fhe equations for {he nessless electromagnetic ( scalar or
eny other) fleld in the Lheories 1) and 2) coincide exactly with
classical omes., Mor & mon-~zerc hass Loth in 1},2) and in 3) oqua-
tions have been oblained, which are of a form of classlcal ones,
exocept for Lhe Ylanck consgtant "f. cnters into Lhe cquations via
the Compton wave length b .nd sn the case of 3) alse via the

ML
fine structure conatant. "he causality such as in claasical wave

r) Ye iake notationa vhioh romewhat differ from those in /1y 2f
(Athe latter are givoen in brackeits for a transiation):

G () (20 18 an intoraoting (Heisenberg) field operator;

@(ﬂ (th\‘) 1s o free Tleld operator, the nere approximation for i}(x)
5n the Kallon- Yang— Peldman equations, the field operator in the
interaction vepresentatlon;

$(x) is an interaocting classical field;

g (W'en) 42 a free classical ficld, the zero approximation for ¥
4n oclassical equations of a form like the Kallen-Yang~Feldman
equations;

4> (14'>) means the coherent state (see’l/), the more detailed
writing of ($>  would ve |4 9>,
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theory { see /1/, Appendix B ) is characteristic for all these
equations.

Maln attractive features of the coherent states ars in the
following properties of the coherent state expectation values.

a) The expectation values of the quantum field coordimate ang
momentum Y%, = <G IF(FENYD  and RYERL) =<9 F D
at an initial time t'  are two completély arblirary funotions
ot ¥ ® like initial values of a olassical field,

b) The expectation value theorem for the coherent states.

Any operator 18 determined by ita coherent state expectation

values { 1l.e., only by diagonal matrix elements!) ) + To reconst.
ruct the operator we consider its coharent state expsctation value
as a functional of the initial values w(%,t'y and QG,t), i.e,
of two functlons of the l-argument X s ory equivalently, as a
functional of ome fumction I  of the 4-argument X b
{ see 12/ Y. The latter is more convenilent.

The expestation values 40) = {91 GeIiyd and
Q—j‘l?(u\]q) are such funotlonals, The first of them is linear
funotional in all the oases, the second one alsc is linear in the
theories I)-3), but non~linear in this work. Acocording to the above
theorem we may turn back to the equations for field operators from

the equations for the coherent state expectation values in l)-3)/1’2/.

) Unlike the mean squared coordinate and momentum, which are
subjeoted to the uncertainty relatlon,

“*DThe theorem 1s well known in quantum mechanlcs ( see /1.2, 1‘3/,

1.8,y refs. 7253/ 4n 11/ ) . In relativistio quantum field theoxy
in x=space it is shown in

Hence, the same theory may equivalently be represented in a
slassicald form o¢r in a guantum one.

It must be stressed that the classlcal form of quantum theory
13 a new representation, namely, the coherent state representation
(C8R); we inolude in this concept the prescription 1: by an ope~
rator in this representation we mean only the set of lts diagonal
matrix elements. (The others are superfluouaf? CSR 1a a new
representation among the X-representation, P-representation, angular
momentum representation { which are popular in quentum mechanics)
and Fook representation, or ocoupation number representation {which is
popular in quantum field theory and in quantum statistics). From
CSR we car turn back to any other representation.

In the present work we casider closed systems of interacting
f1elds. Here the situation is more complicated ( than in 1)-3) )
because of the non-linearity of equatlons for a field operator.

We cannot identify the coherent state expectatlon value (Wléis\\q)
of the Heisenberg fleld operator %iﬁ\ with a classical field &p(x),

As prescription 2  for definition of CSR we introduce a new

A A
operator %0 s which differs in gemeral from %(x) and has
the coherent state expectation value, which we can identify with
-~
a classioal fleld: #(x) = {@iv'(x}¥>.

There 13 some operator N such that

RIS = A6 = A LIF GRS

and 1t reduces to unity, when operating on a linear functional,

as in theorles 1)=3), Hence, according to the above theorem we can
turn back to the 1nitial operator form of quantum field theory

{ to the occupied number representation),

—_ e — »
HEJSee Appendix B here, and eq. (A.4) n/?,




The transition to CSR { including both presoription 1 and 2)
leads,in general,to equations of the type of classloal field
theory ones with inherent to this theory causality, The only differsn-
ce is that they contain the Planck oconstant ﬁ, which enters into them
like a couplinp constant (to some extent). Moreover, those equationsa
are essentially more non-linear than usually used in classaical
theory.

Thua, the same theory may equivalently be represented in a
clasalcal form or in a quantum one in all the cases.

It 1s interesting to note that we may consider any classical

fleld for given initial values as g ocoherent state expectation
value and, further, as a functional of initial valuss. Then a
classiocal lntegral equatlen for this funotional { 1l.e., a set of
the equations, which differ in initial values) may be rewritten
in the form of a quantum field theory equation for a fisld operator.
Even if the original classical equation does mot contain the
constant y the latter will appear, due to dimensionality
considerations, in the commutation relation L ‘?’ (LAY tfb')l t,‘:ﬁc B-%Y

for the coordinate and momenmtum of the introduged field operator.

Phe author follows, in many aspecta, to the interesting
artiole by Bialyniloki-Birula /1.8/ + In partioular, equations
for olassical fields are the same. However in /1v2/
for the more simple theories it has turned out that the Helsen-
berg operator @Qf) may be expressed dirsotly via the oclasal-
oal field $() , 1,84, 9 via P, 51  4in notation of /187
Below we express {913()149d> via 9(x) (L.e., ByIx15]  via
O, (4] ) and alse $0d vie {$196HY> and via  @(x)
for the closed systems of interacting fields. None of these rela—
tions have been given expliocitly in 1.8/ s but only the relstion

between (I),‘[xlﬂ and (Dd [x1¢] has been stated oqa.(64:),

(65) and (70)). The lattsr is beyond the framework of glven theorlas,
because ¢(x) does not obey any equation, belng an arbitrary function,
Some of these relatlons we are intereasted in have arlsen in/I'a/ only
in the limit h -0 y which was taken 1nconsistantly:‘h was kept fixed
in some places {as in papers of many other authors),

Here we make an attempt to generalilze the resulta of refs./I’zland
to obtain these lacklng in/x‘slrelations, 1.,2., to introduce CSR for
closed systems of fields (Sess., 2 and 3) and in guantum mechanlcs
with one degree of freedom {(Sec, 4 ). As 1n refs. /I’althe
constant % remains arbltrary here, In Sec¢. 5 the relationship
between the obtained equations of classical form and those of the
Feynman theorle/ is discussed. Appendlx A contalns an example to Sec.
2 and appliocation of the Bialynicki-Birula formula for decomposition
of the Heisenberg fleld operator into N-products of the free ones,
Moreover, the commutativity of two local Heisenberg operators for
space-=like separations 1ls demonatrated using the Kallen-Yang-Feldman
equations (as mentioned in /1’2/). In Appendices B and C some formu-

lans, used in Secs, 4 and 5, are given.

2, TRANSITION TO A CLASSICAL FIELD (T0 CSR) IN THE CASE OF
A SELF=INTERACTING SCALAR FIELD

As an equation of motion for a scalar fleld we take the following
integral equation
A A .
_— ‘ - N
§00 =36 + iy b3y, )
where t' 1s an initlal time of evolutilon, andx)

30 = i.g.i‘x' T A G- G - Ax-w YEF ] = 2l AxY 2 §0Y | (2)

x)Thuss, one introduces tts own frae operator, lnteraction reprssen-

tation, integral equation (I) and cohsrent states for each time t .



When iterating (1) infinitely many times, we obtain

0= bZ‘_O \Jﬁh S SR CR IR E T ...?9@.,\} = (3.8)
nu t‘
=5 G, KCoxn) Gy e G
n=p @
where {_‘? L*q..f?(n&ia the aymmetrized product

A A i A
oy gt =5 D o - i
over all nl permutations
of indices I «4a

and coeffiolent functilons Kret(x'xI vee xn) are coastructed from the
Aret(x-g)- and.s4(x-y)-£unctions and are represented by tree graphs,

.Bxpression (3.b) 13 obtained by a decompesition af the symmetrized
produots into the N-products

By -Gal=36) . kvt T L8 Ge)-Gey 4. e
o one two (%
palring pairinqg A
where %~A§1)(xI—xz)-funution correaponds to pairing of W(¥.} and (§(%y) .

For a practical decomposition into the N-products there may be
used elther direct {algebrais) methods due to lick/‘/, Dyson”l and
Caian10116/6/ or the symbolic methods of the extermal sources due to
Sthinger/I'g’ L.I4/ 4pa Synanzik/1'15/ or of the external fields dus
to Hort/”/ and Bialynioki-Birula’I*8/, The symbolio methods bring one
out of the framework of the given thoér; (eegey out of the framework
of equation (I)) at an intermediate stege. We avoid them hers, axoept
for Appendix A, where the transparent formula of Bial;nioki—ﬂiru{i.
1s given for decomposition of a Helsenberg field into the N-produots

‘of a free one,

The normal form {3.b) is convenlent for obtaining the ocherent
state expectation values

{4190 19> = Zﬂ\h,me\*xnK(xm--xu\ K@) -9 L e

1

Unlike theorles 1)=3) we cannot identify Cﬁ\@(ﬁ)h#> with any classi-
sal fleld ¥ (x). There are two reasons for that: a) K(x,xl...xn) have
no tree form, which is only possible in ¢lasalcal theorles, and
b) K(x,xl...xn) contaln not only the causal A,ret—functiona, but
also the acausal A _punctions,

It seems however natural to introduce the new operator

P =3 &a«h..,a\unkmb,m XY 46 ) o

n=D b A

1
and to tdentify the coherent state expectation value of ¥ (x) wlth
a classioeal fileld

Q(‘\‘(\’E‘I%EU‘Y\W>:E \Ai*\"' J‘k‘h K’LL'%.L‘#‘\'“*"‘\ LQL*‘)'“U{L’\") ! (8
nwrQ ¢

¥e call this prescription 2, It is evident that such a field
satisfles the non-linear classical eguation
!
§ () = g0 + Yy A (o) 3(2@)) )

©
Let us recall that {x) is the following linear functional of

& (#,t) and aky(f,tﬁ or of J(x)

G = 1 AL 2 = (10.2)
=y \A‘»x‘ AT QY = (10.1)
= —\tc‘i"% WO :)UQ (10.¢)

and according to eq. (95 ¢ (x) 1s the non-linear functiocnal.
Pne function 3'in eq. (9) is almost the same as ] in eq. (1),
To avoid the appearance of Aﬁl)(o) in eq. (9) the functlom J in eq.
(1) muat be chosen in such a manner, that
o o S,
Y~ 3y = @) an
For example, in the case of $$ ~coupling (see Appendix Iy}
A . A . . n _ .
HCARS 3({‘{):.}(&1(“ _ %b‘(ﬂ@h:%"?(ﬂ: = (§): ) V) =397 (11D
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~

Acoording to thq expectation value thaorem any operator

can ba expressed via 1ta ocherent state valuesfz/

Ar: . ;x'J\x‘S—— AK'L__ , A = (12-)

b=+ e (v Qe dy ~ b i) SR> gormagono
. ALY . P =

= :exP(LSP% 9 (472, 3_3(_‘})) Q‘?\Ql“phao“ (12,b)

25“2“_:7\&3%1""1&"3“ L9y ---*'-7}(1,)-.31“...},,,‘ %ﬁ)%Q\QlkblgéIZ.b’)
The last row gives the axaot meaning to the preceding ona, the times
being nott—equal ) Using eq. (I2), wa ca.n, for exampla, turn back
to tj? (x)y eqs (7}, from )= (‘?l"?'(ﬁ)\q> The question how,
starting from the classical field (¥} =<y|y' {(x)i¥>, to obtain the
expectation values <‘?1G ®)4> and further the operator l}(x) are

answered by the formulas

<819 1y -u\,( A% by 'S’JU "(ﬁ %)Bﬁ %3(%,><W!*f(x)l~e>t

= AP DD = Ay )

(1»
$6y = - u\)@\‘p‘}:ﬂﬂ"g« %@) C A q’(‘ﬂ\ \‘?)H‘o =
= 4 & ; § e = ' *
eGSRy G0, $’3(‘31} Mg 4

Note, that the operator A keeps us within the framework of this

theory unlike the operator exp@-g%bfﬂ%) of the Hori's type 1#1'8(
A operates only on the initlal values of the classioal field ¥ (x),
legsy on @{¥,t) and B9 (F,t) or equivalantly on J(x).

x)In what follows Gqﬂl. (13) 3 (14) ’(310 b)’(34) ;(36) '(37),(4835)’
(49.1),(50) and (51) must be interprated in the same sense.
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1, TRANSITION TO CLASSICAL FIELDS (TO CSR) IN QUANTIM ELECTRODYNAMICS

We start with the Eallen-Yang-Feldman equatlons

Ao = A + L8y Ane Gou) 5,0y) (15)
r $ ), r |
vy = Q(*\-"'—\&“‘t S'MC**'!WFR,.(L;)@L@ , (16)
¥
where

Lty = o W A YD A )
v % toE an

¥ ) = -1 %,\3,\1 $(""')\‘«Q("l) (18)

As a result of infinitely many times of iterations one obtains

(1..\ Z\A" L \A“% LAYy &.1“ l;mkwm h(‘w L )

mKT0 ¢

. U\ [1.1)...Arh(x..\l [‘V L\h\...w(‘»}m\q ({‘}._Q&Mﬂ = (19.8)
= f \J‘\ x,‘\.\" ‘il"";“‘}m\lhh'" ,l‘\lm rg« o Qg 'Xn,'if'“}n,i{"»)
Rl R ) - by Feo- Fa: (19.%)

t{‘{ﬂ = Z \.L" Ll &é 4 A}WN\A By A Kmﬁ‘ o LX “)\j‘.-.lin“"i‘...‘,)

W na0 -y

{Ar\(ih Ar“(*u)-g [_"«‘ (‘jﬂ--"’ft"&mﬂ “V L‘-«)""’" @ ""\] = (20.2)

> ¥
= Z O\c\"x‘... FAR "‘\j“l‘f"#'}”‘“ t:l"%.l'“r‘lmK h,,,ry‘b&#\m*“ﬁf"li"'ﬂaai t“)
)

: ?\!‘«{‘ J--»RI.,(*J TER Q(‘;WO% @) G S0, (2040)
where the brackets { 15 and Y_ ] denote ocompletely symmetrized
and entisymmstrised products, respectively. The transitions from
(19.a) to {I9.b) and from (E0.2) to (20.1t) are achieved by deaomposi-



tions of these products into N-products 1n the same way as in the

1 Ad (1)
Wick theorem (like (5)), but with pairings ISF‘M&“@‘.,Q ana} N (x n)),
respeotively. The coherent state expeotation values for ths

Helsenberg operators are

etk @ik =§0\3“x,-~&“x.\é"sr-*“w-\““‘«""r‘“ﬂK?r.n-r&w--x,, o)
A 0 A B ) w ) F 0D P 00) (21)

4#\?‘9()0\-5\‘1’)2;:0&1‘!,1,_1"1.,\J‘t}‘",o\"-&m&é"11...1"a_K:_'t‘"(x,x{..x"’n}‘...s}hﬂ;«;f.a.)

A o A B0 9 Y (ea ) B R 3 (20 (22
but they again do not sult to be olassical fields, since K™ and K"'
have no tree structure, For this reason aoccording to presoription

2 the new operators

A Q“ Z \ %1‘*1‘ iy Sl‘tz PR KMW‘ r(x x‘...x“,ti‘...uih;}f..e,)

=0
A ~ A = -
: ;\hm o R A R CH IR (t;..) ¥ Lt.)---w Gy (23)
Ay =
“’Lu):w%Z“-o\i"x‘ Ay, A"'} 1"“}..“\A pda V‘mr “fon b‘ LR R l'i!-nuii‘l")

A A A A
Ahb‘q) Av“b&..) Y (Lh‘ w(\}“*b L KR T (;_..‘); (24)
are untroduced such that now thelr ocoherent state expectation values

may be ifdentified with classioal fields
A
ALY = AvINEIAY> =
A

Fg.o&h‘mh"vj'm” hs&“ b, Koy " r‘w-l-u.(“ ,x‘..Ju,‘h-u'j...,h---’l;
Ap O A D W) () P TG (25)
YO = CAw WA YD =
_,_;‘Z" \4‘-11.‘.4&,;h\l"xh---l'“;.“\f‘%--‘“‘ uty I‘k K Yot 2y 1.)

h,nlﬂ

Ar&hw kmh.ﬁ *L*;‘\u-:’zﬁm‘\ CICHPRTTEN (26)

The coefficlent functions Kiet and K:’et have the tree structure and
- 4

are constructed from the Aret(x-y)—-, Sret(x—y)- and §*(x=y)= func—

tions, and thus satisfy the causallty requirement, The classical

fields Ar‘(x’) and ¥ (x) obey the c¢lassleal equations, having the

form of the original operator equations

A =06+ gt aceen fyy (L-iedonu) @

W) = i) iel bty S o) Y A Y)Y | (28)
tl

where Ar(x) and w(x) are the linear functionals of initial values
n\r(ﬂ = 1 \J"x' ALx-x')‘S:: Ar(y.')z (29.a)
- ;\A"x‘ A Y24 A )= (29.%)

"
== Jdy AN (29.)
P =1 S )Y W)= (30.8)
=1 Xaw S )%, 9= = (30.1)
= &y Sy | (30.¢)

tl

Let us recall that the "classical® fields y and & and sources
N are anticommuting quantities, w and ¥  being independent (and
w and W tea),

According to the expectation value theorem any operator Q

‘can be expressed via its coherent state values

y o Y E e i)
Q—-“F( 4 IQS‘U&R 3 *Ar{‘ $ A) » ¥ St v )Wt*‘))'
(!W\Q'l}\‘b][\ W)= A A= v G =R (5 .)=0

e.x?( %(A L‘ﬂ B“ 5 y ‘Vﬂh’,‘ S + \l’(‘ﬂ ’ﬁl‘-s—-'j> Q\Y\Qh\q§\ -(Jil bg

= (JI.a}
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Po turn back to the coheraent state expeotation values of the
Helsenberg operators and to the operators themselves not going beyond

the framework of this theory the formulas are used
< Aw Ar(’q | AyD = J\A I\q (k”\’ | A'?‘Qq“\‘v> - AA‘\!P A,&‘\ (32)
(A IVEIAYS = Ay Ay CAIFIOOTAD s AN, O

where
EN W (ﬂ
“"v( “’l 53()3‘5‘@‘(‘)3“ 0y (ﬁ) S
-e Gy
,l\ l?( SA"ﬁ &Li, Svl() s & f')“*__—‘& VL@D (3%
A . (o N g___h__a EL__ 2 % A
Arﬁqz . &xp QSA l}( A‘.Q” h,‘ 81“('9 W‘(‘ﬂ*,‘ s'[(‘:ﬁ+QL‘9¥"ﬁ)}<“ﬂAF‘(‘)‘A% 3'1:?0
(3608-)
- “‘.(Sa %(3\ Ary m %’m%"liﬂ e “S’t(%) AAGA (z‘)'}_ﬁgo
{36.v)
. Y.y
EV(M ex?( & U\ OF WST (‘m;g,l—n W(‘ﬂ?ﬁ Qﬂ‘l’(&\\k@h =

(37-&)
-_-‘-_e,y(p(S& lé P\ (.‘0 “Sl Q}\ W(‘}“ﬁ. s"lt'ﬂ %“;\%\1& A hq?&hﬂ['?‘e .

{37.1)

4,TRANSITION FROM QUANTUM MECHANICS TO CLASSICAL ONE, AND VICE VERSA

1n quantum mechanics with one degree of freedom we take for

Heisenberg operator of ccordinate Q (t) the equation/I'B/

A =% & \lu Gy &-OFHRW) (28)
+
where
A = 25 DE-8Y XY - D)2 = D q Ry (39)

The definiton of functlons G .» D, D( ) and coherent states used
below see in Appendlx B.

Iterating equation (37) infinitely many times, one obtalns

; {ﬂ = g—o \Atq““itn K’ut (t st'l,“'th) {;(to Q({,ﬂ%: (4»0.&)

=7 X&tﬂ..‘ d, K e 1) Xy o X ), (40.3)

ned
the second expression belng obtained by decomposition of the symmet—

rised products into N-products with the pairings

(e deny = % DVEA, (41)

The cogerent state expectation value of ﬁ (t) is equal

{xp R Ixp> = ai SJ"«“'AM« K(t,t{--t,)’&{*n)‘--X(’tnﬁ, (42)
ne0

where "

x ()= < p L XW gy = Dlt- t)—xu- = - S‘J“uD(bu)&(u)_ (42
The quantity x(t) is the linear funotion of {the two initial values
x(t) and x(t) and may be equivalently treated as a functionsl of
one function £(t) (the last expression (43)).

The coherent state expectation value (42) cannot be identifled
with a funotion, which obeys any classical equation, Agaln, accor-—

ding to presoription 2 we introduce the new operator

[~ =
A

ey = 2 (he i K (et t0) Ry X Gy (44)
n=Q
15



and identlfy its oocherent state expectation valuss with the
classical funotion
" e
= PR x> = D Sdt1---lt.‘ Kiee (t by x ) xte) 49
n=Q

which satisfy the following non-linear olassioal equation

26y =x@) + du Gaggle- )P (000 (46)
!
The functions P and ¥’ d{;.ﬁer from each other like j and j'in Seo. 2.
From aq. (46) the Newton equation
k(o) = F'(rey) “n

to11owa’1+8/ (see Appendix E). Starting with this one can turn back
to the initial quantum theory. This is achieved by treating the
clasaioal coordinate X (t) as a ooherent state expeotation value
and then by using the coherent state expsctation value theorem,
Aocoording to the theorem any Helsenberg operator O, may be

exprassed through 1ts oohereat state sxpeotation values

Q= exp R + 'ﬁm'g‘,—w) P Qx> @) <pityen (48.a)
= e R E %?Cfﬁ) “rlQing o (48.)

In partioular,
?L(.t-\*-‘ exp@.w) %—;@ + ?(tl}%‘,—@g) {xp \i(ﬂ\ ”>lxu')=p(t')=: (49.a)
= exp im‘%% %TE))" Q\?\&m\xph-o (49.%)

Bquation (49.a) 1s given 1n/1:8/ x)(eq. {33) there).
Further, the expeotation value (xpli(ﬂ\xve) can be expressed
through the olassiocal coordinate ‘Km=(xr|9~'(t)\xr> aocording to

:)Unlike an analogous formulas for field theory, which are absent
1n/1'8/(poa'sibly beocause of using an inconvenient form of the
coherent states),

(%Pl;((t) Ixp> = exy (%- %K'a ,%?D(“Qc:c‘)% %K'-t‘—) Lxplr/(n) I Py =
=R R @D = A R .

(50)
Henoe; the direct relation between the quantum and classical
coordinates Q(t) and %(t) is
A ‘-:3’ N
M
AE) = exp x@)ﬁm); Ax({)“-o . (51

3+ CLASSICAL RQUATIONS AND TRANSITION AMPLITUDES

After turning back to the quantum egquations from the classical
ongs, we can reconstruot all the quantum theory and, in particular,
find transition amplitudes, which are c¢c-number quantitles again. As
appears; 1nstead of this one can obtain the transition amplitudes
direotly from the classical equatlons, that in fact has been done
by Feynoman long ago/y.

Let us consider the theories I)-3).

I) Pree guantized field, Let us pass from the real classical fleld

(x) to 1ts positive-frequency part, i.e., to the complex amplitude
Yy = 9O (52)
(1ixe one does in classical optics and electronics, sea/14 Appendix
B ). It obeys the Schridinger equation
UYE) =~ [TAeml Y(x) (5
and usually is usad for deacribing a free quantum,
Agcording to Feynman we can retain within the framework of the

Klein~Jordon or Dirac equations

(A-w®) g1 =0 (54)
B+ m)y (y=0 (55)
if we define as the amplitudes
Py =« \A‘w A,,(‘-x-)?z Yy -1 SA&' Ay (x-xY3, W) (56)
W) =i S, () 3pter) 1 IR S O R €
where t' and t' are initial and final times of evolution.
17



Anplitudes (56) and (57) ar: solutions of the mixed ipitial=final
value problems instead of the initial value problems (see below and
Appendix C).

2} Interaction with an extarnal gurrent. The equation

961 =00+ § 885 B9 1) oo
t‘
for the olassioal field corresponds to & Cauchy problem. According

to Feynman to describe evolution of the quantum we again must solve

the initial-final value problem, which 1s presented by the equation

t"
Pl = 4,00 + YAty AL (- )y (29)
¢!
where
Pelxy = {%1" K"A*,(x-!”)e‘g: Py — 'L\c\‘ x! A.‘_(x—x')‘g:‘tf(x‘) . (60}

Equation (59) follows from eq. (58), if one substitutes
Aage (o) = Ay -y — AN x-4) (61)
Henoe, 4, (x) and y (x) are related by
tl
o0 = gy - Scl"l}&“’(ﬁ—ﬂ‘j(tﬂ . (62)
[
3)_Interaction with an exte nal field. The integral equation for

T
P

the classical field

Wi = W) - e E.A\* S e Y R G wey) ' (63
for the Cauchy problem, alsc by means of the substitution
$"~u ('#-‘ﬂ = $+(;-tﬂ _5‘3(*'!(1_%) , (64)
ons can transform into the Feynman integral equation
‘:(
. at
W) = W (x) —1k \UA‘\.} $*(r~—~ﬂ Y. [\: ALY (6%)

for the initial~final value problem. In eq. (65)

‘Vdﬂ:-i%&lp g{_(x-,‘u} Y, W + ig&3xl $+(x—x')1“qa(x‘) (66)
and y,(x) and  (x) are now related by
.Lll

el =90y +ie {8y S Y AT ety (67)
tl

involving the unknown spinor funection ¥ (y), which,in principle, may
be found from eq. (63) or eq. (65) in terms of w(x) or W, (x).

Feynman was first treating amplitudes as solutions of the Dirac
and Klein-Gordon equations {without or with interaction) or of the
corresponding integral equations.

Thare are conceivable, for example, problems with the conditlons;
a)‘?*“(.i',t.')ﬂ(f)]vm@,t"):o (electron); B) WO()=0 , W (®,t)=fE positron)
I¥IE =47, ¥ ) =0 D ¥ @0, YR O=4E) (68)
&) ¥OEE) KR, YR =0 ) ¥ R0, ¥OEE) =1E) ,
where £(x) is a given apinor function. According to Feynman the
elestron is described by not merely posltive~frequency state, but
by a non-loocal stats with initial- fimal values a.)x), ¥ (2,40 and
¥ (3,t) being umknown quantities, subjected to equations of
motion. It is similar for positron. As to problem o) it leads to the
the Klein paradox {see Appendix ¢). The same holds for the problems
d)—f). For solving problems a),b); ¢),d) and e),f) different Green

A A A
functions must be used (S+, Bletr 804 Spgu0 respectively).

Ej;\pparently, one ocan consider this as a generalization of the
concept  ‘“analytical signal' (pre—envelop) to the case of (non-
linear) fleld theoretical problems.



6. CONCLUDING REMARKS

1. Searching for this form of quantum theory ( CSR with
both prescriptlions 1 and 2) we were guided by the situation in
the classical field (wave) theory ( see /1/ s Appendix B ).

The latter is causal but has both explioitly and implicitly ocausal

- objects. Examples of both the kinds of objects are, respectively,
wix) = A(;_y), the real wave with the front, and
vmze.xp(ip’i‘—\'m))the complex plane wave, which is uniformly
extended over all the space *.,

In quantum field theory we ﬁeat, first of all, the objects
of the second kind: one—quantum states { actually, the above
plane waves or any thelr superpositions ] fd y many-quantum ones,
and S-matrix elements {the Hogolubov causality condition is none
linear with respect to 5 /117y,

It appears that the real amplitude g(;) y obeylng the
integral equation for the Cauchy problem, may serve as an
objeot of the second kind. .

Note that in the free case the one- and many-quantum complex
transition amplitudes

— . st

Tao &Y = m® WR O WE) + 0, WRE) Y 900 - 2, WY W) = LWt

% 4t the early stage of quantum mechanics de Broglie has well
understood that the quantum occuples the spaoce entirely/af .

0f course, information may be transmitted by means of non-atrictly

localized objects too. Such situations are described by wave
groups and by S-matrix elements { possibly, in the framework of
the time-—energy uncertainty relationfgf )+ There is a point

of view that strict causality is the Ansatz which ocan be checked
only 1ndireot}fééthrough disparsion relations between amplitudes
in the p-space. However, for soft photons we can check it
d¢irectly ( in the x—space),

A(‘) (X“})
Z Ae)&‘r'}h bu(-)b“h_ ‘}u) ( 69)

peimoh iyl

ean be considered as obtained (by means of the Hilbert transforms)

from real and ocausal those
Alx-y)
0
P N S N (70)

pim. of g

As to abservables we note that in the free case (see eq.(I.65))

e A '

mﬁwlpulﬁ =3, Ay, (71)
1.8y it 1a expressed in terms of amplitudes (70). The same is
true for

1y ‘5 X ‘."rﬁr_ by % ix |
5% S <ulie -\t8>l,3,°‘=§3"@'“ TR & "M g - U2

2. Por the coherent state

ol ey - B gD = (x ) P (o) (73)

whatever 1a n ® . But, if an upper value n is fixed, one can

obtain similar results { up to constant factors)using the trun-

cated states
i R SO R D T (74)
™ =0 )

instead of the coherent ones. In the case of validity of the
perturbation theory expansion a classical situatlon, including
the inherent to wave theory causality, may be realised with high
aoouracy in the subspaoe spanned on the veators with limited

unbers of guanta up to n.

* pirac has noted that expectation values have the additive
property uniike multiplicative ona/ 12/ But 1f one defines the
product of free field operators to be the N-product then for its

coherent atate expeotation values the multiplicative property
is valid too
* 21



3, The oomplex ampliitudes embody the particle aspect" of
quantum theory. However, the real amplitudes o {x) are possibly
sulted to treat wave (classlaal and quantum) theory as a statlstios
of paths. In partlcular, one can represent the A ~funotion (and

A s too) for m=0 as the spherical mean

NOEE = SA’S‘L RCEA N (75)

Foq

1,e.4 as the integral over all poasible values of velooity. Thls
representation leads immediately to the well—known Paisaon

formula, which can be written as follows
61 = Al 3@ D 3 ERBE - 0L E) | (6

For an arbitrary m we have
AGY = & Sdhs AR D) S(R-2 1) (1)
iy =8A‘" x‘&&"ﬁ SG&‘—&"—'\}Q__E))[Lb; ((t—t")s kat-t‘“ﬁl,\t—t‘D} +

+ (- A{- T ,lt—t‘})@s,ﬁfn- i )] ¢y |, (78)

4. Zxistence of invariant agalar products (y;;) and (?,Q)

in the cases of external fields and of curved apacasfls/ permits
to construot generalized coherent states similarly to those

n/I’E/ and to introduce corresponding CSRs.

® mpus, multiplying of exponent factors
exp (iR 2-10,8) exp (X —i048) = exp(FEFIT- (24208

takes into account the Einstein conservation law of 4.momentum
in an elementary aot/IB/ .
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APPENDIX 4

As an example of expansion (3.a) let us consider it for the %3(x)-

coupling., When iterating eq. (I), we obtain, up to the fourth order,
YU = S0 + g (1) @) + G0N {4, 9@ +

+q (U’J (9 (4) & ('), 9"} + (D) @a)es) {9 @ {4 e) ,u]l{q)}?_,) +
+ 45 (UNEIENE § (90,4550, 91N + (DD L160, 94+

+UeReA G ishigeNsw ,&sits)i'@ + (4.1)
whare we sat (IE)Efsret(xI—xz) and imply the integratlions over

indices, entering thrise. We may represent this expansion in terms

of graphs as

R LS '=F'<+3('=‘<~ * MH)
g )
+ ..

The products in (A.1) are not symmetrized yet, unlike &g, (3.a).
However due to the commutation properties of free field

{$l $* (YY) = i‘,j {4’\\&%\%(;')3 SM"' i ) Sk?tt)“ibw @y

CROR IO tLinﬂmwMuwwb ot o

L9190 ld = 4 (90190 3 96} o
and so on. The numerical coeffigients ean be found simply counting

the terms on left-and right-hand sides.
The expansion ¢ the Helsenberg operator in terms of free field

can be obtained also by the well-known formula

& =5 & S)= s
_“2;(0 S o B £ B G ) 0 (e, FQ[ﬁl(x,\‘_.[ﬁle‘l)[m,) a -1

caloulating these muitiple commutators for @ = ¢(x), du $(x) also

23



A3
leads to eqs (3.a) with the tree structure (for they “—coupling to
(410D '

To obtain the N—ordered form of the Heisenberg operator

the Hori approach is used 1n11'8/ and leads to

3?@\=-w6%¢) EPC" HA"% )‘”‘f( w m‘%

exp -Lgiiﬁ%@&x@— ¢ﬂ)¢® o (48
where ¢ (x} and § (x) are not realistic fields, but arbitrary

g~number functions, The coherent state expectation value of q (x)is

(‘?'l:ﬂf\ 4> = 2"?(&\9 %) exy (%_\% &\] %{) exy (\S%AM%@)
ax\’Qi{\[g@ «53) Ly - %@D‘bml = (As5ea)

4=¥=0
*”P(hxm ﬁm% ‘”‘\’( Ba b mss)

exple X \[ Lo 53) - Life —’-‘;’6)])@(:) 5.

0(*\ u{x)
The above operator q (x)y eq. (7), and its coherent state

(Au5.1)

expectation value (8) are written in these terms aa

‘?(ﬂ\- U«y( ) QKP( Y 'U*Sq:
exy (—T\[.EILMEE)—21(¢~%$)D¢(x)\¢=3=0 (1)

gz cadonys = e (§935) o ({5 0 Sg).

oo { VLG §9) - Re-§F)owy, o = o

. ; P — ( 07lb)
=“7@%; Ami—-g) el tie e +%®—£&-—§¢)®am .,: :

) =(x)
Iy2/ that the Kallen-Yang~Feldman ¢

It has been stressed in/
equations contaln exhaustive information concerning causality, and
in partioular, they are convenlent tool to demonstrate ocommutati-
vity of two local operators for space-like separations, Consider
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first the commutater of two field operators. In the free case the
demonstration of commutativity is very simple
[:“P("\ ‘-?(tﬂ [ S’llx' Alx- x')a' ‘S(x’) \-?Lz)]—-t&(‘ﬁ f) (4.8)

=t
As to r_t?(ﬁ)’h?(i)] in the case of a.n'interaotion, let us suppose

that X,> 2, (without loss of generality), costruct free operator
(2) with t'= %, and write equation (I) also with t'a z,+ Iterating
thia equatlon or using eq. {A.3), we obtain for é;(x) expansion
(3.8) (for example, (4.I)). Commuting term by term, we conclude

that each term contains the chain

Aot (-9) Bae (90-40) - Aas (- 2) (a.9)

among other factors. This chain is equal to zero for space-like x-

A commutator of two local quantities of a general form is
decomposed into a sum of terms, each containing commutator of two
fields. Finally, in a theory with several flelds (1ike electro~
dynamies) the only distinctlon is that the above chains may include
the retarded functions of the different fields.

The commutativity 1s held for [Q (& ‘?(E5] » but, in general,
not for (9(x), %)) and [9'00),3'@)].

APPENDIX B
There are possible different zero approximations. For example,
one can choose
4
) - a
D(t-t) = { E:\:ca (t ') E:i Dm@*‘)’{m%};«l) Eh; (B.1)
The first of them corresponds to free motion/I'a/, and the second

ong to oaclllator motion (the latter ias eloser to Tleld theory,
/1/

see’ */ , Appendix B), The (reen function Gret(t—t') is given
1 ¢! —t! .
Gret(t-t )= - PE=t! ID(t-t!) {(B.2)
The Rewton equations for both cases are
o= (2 (B.3.8)
X Lt = FH{xgd) (B.3.1)
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The ooherent states can be defined as
xp> = e{(;;mim~xm$(n)lo> (B.4)
the quantity p(t);?(t)-x(t)a(t)=m(;c(t)§(t)-x(t)é(t)) being conserved
in both the cases due to the free equations;
Pl = xpi PO | (2.5)

A A
Cxph X&) R @IS =X X ) (B.8)
We have noted above that it ia sufficiently to uee only dlagonal

XY = CxplRE x>,

elements 1n coherent states, Others are superfluous {due to
overcompleteness of the set of coherent states). Let us give an
analogy. In classlcs a system with n degrees of freedom is charac-
terised by 2n variables such as x, and p; (1=Iyeeem)s In

quantum mechanics each operater (x for a similar system 1s

also characterized by 2n variables, for example.(X:thlQ\xLux:>
in the x-reprasentation or <py --pu|@Ix} X\ in the mixed x—,p—
representation, and s¢ on, The same is valid for the coherent state
expsctation values (‘x‘,-.-i.‘}]...P,‘lﬂ\x1...x“h..,?.,> toos in

contrast to non-dlagonal matrix elements, depending on 4n varlables,
APPENDIX C

The Green functlons G(x,x) for ascalar and spilnor fislds, inte

racting with an external electromagnetic one, obey the squations

[Qa‘p e P\r("')jl - \Mt] IR PR N ’ (c.1}

G %) E‘ﬁ,.(’?;. +i?-l5\f,(‘\‘))+m] =B (xx') (¢.2)

Let us form ourrents (Wromsklans)

] ®)3uch a representation for ths density matrix has been used by
D.Blokhintzev/14/ . However such matrix elements are complex

quantities unlike real those in classlcs and in C3R.
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G (o) Bl + 200 A L) 91y (c.3)
G‘Q‘J"‘) ‘6,.*! N

(c.d)
which are non-conserved
'Brh ((-r (*,)ﬂ.') Cg‘i-i-?.;e, ﬁ\r(x‘)) (¥ (,\ib = . %"‘(,( _ 1) @(x‘) 5
'a:, (Cv(f,x‘)‘&,‘wtx'\) = 5% (x-x") W (') (6.6

unlike those, containing solutions of equatlons instead of the
Green functions. Integrating over a space-time volume R4 with

boundary 5 and using Green’s thecorem, one obtains

RGP O AR

otherwlse
% (x) 1f XER, ¢

0 aotherwise

C.8)

| dof %90 = {

For the space~time volume betwsen the boundaries t! mconst and

t” sconst and with constraint t'(At 4 t" one has
Py =1 SJ" * Gix ,#-")(%;" +2ie Al‘(x“)) Pla)— i\tpx' Gl ,1&')(%1 +1ie k.,‘(x') w(x) (c.9)
0= PG ) 4§ 1 G Y, 9 o)

For the same aguation different problems require different
Green functions such as

retarded functions A:at(x,xb and S t(x,xD,
adv(x 1) X) ’

gymmetrical ones A“:ym(x,rb and S (x,xb,

advanced ones A:dv(x,xb and S

Feyrman®s ones b.:(x,xD and S‘_(x,xb, and
antiFeynman’s ones AA(x,xD and SA(x,xb.

They oan be defined by the integral egquations

G(x 2 = 6O (x=x) - S&" - 'ﬁ{'ht-\ (23 vt Ak lw\’SG(‘h
.II
6 o) =GN -x) - m&»,@f-\u-u,n G ) |

(c.12)
where G(o)(x-xﬁ are the oorresponding free Green functions:
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ik
A 8y = -lAR) = AL"M{"} - %_A(}\ ‘_ls‘l‘k __l_(____X)___

T (2w Kliwd—ic ke
A k
B oty B =0CR BE) = A b)+ 380 R e e
A 251\& !
By == $2086) = §RauddIBal ) = am e ik )
C.13
ik
Ay () == A0 4 89896 =A .0 + 18V = A \ B S

ik
AL = nt«m‘"*m—e(*)&“tx}zAsam(x)~%Am°“ = S“" ke

Kamtaig

SR = (D)8 L) (C.14)

Inserting Aiﬁt and Sﬁet as G{x,xd to eqs.{C.9) and {C.I0) the
latter define solutions of the %nitial value problems, since the
first terms vanish (and dependence on t'too). Similarly, inserting
Agdv and Sadv’ eqs.(C.9) and (C.I0) define solutlons of the final
value problem, sinoe now the aecond terms vanish (together with the
dependence or t'). In other cases both terms remain in egs. (C.9)
and (C.I0), the latter beilng solutions of different mixed initiale
final value problems.

The same is true for the free case too, but one can reduce egs,
{C.9) and (C.I0) in all the cases to egs.

TOERAY LY Mx—x‘)?,{ @ x) (c.15)
vooy = 0 S )Y, v (C.16)

which are valld without any constraints on t and tﬂ unlike 8q3.(C.9)
and (C.I0).

A11 we have sald holds for operators @(x), &(x), Q(x) and
Q {x) too.

Considering evolution of one-positron and one~electron states as

the initial value hroblem, one obtalns

¥y Lo = & {dB $t& (5x) % % O o, (c.17)
H Lo,e> = ~i{dsxt o> ¥, 8 o0 (c.18)

28

and the final states together with the retarded (reen functions
have frequences of both signs {the Klein paradox).

Actually, in quantum field theory aevolutilon of an electron
corresponds to the Feymman initial-final problem. According to

eq. (C.I0) one can represent
WY = -1 U‘x" SA (%) Xﬁ'(x"}h‘&d‘x‘ S AN \(,‘@(x') =
< o1 {8 Sh o) v B+ ilBe S0 Y ) G
and obtains for the electron—electron transitien amplitude
OF L ¥ 104> = 1o to,e> B (). (C.10)

Similarly, for the positron-positron, vacuum-palr and pair-vacuum

transition amplitudes one obtains
{0, quk"") ¥ E0,6 = -1 <o, 0,6 A L %Y (een)
(ot ;79(1") F 0 = oy Ca, oS éiip(.xﬁl‘ﬁ") (c.22)
o] 3'*(*')$VPL%‘)\°,U> = oo, oD s*;f*@(,.'ly) (Ca23)

A A
The operators () and w+(ﬂﬂ are complicated guantities,

In terms of Ql(x) eg. {CuI9) has the following non-linear {"many-
partiole™) form

Yo = -'1%*’ ST N )+ S“"*‘ SLeY ) (oo

Apparently, it 1s more natural to consider the operators

Vle )9 =- 'l%p W0 g:(x,xﬁ\g"c,'(x'h)’(t',e) +‘\U(t",t')8&"x' N L",*’YI,‘Q’(*')

Ve 1 wewly): = (c.25)

= [ byt SR LGN S ) ¥ F oYUl -

- (g STV P Ul ) 4 )R 00+
+ SAL," aﬁ \3‘ Spl,(x ,*"‘)\“Q LK”) U({")il) S& L‘j 1‘;’)“'&}('{)—
e (edty 53 60X E 6 S i NIY)
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and 8o one In : @tﬁ\g(mﬁz it is implied ordering with respeot to
“’;bﬂ') and @ () ., The final expressions are N~ordered with
respeat to Q(x) (1f 1t 18 8o for U) and are convenient for taking

of coherent state expectation values. The vectors
e, 20,42
UCROC TSI RGN
Tl t'): §60 ¥ ¢):10,£D

are result of e;;luti;n in terms of the interaction plcture., When
tes byrees tend to t' or t" , one obtains the many-quantum interpre-
tation of the negative frequency parts (the sclution of the Klein
/3 167y,

paradox, cf,

As to the initial value problem we note the formulas

Q g _ g g ‘ A ~ . .
Sy 7 5y T = (-—“s;m'“ TR \“3(*0---%%0-!‘3;)

:("‘L‘“Z&AMQH ,‘jq) Aﬁu(‘“,%n} (c.27)
k)

S =[5 s S S Mo
byu‘}{) ‘8 ‘LL“M w(’ftq m‘*’b‘h’ stlk‘ﬂ' b m<\}’\ . '#’@1)-.\V(x.,).lw>>_
= ZQ‘JP$Q&¢(‘1_,"}D"' $§lu(:‘h,‘}n)' : (C.28)

where the sums are over all n! permutationis of FyaeeeTps P being
Lhe parity of permutation.
Note also the identities

Zepy= 1§80 6 )G 4210 A ENE @)1 §ox G ) + 1k YS9

T =8 Gl ) 1, Tl ) i YA GG ) 1, T y) | Eg 2?3
for example,
Sua o) =1 186 B8, o)y, B ) (c.31)
ety = e e Shey) . (Ce32)
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