> СООБЩЕНИЯ
> ОБЪЕАИНЕННОГО ИНСТИТУТА
> ЯАЕРНЫХ
> ИССАЕАОВАНИЙ

C 324
$p=80$
$14 / 1175$
E2-8506
$971 / 2-75$

I.V.Polubarinov

ON COHERENT STATES.

3. CLASSICAL FORM OF QUANTUM FIELD THEORY EQUATIONS
(COHERENT STATE REPRESENTATION)

$$
\text { E2 } 28506
$$

I.V.Polubarinoy

ON COHERENT STATES.
3. CLASSICAL FORM OF QUANTUM FIELD THEORY EQUATIONS
(COHERENT STATE REPRESENTATHON)

I. INTRODUCTION

It has teen shown in refs. $/ 2,2 /$, that in theories of three kinds:

1) theory of a free quantized field,
2.) theory of a quantized field, interacting with an external current, and
2) theory of a spinor (or any other) charged field, interacting pith an external cleotromagnetio field, transition from field operators, say, $\hat{\varphi}(x)$ and $\hat{\varphi}(x)$ ri) to coherent state expectation values $\hat{g}(x)=\langle\varphi| \hat{\varphi}(x)|\varphi\rangle \quad$ and $\varphi(x)=\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ transforms the Yallen-Yang-Feldman equations for the field operators into equations of a type of classical ones.

The equations for the massless electromagnetic (scelar or eng other) field in the theories j) and 2) coincide exactly with classical ones, For a non-zero mas both in 2), 2) and in 3) oquatrons have been obtained, which are of a form of classical ones, except for the planck constant it enters into the equations ria the compton nave Length $\frac{h}{i n c}$ and in the case of 3) also via the fine structure constant. The causality such as in classical Nave r) Fe take notations rihsoh somewhat differ from those in $/ 1,2 /$ (the latter are given fin brackets for a translation): $\hat{S}(x)(\varphi(x))$ is an latoraoting (Heisenberg) íloid operator; $\hat{\varphi}(x)(\varphi(x))$ is a free fold operator, the aero approximation for $\hat{\varphi}(x)$ in the Kallon-Yang-Peldman equations, the field operator in the interaction representation;
$\varphi(x)$ is an interacting classical field;
$\varphi(x)\left(\varphi^{\prime}(x)\right)$ is a free classical field, the zero approximation for $\varphi(x)$ in classical equations of a form like the Kallen-Yang-Foldman equations;
$|\varphi\rangle$ ($\left|\varphi^{\prime}\right\rangle$) means the coherent state (see $/ I /$), the more detailed writing of $|\varphi\rangle$ would be $|\varphi \dot{\varphi}\rangle$.
theory (see /1/, Appendix B) is characteristic for all these equations.

Main attractive features of the coherent states are in the following properties of the coherent state expectation values.
a) The expectation values of the quantum field coordinate and momentum $\varphi\left(\vec{x}, t^{\prime}\right)=\langle\varphi| \hat{\varphi}\left(\vec{x}, t^{\prime}\right)|\varphi\rangle \quad$ and $\partial_{4} \varphi\left(\vec{x}, t^{\prime}\right)=\langle\varphi| \partial_{4} \hat{\varphi}\left(\vec{x}, t^{\prime}\right)|\varphi\rangle$ at an initial time t^{\prime} are two completely arbitrary funotions of $\vec{x} \quad x$) like initial values of a classical field.
b) The expectation value theorem for the coherent states. Any operator is determined by its coherent state expeotation values (1.e., only by diagonal matrix elementsi) m) . To reconst. ruct the operator we consider its coherent state expectation value as a functional of the initial values $\varphi\left(\vec{x}, t^{\prime}\right)$ and $\dot{\varphi}\left(\vec{x}, t^{\prime}\right), 1, e_{0}$, of two functions of the 3-argument \vec{x}, or, equiralently, as a functional of one function $J(x)$ of the 4 -argument x_{F} (see /1,2/). The latter is more convenient.

The expeotation values $\varphi(x)=\langle\varphi| \hat{\varphi}(x)|\varphi\rangle \quad$ and $\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ are suoh funotionals. The first of them is inear functional in all the oases, the second one also is innear in the theories I)-3), but non-linear in this work. Acoording to the above theorem we may turn back to the equations for field operators from the equations for the coherent state expectation values in 1)-3)/1,2/.

[^0]3*) The theorem 18 well known in quantum meohanics (see /I.2, 1.3 , i.e., refs. $/ 2,3 /$ in $/ I /$. In relativistio quant un field theory
in x-space it is shown in $/ 2 /$.

Hence, the same the ory may equivalently be represented in a classical form or in a quantum one.

It must be stressed that the classical form of quantum theory Is a new representation, namely, the coherent staterepresentation (CSR); we include in this concept the prescription 2: by an operator in this representation we mean oniy the set of its diagonal matrix elements. (The others are superfluous) ${ }^{\text {() }}$. CSR is a new representation among the $\vec{x} \rightarrow$ representation, \vec{p}-representation, angular momentum representation (which are popular in quantum mechanics) and Fook representation, or occupation number representation (whioh is popular in quantum field theory and in quantum statistics). From CSR we can turn back to any other representation.

In the present work we consider closed systems of int eracting fields. Here the situation is more complicated (than in 1)-3)) because of the non-linearity of equations for a field operator. We cannot identify the conerent state expectation value $\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ of the Heisenberg field operator $\hat{\varphi}(x)$ with a classical field $\varphi(x)$.
As_prescription 2 for definition of CSR we introduce a new operator $\hat{\varphi}^{\prime}(x)$, which differs in general from $\hat{\varphi}(x)$ and has the coherent state expectation value, which we can identify with a classical p1eld: $\varphi(x)=\langle\varphi| \hat{申}^{\prime}(x)|\varphi\rangle$.

There is some operator Λ suoh that

$$
\langle\varphi| \hat{\varphi}(x)|\varphi\rangle=\Lambda \varphi(x)=\Lambda\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle
$$

and it reduces to unity, when operating on a inear functional, as in theories 1)-3). Hence, aocording to the above theorem we can turn back to the initial operator form of quantum field theory (to the occupied number representation).

- \bar{x} See Appendix B here, and eq. (A.4) $1 n^{/ 2 /}$.

The transition to CSR (including both presoription 1 and 2) leads, in general, to equations of the type of classioal field theory ones with inherent to this theary causality. The only difference is that they contain the Planck oonstant h, which enters into them like a coupling constant (to some extent). Koreover, those equations are essentially more non-linear than usually used in classical theory.

Thus, the same theory may equivalently be represented in a classical form or in a quantum one in all the cases.

It is interesting to note that we may consider any olassical field for given initial values as a ooherent state expectation value and, further, as a functional of initial values. Then a classical int egral equation for this functional (1.e., a set of the equations, which differ in initial values) may be rewritten In the form of a quantum field theory equation for a field operator. Even if the original classical equation does not contain the constant \hbar, the latter will appear, due to dimensionality considerations, in the commutation relation $\left[\hat{\varphi}(x), \partial_{4} \hat{\varphi}\left(x^{\prime}\right)\right]_{t^{\prime}=t}=\hbar c \delta\left(x^{\prime}-\bar{x}^{\prime}\right)$ for the coordinate and moment un of the introduced field operator.

The author follows, in many aspects, to the interesting artiole by Bialynioki-Birula /I.8/. In partioular, equations for classical fields are the same. However in $/ I, 2 /$
for the more simple theories it has turned out that the Heisenberg operator $\hat{\varphi}(x)$ may be expressed direotly via the olasaioal field $\varphi(x)$, i.e., $\varphi(x)$ via $\Phi_{e l}[x \mid f]$ in notation of /I.8/. Below we express $\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ via $\varphi(x)\left(1 . \theta ., \quad \Phi_{q}[x \mid f] \quad\right.$ via $\Phi_{t}[x \mid f]$) and also $\hat{\varphi}(x) \quad$ via $\langle\varphi| \varphi(x)|\varphi\rangle$ and via $\varphi(x)$ for the closed systems of interacting fields. None of these relam tions have been given expliaitly in $/ I .8 /$, but only the relation between $\Phi_{q}[x \mid \phi]$ and $\Phi_{c l}[x \mid \phi]$ has been stated (eqs. (64),
(65) and (70)). The latter is beyond the framework of given theories, because $\phi(x)$ does not obey any equation, being an arbitrary function. Some of these relations we are interested in have arisen in $/ 1.8 /$ only in the limit $h \rightarrow 0$, which was taken inconsistentiy: \hbar was kept fixed in some places (as in papers of many other authors).

Here we make an attempt to generalize the results of refs. $/ I, 2 /$ and to obtain these lacking in $/ 1,8 /$ relations, 1.8. , to introduce CSR for closed systems of fields (Seos. 2 and 3) and in quantum mechantcs with one degree of freedom (Sec. 4). As in refs. $/ I, 2 /$ the constant h remains arbitrary here. In sec. 5 the relationship between the obtained equations of classical form and those of the Fegnman theory $/ 3 /$ is discussed. Appendix A contalns an example to sec. 2 and application of the Bialynicki-Birula formula for decomposition of the Heisenberg field operator into N-products of the free ones. Moreover, the commutativity of two local Heisenberg operators for space-like separations is demonstrated using the Kallen-Yang-Feldman equations (as mentioned in $/ I, 2 /$). In Appendices B and C some formulas, used in Secs. 4 and 5, are given.
2. TRANSITION TO A CLASSICAI FIELD (TO CSR) IN TIE CASE OF A SELF-INTERACTING SCALAR FIELD

As an equation of motion for a scalar fleld we take the following integral equation

$$
\begin{equation*}
\hat{\varphi}(x)=\hat{\varphi}(x)+\int_{\mathbf{t}^{\prime}} d^{h} y \Delta_{\text {ret }}(x-y) j(\hat{\varphi}(y)) \tag{I}
\end{equation*}
$$

Where t^{\prime} is an initiai time of evolution, and ${ }^{x}$)
$\hat{\varphi}(x)=i \int d^{3} x^{\prime}\left[\partial_{4}^{\prime} \Delta\left(x-x^{\prime}\right) \hat{\varphi}\left(x^{\prime}\right)-\Delta\left(x-x^{\prime}\right) \partial_{4}^{\prime} \hat{\varphi}\left(x^{\prime}\right)\right]=i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \vec{\partial}_{4}^{\prime} \hat{\varphi}\left(x^{\prime}\right)$. (2)

[^1]When iterating (I) infinitely many times, wo obtain

$$
\begin{align*}
\hat{\varphi}(x) & =\sum_{n=0}^{\infty} \int_{i^{1}} d^{4} x_{1} \ldots d^{4} x_{n} K_{n+t}\left(x, x_{1} \ldots x_{n}\right)\left\{\hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right)\right\}= \tag{3.a}\\
& =\sum_{n=0}^{\infty} \int_{t^{1}} d^{4} x_{1} \ldots d^{t} x_{n} K\left(x_{1}, x_{1} \ldots x_{n}\right): \hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right): \tag{3.b}
\end{align*}
$$

where $\left\{\hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right)\right\}$ is the symmetrized produot
$\left\{\hat{\varphi}\left(x_{1}\right) \cdots \hat{\varphi}\left(x_{n}\right)\right\}=\frac{1}{n!} \sum_{n=1} \hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right)$

$$
\begin{align*}
& \text { over aln ni permutations } \tag{4}\\
& \text { of indices I } \ldots n
\end{align*}
$$

and coeffiofent functions $K_{r e t}\left(x, x_{I} \ldots x_{n}\right)$ are constructed from the $\Delta_{\text {ret }}(x-y)-$ and $\delta^{4}(x-y)$-functions and are represented by tree graphs. Expression (3.b) is obtained by a decomposition of the symmetrized produots into the $N-p r o d u c t s$
$\left\{\hat{\varphi}\left(x_{1}\right) \cdots \hat{\varphi}\left(x_{n}\right)\right\}=t \hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right):+\sum_{0} \frac{1}{2} \Delta^{(1)}\left(x_{1}-x_{1}\right): \hat{\varphi}\left(x_{3}\right) \cdots \hat{\varphi}\left(x_{n}\right) ;+\sum_{t=0}+\ldots$
pairing pairings

There $\frac{1}{2} \Delta^{(1)}\left(x_{I}-x_{2}\right)$-funotion corresponds to pairing of $\hat{\varphi}\left(x_{1}\right)$ and $\hat{\varphi}\left(x_{2}\right)$.
For a practioal decomposition into the N-produots there may be used either direot (algebraio) methods due to Fick/4/, Dyson/5/ and Calanielio $/ 6 /$ or the symbolic methods of the external souroes due to sohwinger $/ I .9, I . I 4 /$ and 3 mangik/I.I5/ of of the external plelds due to Hori/7/ and Blalynicki-B1rula/I, 8/. The symbolio methods bring one out of the framework of the given theory (e.g., out of the framowork of equation (I)) at an intermediate stage. We avoid them here, exoopt for Appendix A, where the transparent formula of Blaiynicki-Biruia /ia/ $1 s$ given for decomposition of a Heisenberg field into the N-produots of a free one.

The normal form (3.b) is convenient for obtaining the ooherent state expeotation ralues
$\langle\varphi| \hat{\varphi}(x)|\varphi\rangle=\sum_{n=0}^{\infty} \int_{t^{\prime}} d^{k} x_{1} \ldots d^{4} x_{n} K\left(x, x_{1} \ldots x_{n}\right) \varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)$.

Unlike theories I - 3) we cannot identify $\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ with any classical pleld $\ell(x)$. There are two reasons for that: a) $K\left(x, x_{I} \ldots x_{n}\right)$ have no tree form, which is only possible in classical theories, and b) $K\left(x, x_{I} \ldots x_{n}\right)$ contain not only the causal $\Delta_{\text {ret }}-f$ unctions, but also the acausal $\Delta^{(I)}$-iunctions.

It sems however natural to introduce the new operator
$\hat{\varphi}^{\prime}(x)=\sum_{n=0}^{\infty} \int_{t^{\prime}} d^{4} x_{1} \ldots d^{k} x_{n} K_{u t}\left(x_{1} x_{1} \ldots x_{n}\right): \hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right):$
and to Identify the coherent state expectation value of $\hat{\varphi}^{\prime}(x)$ with
a classical f1eld
$\varphi(x)=\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle=\sum_{n=0}^{\infty} \int_{t^{\prime}} d^{4} x_{1} \ldots d^{4} x_{n} \dot{K}_{u_{t}}\left(x_{1} x_{1} \ldots x_{n}\right) \varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)$
We call this prescription 2. It is evident that such a field satisfies the non-linear classicai equation

$$
\begin{equation*}
\varphi(x)=\varphi(x)+\int_{t^{\prime}} d^{h} y \Delta_{\text {ret }}(x-y) j^{\prime}(\varphi(y)) . \tag{9}
\end{equation*}
$$

Let us reoall that $\varphi(x)$ is the following linear functional of $\varphi\left(\vec{x}, t^{\prime}\right)$ and $\partial_{4} \varphi\left(\vec{x}, t^{\prime}\right)$ or of $J(x)$

$$
\begin{align*}
\varphi(x) & =i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \partial_{4}^{\prime} \varphi\left(x^{\prime}\right)= \\
& :=i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \partial_{4}^{\prime} \varphi\left(x^{\prime}\right)= \tag{10.b}\\
& =-\int_{t^{\prime}}^{t^{*}} d^{4} y(x-y) \partial(y) \tag{10.c}
\end{align*} \text { and according to eq. }(9) \varphi(x) \text { is the non-linear functional. }
$$

The function fin eq. (9) is almost the same as j in eq. (I).
To aroid the appearance of $\Delta^{(I)}(0)$ in eq. (9) the function f in eq.
(I) must be chosen in such a manner, that

$$
\begin{equation*}
j(\hat{\varphi}) \rightarrow j(\hat{\varphi})=: j^{\prime}(\hat{\varphi}): \tag{II}
\end{equation*}
$$

For example, in the case of φ^{3}-coupling (see Appendix A)

$$
j(\hat{\varphi}) \rightarrow j(\hat{\varphi})=g\left(\hat{\varphi}^{2}(x)-\frac{1}{2} \Delta^{(1)}(0)\right)=g: \hat{\varphi}^{2}(x):=: j^{\prime}(\hat{\varphi}):, j^{\prime}(\varphi)=g \varphi^{2}(x) \text {. (II') }
$$

3. TRANSITION TO CLASSICAL FIELDS (TO CSR) IN QUANTMM ELECTRODYNAMICS

According to the expectation value theorem any operator $\hat{\mathbf{Q}}$ can be expressed via its coherent state values $/ 2 /$

$$
\begin{align*}
& \hat{\boldsymbol{Q}}=: \exp \left(\int d^{3} x^{\prime}\left(\hat{\varphi}\left(x^{\prime}\right) \frac{\delta}{\delta \varphi\left(x^{\prime}\right)}+\dot{\hat{\varphi}\left(x^{\prime}\right)} \frac{\delta}{\delta \dot{\varphi}\left(x^{\prime}\right)}\right)\right):\langle\varphi| \hat{Q}|\varphi\rangle_{\mid \varphi\left(\vec{y}, t^{\prime}\right)=\dot{\varphi}\left(\vec{y}, t^{\prime}\right)=0}=(12, a) \tag{IV}\\
& =\exp \left(i \int d^{3} y \hat{\varphi}(y) \leftrightarrow \partial_{h} \frac{\delta}{\delta J(y)}\right):\left.\langle\varphi| \hat{Q}|\varphi\rangle\right|_{\eta=0}= \tag{12.b}\\
& =\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int d^{3} y_{1} \ldots d^{3} y_{n}: \hat{\varphi}\left(y_{1}\right) \cdots \hat{\varphi}\left(y_{n}\right): \stackrel{\partial}{\partial}_{14} \ldots{\stackrel{\partial}{\partial_{n}}}^{\delta} \frac{\delta}{\delta \mathcal{J}\left(y_{1}\right)} \cdots \frac{\delta}{\delta J\left(y_{n}\right)}\langle\varphi| Q|\varphi\rangle_{J=0}\left(I 2 . b^{\prime}\right)
\end{align*}
$$

The last row gives the exact meaning to the preceding one, the times being non-equal ${ }^{x}$). Using eq. (I2), we can, for example, turn back to $\hat{\varphi}^{\prime}(x)$, eq. (7), from $\varphi(x)=\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle$. The question how, starting from the classical fled $\varphi(x)=\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle$, to obtain the expectation values $\langle\varphi| \hat{\varphi}(x)|\varphi\rangle$ and further the operator $\hat{\varphi}(x)$ are answered by the formulas

$$
\begin{align*}
& \langle\varphi| \hat{\varphi}(x)|\varphi\rangle=\exp \left(\frac{\hbar}{4} \int d^{3}\left\{d^{3}, \frac{\delta}{\delta \partial(\xi)} \stackrel{\leftrightarrow}{\partial_{4}} \Delta^{(1)}\left(\xi-\xi^{\prime}\right) \vec{\partial}_{4}^{\prime} \frac{\delta}{\delta J\left(\xi^{\prime}\right)}\right)\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle=\right. \\
& =\Lambda\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle=\Lambda \varphi(x) \tag{IS}\\
& \hat{\varphi}(x)=: \exp \left(i i^{3} y \hat{\varphi}(y) \vec{\partial}_{4} \frac{\delta}{\delta J(y)}\right):\langle\varphi| \hat{\varphi}(x)|\varphi\rangle_{\mid y=0}= \\
& \left.=: \exp (i) d^{3} y \hat{\varphi}(y) \vec{\partial}_{4} \frac{\delta}{\delta \partial(y)}\right): \Lambda \varphi(x) \mid \jmath=0 . \tag{IA}
\end{align*}
$$

Note, that the operator Λ keeps us within the framework of this theory unlike the operator $\exp \left(\frac{\hbar}{4} \int \frac{\delta}{\delta \phi} \Delta^{(1)} \frac{\delta}{\delta \phi}\right)$ of the Horn's type $1 n^{\prime N} .8 \%$ A operates only on the initial values of the classioal field $\varphi(x)$, ie., on $\varphi\left(\vec{x}, t^{\prime}\right)$ and $\partial_{4} \varphi(\vec{x}, t)$ or equivalently on $J(x)$.
x^{x} In what follows eqs. (I3), (I4) ,(3I.b), (34), (36), (37), (48,b), (49.b), (50) and (5I) must be interpreted in the same sense.

We start with the Kallen-Yang-Feldman equations

$$
\begin{align*}
& \hat{A}_{\mu}(x)=\hat{A}_{\mu}(x)+\int_{t^{\prime}} d^{4} y \Delta_{\text {ret }}(x-y) \hat{\mathscr{S}}_{\mu}(y) \tag{IS}\\
& \hat{\psi}(x)=\hat{\psi}(x)-i e \int_{t^{\prime}} d^{4} y S_{\text {ret }}(x-y) \gamma_{\mu} \hat{A}_{\mu}(y) \hat{\psi}(y),
\end{align*}
$$

where

$$
\begin{align*}
& \hat{A}_{\mu}(x)=i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \stackrel{\partial}{4}_{\prime}^{A_{\mu}} \hat{A}_{\mu}\left(x^{\prime}\right) \tag{IT}\\
& \hat{\psi}(x)=-i \int d^{3} x^{\prime} S\left(x-x^{\prime}\right) \gamma_{4} \hat{\psi}\left(x^{\prime}\right) \tag{IB}
\end{align*}
$$

As a result of infinitely many times of iterations one obtains

$$
\begin{aligned}
& \hat{A}_{r}(x)=\sum_{m, n=0}^{\infty} \int_{t^{\prime}} d^{h} x_{1} \ldots d^{h} x_{n} \int d_{t^{\prime}}^{d^{h}} y_{1} \ldots d^{4} y_{m} \int_{t^{\prime}} d^{4} z_{1} \ldots d^{k} z_{m} K_{\text {ut } \mu \mu_{1}, \mu_{n}}^{A}\left(x_{1} x_{1} \ldots x_{n}, y_{1} \ldots y_{m}, z_{1} \ldots z_{m}\right) \\
& \cdot\left\{\hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right)\right\}\left[\hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m}\right) \hat{\psi}\left(z_{1}\right) \ldots \hat{\psi}\left(z_{m}\right)\right]= \\
& =\sum_{m, n=0}^{\infty} \int_{t^{\prime}} d^{4} x_{1} \ldots d^{4} x_{n} \int d_{i}^{4} y_{i} \ldots d^{4} y_{m} \int_{i^{\prime}} d^{4} z_{1} \ldots d^{4} z_{m} K_{\mu \mu_{1}, \cdots \mu_{n}}^{A}\left(x_{1}, x_{1} \cdots x_{n}, y_{1}, \ldots y_{m}, z_{1}, z_{m}\right) \\
& : \hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right) \hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m}\right) \hat{\psi}\left(z_{1}\right) \ldots \hat{\psi}\left(z_{m}\right) \text { : } \\
& \hat{\psi}(x)=\sum_{m, n=0}^{\infty} \int_{t^{\prime}} d^{4} x_{1} \ldots d^{4} x_{n} \int d_{z^{4}} y_{1} \ldots d^{4} y_{m+1} \int_{t^{\prime}} d^{4} z_{i} \ldots d^{4} z_{m} K_{\tau+4}^{\psi} \mu_{1} \cdots \mu_{n}\left(x, x_{1}, x_{n}, y_{1} \cdots y_{m+1}, z_{1} \ldots z_{m}\right) \\
& \left\{\hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right)\right\}\left[\hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m+1}\right) \hat{\bar{\psi}}\left(z_{1}\right) \ldots \hat{\bar{\psi}}\left(z_{m}\right)\right]=\quad \text { (20.a) } \\
& =\sum_{m, m=0}^{\infty} \int_{t^{\prime}} d^{4} x_{1} \ldots d^{4} x_{n} \int_{i^{\prime}} d^{4} y_{1} \ldots d^{k} y_{m+1} \int_{t^{\prime}} d^{4} z_{1} \ldots d^{k} z_{m} K_{\mu_{1}, \ldots \mu_{n}}^{\psi}\left(x_{1} x_{1} \ldots x_{n}, y_{1} \ldots y_{m+1}, z_{1} \ldots z_{m}\right) \\
& : \hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right) \hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m+1}\right) \hat{\bar{\psi}}\left(z_{1}\right) \ldots \hat{\psi}\left(z_{m}\right): \quad \text {, (20.b) }
\end{aligned}
$$

where the brackets $\}$ and $[$ denote completely symmetrized and entisymetrised products, respectively. The transitions from (I9.a) to (I9.b) and from (e0.a) to (20.b) are achieved by deoomposi-
tions of these products into N-products in the same was as in the Wick theorem (like (5)), but with pairings $\frac{1}{2} \delta_{\mu_{1} r_{2}} A^{(1)}\left(x_{1}-x_{1}\right)$ and $\frac{1}{2} S^{(1)}\left(x_{1}-x_{2}\right)$, respeotively. The coherent state expeotation values for the He1senberg operators are

$$
\langle A \cup| \hat{A}_{\mu}(x)|A \psi\rangle=\sum_{m, n \times 0}^{-\infty}\left\{d ^ { 4 } x _ { i } \ldots d ^ { 4 } x _ { n } \int d ^ { 4 } y _ { i } \ldots d ^ { d ^ { 4 } } y _ { m } \left(d^{4} z_{i} \ldots d^{4} z_{m} K_{\mu \mu_{1} \cdots \mu_{n}}^{A}\left(x, x_{1}, \cdots x_{n}, y_{i}-y_{m}, z_{i}-z_{m}\right)\right.\right.
$$

$$
\begin{equation*}
\cdot A_{\mu_{1}}\left(x_{1}\right) \cdots A_{\mu_{n}}\left(x_{n}\right) \psi\left(y_{1}\right) \ldots \psi\left(y_{m}\right) \bar{\psi}\left(z_{1}\right) \cdots \bar{\psi}\left(z_{m}\right) \tag{2I}
\end{equation*}
$$

$$
A_{\mu_{r}}\left(x_{1}\right) \ldots A_{\mu_{n}}\left(x_{n}\right) \psi\left(y_{1}\right) \ldots \psi\left(y_{m+1}\right) \bar{\psi}\left(z_{1}\right) \ldots \bar{\psi}\left(z_{m}\right)
$$

(22)
but they again do not auit to be olasoical fields, since $X^{22)}$ and \mathbb{K}^{ψ} have no tree structure. For this reason according to presoription 2 the nem operators

$$
\begin{gather*}
\hat{A}_{r}^{\prime}(x)=\sum_{m, n}^{\infty} \int d^{4} x_{1} \ldots d^{\mu} x_{n} \int d^{4} y_{1}-d^{4} y_{m} \int d^{4} z_{i} \ldots d^{4} z_{m} K_{\tau e t \mu \mu_{i}-\mu_{n}}^{A}\left(x, x_{1} \ldots x_{n}, y_{1} \ldots y_{m}, z_{1}, \ldots z_{m}\right) \\
: \hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right) \hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m}\right) \hat{\Psi}\left(z_{1}\right) \ldots \hat{\Psi}\left(z_{m}\right): \tag{23}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\psi}^{\prime}(x)=\sum_{m, n=0}^{\infty} \int d^{4} x_{1} \ldots d^{4} x_{n} \int d^{4} y_{i} \ldots d^{4} y_{m+1}\left(d^{4} z_{i} \cdot d^{4} z_{m} K_{\text {rec } \mu_{i}-\mu_{n}}^{\psi}\left(x, x_{i} \ldots x_{m}, y_{i}, y_{m+1}, z_{i} \cdots z_{m}\right)\right. \\
: \hat{A}_{\mu_{1}}\left(x_{1}\right) \ldots \hat{A}_{\mu_{n}}\left(x_{n}\right) \hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{m+1}\right) \hat{\Psi}\left(z_{1}\right) \ldots \hat{\psi}\left(z_{m}\right): \tag{21}
\end{gather*}
$$

are untroduced such that now their ooherent state expeotation ralues may be 1dentified with classioal f1elds

$$
A_{r}(x) \equiv\left\langle A_{\psi^{\prime}}\right| \hat{\mathbf{A}}_{\mu}^{\prime}(x)|A \psi\rangle=
$$

$$
\begin{align*}
& =\sum_{m, n=0}^{\infty} \int d^{4} x_{1} \ldots d^{4} x_{n} \int d^{4} y_{1} \ldots d^{4} y_{m} \int d^{4} z_{1} \ldots d^{k} z_{m} K_{u t \mu \mu_{1} \ldots \mu_{n}}^{A}\left(x, x_{1} \ldots x_{n}, y_{1} \ldots y_{m}, z_{1} \ldots z_{n}\right) \\
& A_{\mu_{1}}\left(x_{1}\right) \ldots A_{\mu_{n}}\left(x_{n}\right) \psi\left(y_{1}\right) \ldots \psi\left(y_{m}\right) \bar{\psi}\left(z_{1}\right) \ldots \bar{\psi}\left(z_{m}\right) \tag{25}
\end{align*}
$$

$\psi(x)=\langle A \psi| \hat{\psi}^{\prime}(x)\left|A \psi^{\prime}\right\rangle=$

$$
\begin{gather*}
=\sum_{m, n=0}^{\infty} \int d^{4} x_{1} \ldots d^{d} x_{n} \int d^{4} y_{1} \ldots d^{4} y_{m+1} \int d^{4} z_{1} \cdot d^{4} z_{m} K_{n+\mu_{1} \ldots r_{n}}^{\psi}\left(x_{1}, \ldots x_{n}, y_{1} \cdots y_{m+1}, z_{1} \ldots z_{m}\right) \\
A_{\mu_{1}}\left(x_{1}\right) \ldots A_{\mu_{n}}\left(x_{n}\right) \psi\left(y_{1}\right) \ldots \psi\left(y_{m+1}\right) \bar{\psi}\left(z_{1}\right) \ldots \bar{\psi}\left(z_{m}\right) \tag{26}\\
12
\end{gather*}
$$

The coepficient functions $K_{r e t}^{A}$ and $K_{r e t}^{\psi}$ have the tree structure and are constructed from the $\Delta_{r e t}(x-y)-, S_{r e t}(x-y)-$ and $\delta^{4}(x-y)-$ functions, and thus satisfy the causality requirement. The classical fields $\mathbb{A}_{\mu}(x)$ and $\psi(x)$ obey the classical equations, having the form of the original operator equations

$$
\begin{align*}
& A_{\mu}(x)=A_{\mu}(x)+\int_{t^{\prime}} d^{4} y \Delta_{\text {ret }}(x-y) \AA_{\mu}(y) \quad\left(\dot{B}_{\mu}(x)=i e \bar{\Psi}(x) \gamma_{r} \psi(x)\right) \tag{27}\\
& \psi(x)=\psi(x)-i e \int_{t^{i}} d^{4} y S_{\text {ret }}(x-y) \gamma_{r} A_{\mu}(y) \psi(y), \tag{28}
\end{align*}
$$

Where $A_{\mu}(x)$ and $\psi(x)$ are the inear functionals of initial values

$$
\begin{align*}
A_{\mu}(x) & =i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \stackrel{\leftrightarrow}{4} d_{4}^{\prime} A_{\mu}\left(x^{\prime}\right)= \tag{29.a}\\
& =i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \stackrel{\leftrightarrow}{d_{4}^{\prime}} A_{\mu}\left(x^{\prime}\right)= \tag{29.b}\\
& =-\int_{t^{\prime}}^{t^{\prime \prime}} d^{4} y \Delta(x-y) \partial(y) \tag{29.c}\\
\Psi(x) & =-i \int d^{3} x^{\prime} S\left(x-x^{\prime}\right) \gamma_{h} \psi\left(x^{\prime}\right)= \tag{30.a}\\
& =-i \int d^{3} x^{\prime} S\left(x-x^{\prime}\right) \gamma_{4} \psi\left(x^{\prime}\right)= \tag{30.b}\\
& =\int_{t^{\prime}}^{t^{\prime \prime}} d^{4} y S(x-y) \eta(y) . \tag{30.0}
\end{align*}
$$

Let us recall that the "classical" fields ψ and ψ and sources η are anticommuting quantities, ψ and $\bar{\psi}$ being independent (and η and $\bar{\eta}$ too).

According to the expectation value theorem any operator
can be expressed via its coherent state values

$$
\begin{aligned}
& Q=: \exp \left(\int d^{3} x^{\prime}\left(\hat{A}_{\mu}\left(x^{\prime}\right) \frac{\delta}{\delta A_{r}\left(x^{\prime}\right)}+\dot{\hat{A}}_{r^{\prime}}\left(x^{\prime}\right) \frac{\delta}{\delta \hat{A}_{r}\left(x^{\prime}\right)}+\hat{\psi}\left(x^{\prime}\right) \frac{\delta}{\delta \psi\left(x^{\prime}\right)}+\bar{\psi}\left(x^{\prime}\right) \frac{\delta}{\delta \bar{\psi}\left(x^{\prime}\right)}\right)\right): \\
& \left.\langle A \psi| Q|A \psi\rangle\right|_{A_{r}(\vec{y}, t)=\dot{A}_{r}\left(\vec{y}, t^{\prime}\right)=\psi\left(\vec{y}, t^{\prime}\right)=\bar{\psi}\left(\vec{y}, t^{\prime}\right)=0}=(31 . a) \\
& =: \exp \left(i \int d^{3} y\left(\hat{A}_{r}(y) \dot{\partial}_{4} \frac{\delta}{\delta \partial_{r}(y)}-\hat{\psi}(y) \gamma_{4} \frac{\delta}{\delta \eta(y)}+\hat{\psi}(y) \gamma_{4} \frac{\delta}{\delta \bar{\eta}(y)}\right)\right):\left.\langle A \psi| O|A \psi\rangle\right|_{y=\eta=\hat{\eta}=0}
\end{aligned}
$$

To tura baok to the coherent state expeotation values of the Heisenberg operators and to the operators themselves not going bejond the framework of this theory the formulas are used

$$
\begin{align*}
& \langle A \psi| \hat{A}_{\mu}(x)\left|A_{\psi}\right\rangle=\Lambda_{A} \Lambda_{\psi}\langle A \psi| \hat{A}_{\mu}^{\prime}(x)|A \psi\rangle=\Lambda_{A} \Lambda_{\psi} A_{\mu}(x) \tag{32}\\
& \langle A \psi| \hat{\psi}(x)|A \psi\rangle=\Lambda_{A} \Lambda_{\psi}\langle A \psi| \hat{\psi}^{\prime}(x)|A \psi\rangle=\Lambda_{A} \Lambda_{\psi} \psi(x) \tag{33}
\end{align*}
$$

$$
\begin{align*}
& \text { where } \\
& \Lambda_{A}=\exp \left(\frac{\hbar}{4} \int d^{3} \xi d^{3} \xi^{1} \frac{\delta}{\delta J_{\mu}(\xi)}{\stackrel{\leftrightarrow}{\partial_{4}}}^{\prime} \Delta^{(1)}\left(\xi-\xi^{\prime}\right) \stackrel{\rightharpoonup}{\partial_{4}^{\prime}} \frac{\delta}{\delta \partial_{\mu}\left(\xi^{\prime}\right)}\right) \tag{34}\\
& \Lambda_{\psi}=\exp \left(\frac{\hbar}{2} \int d^{3}\left\{d^{3} \xi^{1} \frac{\delta}{\delta \eta(\xi)} \gamma_{4} \delta^{(1)}\left(\xi-\xi^{1}\right) \gamma_{4} \frac{\delta}{\delta \bar{\eta}\left(\xi^{\prime}\right)}\right)\right. \tag{35}
\end{align*}
$$

$=: \exp \left(i \int d^{3} y\left(\hat{A}_{\mu}(y) \delta_{4} \frac{\delta}{\delta y_{\mu}(y)}-\hat{\psi}(y) X_{h} \frac{\delta}{\delta \eta(y)}+\hat{\bar{\psi}}(y) X_{4} \frac{\delta}{\delta \bar{y}(y)}\right)\right):\left.A_{A} A_{\psi} A_{\mu}(x)\right|_{y=y=\bar{\eta}=0} ^{(36, a)}$ (36.b)

$$
\begin{aligned}
& \left.\hat{\psi}(x)=: \exp \left(i \int d^{3} y\left(\hat{A}_{\mu}(y) \dot{\partial}_{4} \frac{\delta}{\delta \partial_{\mu}(y)}-\hat{\psi}(y) \gamma_{4} \frac{\delta}{\delta \eta(y)}+\hat{\psi}(y) X_{4} \frac{\delta}{\delta \bar{\eta}(y)}\right)\right) \cdot\langle A \psi \hat{\psi}(x) \mid A \psi\rangle\right\rangle_{\eta=y=\bar{\eta}=0}= \\
& =: \exp \left(i \int d^{3} y\left(\hat{A}_{\mu}(y) \stackrel{\leftrightarrow}{\delta_{4}} \frac{\delta}{\delta \partial_{r}(y)}-\hat{\psi}(y) X_{h} \frac{\delta}{\delta \eta(y)}+\frac{\hat{\psi}}{\psi}(y) \gamma_{h} \frac{\delta}{\delta \bar{y}(y)}\right)\right): \Lambda_{\lambda} \Lambda_{\psi} \psi(x) \sum_{\{j=y=\bar{\eta}=0} \text { (37.a) } \\
& \text { (37.b) }
\end{aligned}
$$

4. TRANSITION FROM QUANTUM MECHANICS TO CLASSICAL ONE, AND VICE VERSA

In quantun mechanios with one degree of freedom we take for Heisenberg operator of coorainate $\hat{x}(t)$ the equation $/ I .8 /$

$$
\begin{equation*}
\dot{x}(t)=x(t)+\int_{t^{+}} d u G_{\operatorname{set}}(t-u) F(\hat{x}(u)) \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{x}(t)=\frac{\partial}{\partial t^{\prime}} D\left(t-t^{\prime}\right) \cdot \hat{x}\left(t^{\prime}\right)-D\left(t-t^{\prime}\right) \frac{\partial \hat{x}\left(t^{\prime}\right)}{\partial t^{\prime}} \equiv D\left(t-t^{\prime}\right) \frac{\leftrightarrow}{\partial t^{\prime}} \hat{x}\left(t^{\prime}\right) . \tag{39}
\end{equation*}
$$

The definiton of functions $G_{r e t,} D, D^{(I)}$ and coherent states used below see in Appendix B.

$$
\begin{align*}
& \text { Iterating equation (37) infinitely many times, one obtains } \\
& \begin{aligned}
\hat{x}(t) & =\sum_{n=0}^{\infty} \int d t_{1} \ldots d t_{n} K_{\text {ret }}\left(t, t_{1} \ldots t_{n}\right)\left\{\hat{x}\left(t_{1}\right) \ldots \hat{x}\left(t_{n}\right)\right\}=\text { (40.a) } \\
& =\sum_{n=0}^{\infty} \int d t_{1} \ldots d t_{n} K\left(t, t_{1} \ldots t_{n}\right): \hat{x}\left(t_{1}\right) \ldots \hat{x}\left(t_{n}\right): \text {, (40.b) }
\end{aligned} .
\end{align*}
$$

the second expression being obtained by decomposition of the symmetrised products into N-products with the pairings

$$
\begin{equation*}
\left\{\underset{\sim}{\hat{x}\left(t_{1}\right) \hat{x}}\left(t_{2}\right)\right\}=\hbar D^{(1)}\left(t_{1}-t_{2}\right) . \tag{4I}
\end{equation*}
$$

The cogerent state expectation value of $\hat{X}(t)$ is equal
$\langle x p| \hat{x}(t)|x p\rangle=\sum_{n=0}^{\infty} \int d t_{1} \cdots d t_{n} K\left(t, t_{1} \cdots t_{n}\right) \times\left(t_{1}\right) \cdots x\left(t_{n}\right)$,
Where $x(t)=\langle x p| \hat{x}(t)|x p\rangle=D\left(t-t^{\prime}\right) \frac{\vec{\partial}}{\partial t^{\prime}} x\left(t^{\prime}\right)=-\int_{t^{\prime}}^{t^{\prime \prime}} d^{4} u D(t-u) f(u)$.
The quantity $x(t)$ is the innear funotion of the two initial values $x(t)$ and $\dot{x}(t)$ and mas be equivalently treated as a functional of one function $f(t)$ (the last expression (43)).

The coherent state expectation value (42) cannot be identified with a function, which obeys any classical equation. Again, according to presoription 2 we introduce the new operator

$$
\begin{equation*}
\hat{x}^{\prime}(t)=\sum_{n=0}^{\infty} \int d t_{1} \ldots d t_{n} K_{\text {ret }}\left(t, t_{1} \ldots t_{n}\right): \hat{x}\left(t_{1}\right) \ldots \hat{x}\left(t_{n}\right): \tag{44}
\end{equation*}
$$

and identify its ooherent state expeotation values with the classical funotion

$$
\begin{equation*}
x(t)=\langle x p| \hat{x}^{\prime}(t)|x p\rangle=\sum_{n=0}^{\infty} \int d t_{1} \ldots d t_{n} K_{\text {ret }}\left(t_{1}, t_{1} \ldots t_{n}^{\prime}\right) x\left(t_{1}\right) \cdots x\left(t_{n}\right) \tag{45}
\end{equation*}
$$

which satisfy the following non-linear olassioal equation

$$
\begin{equation*}
x(t)=x(t)+\int_{t^{\prime}} d u G_{\text {uet }}(t-u) F^{\prime}(x(u)) \tag{46}
\end{equation*}
$$

The functions F and F^{\prime} differ from each other like J and j^{\prime} in Seo. 2. From eq. (46) the Newton equation

$$
\begin{equation*}
\ddot{x}(t)=F^{\prime}(x(t)) \tag{47}
\end{equation*}
$$

follows $/ \mathrm{I} .8 /$ (see Appendix B). Starting with this one can turn back to the initial quantum theory. This is achieved by treating the classioal coordinate $X(t)$ as a coherent state expectation value and then by using the ooherent state expeotation ralue theorem. Aocording to the theorem any Helsenberg operator Q mar be expressed through its coherent atate expeotation values

$$
\begin{align*}
\hat{\mathbf{Q}} & =\exp \left(\hat{x}\left(t^{\prime}\right) \frac{\partial}{\partial x\left(t^{\prime}\right)}+\hat{p}\left(t^{\prime}\right) \frac{\partial}{\partial p\left(t^{\prime}\right)}\right):\left.\langle x p| Q|x p\rangle\right|_{x\left(t^{\prime}\right)=p\left(t^{\prime}\right)=0}= \tag{48.a}\\
& =: \exp \left(\hat{x}(\tau) \frac{\vec{\partial}}{\partial \tau} \frac{\delta}{\delta f(\tau)}\right):\left.\langle x p| Q|x p\rangle\right|_{f=0} . \tag{48,b}
\end{align*}
$$

In partioular,

$$
\begin{align*}
\hat{x}(t) & =: \exp \left(\hat{x}\left(t^{\prime}\right) \frac{\partial}{\partial x\left(t^{\prime}\right)}+\hat{p}\left(t^{\prime}\right) \frac{\partial}{\partial p\left(t^{\prime}\right)}\right):\langle x p| \hat{x}(t)|x p\rangle_{\mid x\left(t^{\prime}\right)=p\left(t^{\prime}\right)=0}= \tag{49,a}\\
& =: \exp \left(\hat{x}(\tau) \frac{\overleftrightarrow{\partial}}{\partial \tau} \frac{\delta}{\delta f(\tau)}\right):\left.\langle x p| \hat{x}(t)|x p\rangle\right|_{f=0} \tag{49.b}
\end{align*}
$$

Equation (49.a) is given in $/ 1.8 / x)$ (eq. (33) there).
Further, the expeotation value $\langle x p| \hat{x}(t)|x p\rangle$ can be expressed through the olassioal coordinate $x(t)=\langle x p| \hat{x}^{\prime}(t)|x p\rangle$ aocording to

[^2]\[

$$
\begin{align*}
\langle x p| \hat{x}(t)|x p\rangle & =\exp \left(\frac{\hbar}{4} \frac{\delta}{\delta f(\tau)} \frac{\stackrel{\rightharpoonup}{\partial}}{\partial \tau} D^{(1)}\left(\tau-\tau^{\prime}\right) \frac{\left.\stackrel{\partial}{\partial \tau^{\prime}} \frac{\delta}{\delta f\left(\tau^{\prime}\right)}\right)\langle x p| \hat{x}^{\prime}(t)|x p\rangle=}{} \quad \approx \Lambda\langle x p| \hat{x}^{\prime}(t)|x p\rangle=\Lambda x(t)\right.
\end{align*}
$$
\]

Henoe, the direct relation between the quantum and classical coordinates $\hat{\mathbb{X}}(t)$ and $X(t)$ is

$$
\begin{equation*}
\hat{x}(t)=: \exp \left(\hat{x}(\tau) \stackrel{\leftrightarrow}{\partial \tau} \frac{\delta}{\delta f(\tau)}\right):\left.\Lambda x(t)\right|_{f=0} \tag{5I}
\end{equation*}
$$

5. CLASSICAL EQUATIONS AND TRANSITION AMPLITUDES

After turning back to the quantum equations from the classical ones, we can reconstruat all the quantum theory and, in particular, find transition amplitudes, whioh are c-number quantities again. As appears, instead of this one can obtain the transition amplitudes direotly from the classioal equations, that in fact has been done by Feyman long ago ${ }^{1 / 3 /}$.

Let us consider the theories I)-3).
I) Proe quantized field. Let us pass from the real classical fleld
(x) to its positive-frequency part, l.e., to the complex amplitude

$$
\begin{equation*}
\psi(x)=\varphi^{(-)}(x) \tag{52}
\end{equation*}
$$

(like one does in olassioal optios and electronics, see $/ 1 /$ Appendix b). It obeys the schrodinger equation

$$
\begin{equation*}
\partial_{q_{1}} \Psi(x)=-\sqrt{-\Delta+m^{2}} \Psi(x) \tag{53}
\end{equation*}
$$

and usually is used for describing a fres quantum.
Aocording to Fegnman we can retain within the framework of the
Klein-Qordon or Dirao equations

$$
\begin{align*}
& \left(\square-m^{2}\right) \varphi(x)=0 \tag{54}\\
& (\gamma)+m) \Psi(x)=0 \tag{55}
\end{align*}
$$

if Te define as the amplitudes
$\varphi(x)=i \int d^{3} x^{4} \Delta_{+}\left(x-x^{4}\right) \dot{\partial}_{4}^{n} \varphi\left(x^{\prime}\right)-i \int d^{3} x^{\prime} \Delta_{+}\left(x-x^{\prime}\right){ }_{\partial_{4}^{\prime}}^{\rightarrow} \varphi\left(x^{\prime}\right)$
$\Psi(x)=-i \int d^{3} x^{\prime \prime} S_{+}\left(x-x^{n}\right) \gamma_{4} \Psi\left(x^{n}\right)+i \int d^{3} x^{\prime} S_{+}\left(x-x^{\prime}\right) \gamma_{4} \Psi\left(x^{\prime}\right)$,
Where t^{\prime} and $t^{\prime \prime}$ are initial and final times of evolution.

Amplitudes (56) and (57) ar: solutions of the mixed initial-final value problems instead of the initial value problems (see below and Appendix C).
2) Interaction with an external current. The equation

$$
\begin{equation*}
\varphi(x)=\varphi(x)+\int_{t^{\prime}} d^{4} y \Delta_{\text {ret }}(x-y) j(y) \tag{58}
\end{equation*}
$$

for the classioal field corresponds to a Cauchy problem. According to Feynman to describe evolution of the quantum we again must solve the initial-final value problem, which is presented by the equation

$$
\begin{equation*}
\varphi(x)=\varphi_{+}(x)+\int_{t^{\prime}}^{t^{x}} d \Delta_{+}(x-y) j(y) \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{+}(x)=i \int d^{3} x^{n} \Delta_{+}\left(x-x^{n}\right) \stackrel{H}{\partial_{4}^{\prime \prime}} \varphi\left(x^{n}\right)-i \int d^{1} x^{\prime} \Delta_{+}\left(x-x^{\prime}\right) \stackrel{\rightharpoonup}{\partial_{4}^{\prime}} \varphi\left(x^{\prime}\right) . \tag{60}
\end{equation*}
$$

Equation (59) follows from eq. (58), if one substitutes

$$
\begin{equation*}
\Delta_{\text {ret }}(x-y)=\Delta_{+}(x-y)-\Delta^{(+)}(x-y) \tag{6I}
\end{equation*}
$$

Henoe, $\varphi_{+}(x)$ and $\varphi(x)$ are related by

$$
\begin{equation*}
\varphi_{+}(x)=\varphi(x)-\int_{t^{\prime}}^{t^{\prime}} d^{4} y \Delta^{(t)}(x-y) j(y) \tag{62}
\end{equation*}
$$

3) Interaction with an external pield. The integral equation for the classioal field

$$
\begin{equation*}
\psi(x)=\psi(x)-i e \int_{t^{\prime}} d^{4} y S_{r e t}(x-y) \gamma_{r} A_{\mu}^{e x t}(y) \psi(y) \tag{63}
\end{equation*}
$$

for the Cauohy problem, aiso by means of the substitution

$$
\begin{equation*}
S_{\text {ret }}(x-y)=S_{+}(x-y)-S^{(+)}(x-y) \tag{64}
\end{equation*}
$$

one can transform into the Fegnman integral equation

$$
\begin{equation*}
\Psi(x)=\psi_{+}(x)-i e \int_{t^{\prime}}^{t^{\prime \prime}} y S_{+}(x-y) Y_{\mu} A_{t}^{\alpha x t}(y) \Psi(y) \tag{65}
\end{equation*}
$$

for the initial-final value problem. In eq. (65)

$$
\begin{equation*}
\psi_{+}(x)=-i \int d^{3} x^{n} S_{+}\left(x-x^{n}\right) \gamma_{4} \psi\left(x^{\prime}\right)+i \int d^{3} x^{\prime} S_{+}\left(x-x^{\prime}\right) \gamma_{4} \psi\left(x^{\prime}\right) \tag{66}
\end{equation*}
$$

and $\psi_{+}(x)$ and $\psi(x)$ are now related by

$$
\begin{equation*}
\psi_{+}(x)=\psi(x)+i e \int_{t^{\prime}}^{t^{\prime \prime}} d^{4} y S^{(t)}(x-y) \gamma_{r} A_{r}^{e x t}(y) \psi(y) \tag{67}
\end{equation*}
$$

involving the unknown spinor function $\psi(y)$, which, in principle, may be found from eq. (63) or eq. (65) in terms of $\psi(x)$ or $\psi_{+}(x)$.

Feynman was first treating amplitudes as solutions of the Dirac and Klein-Gordon equations (Without or with interaction) or of the corresponding integral equations.

There are concetvable, for example, problems with the conditions; a) $\psi^{(t)}\left(\vec{x}, t^{\prime}\right)=f\left(x^{(t)}\right), \psi^{(t)}\left(\vec{x}, t^{4}\right)=0$ (electron); b) $\psi^{(-)}\left(\overrightarrow{x^{\prime}}, t^{\prime}\right)=0, \psi^{(t)}\left(\vec{x}^{3}, t^{4}\right)=\left\{\left(x^{\prime}\right.\right.$ (positron)
c) $\psi^{(-1}\left(x^{\prime}, t^{\prime}\right)=f(\vec{x}), \psi^{(t)}\left(\vec{x}, t^{\prime}\right)=0$
d) $\psi^{(-)}\left(\vec{x}, t^{\prime}\right)=0, \psi^{(+)}\left(\vec{x}, t^{\prime}\right)=f(\vec{x}) \quad$ (68)
e) $\psi^{(-)}\left(\vec{x}, t^{\prime}\right)=f(\vec{x}), \psi^{(+1)}\left(\vec{x}, t^{4}\right)=0$
f) $\psi^{(-)}\left(\vec{x}, t^{4}\right)=0, \psi^{(+)}\left(\vec{x}, t^{\prime \prime}\right)=f\left(\vec{x}^{\prime}\right)$,
where $f(x)$ is a given spinor function. According to Feyman the
electron is described by not merely positive-frequency state, but by a non-local state with initial- efnal values a $)^{x)}, \psi^{(t)}\left(\vec{x}, t^{\prime}\right)$ and $\psi^{(\rightarrow)}(\vec{x}, t)$ being unknown quantities, subjected to equations of motion. It is similar for positron. As to problem o) it leads to the the Klein paradox (see Appendix C). The same holds for the problems d) - 1). For solving problems a), b); 0), d) and e), p) different Green functions must be used ($S_{+}^{A}, S_{r e t}^{A}$, and $S_{a d v}^{A}$, respectively).

[^3]6. CONCLUDING REMARKS

1. Searching for this form of quantum theory (CSR with both prescriptions I and 2) we were guided by the oituation in the classical field (wave) theory (see /l/, Appendix 5). The latter is causal but has both explioitly and implicitly oausal objects. Examples of both the kinds of objects are, respeotively, $\varphi(x)=\Delta\left(x-x^{\prime}\right)$, the real wave with the front, and $\psi(x)=\exp (i \vec{p} \vec{x}-i \omega t)$, the complex plane wave, which is uniformly extended over all the space *.

In quantum fleld theory we meet, first of all, the objects of the second kind: one-quantum states (actually, the above plane waves or any their superpositions) whem, many-quantum ones, and Smatrix elements (the Bogolubov causality condition is noningear with respect to $s / I I /$).

It appears that the real amplitude $\varphi(x)$, obeying the integral equation for the Cauoby problem, may serve as an objeot of the second kind.

Note that in the free case the one- and many-quantum complox transition amplitudes

$$
\text { 3i } T_{o s}(x)=m^{2} \Psi^{*}(x) \psi(x)+\partial_{k} \Psi^{*}(x) \partial_{k} \psi(x)-\partial_{k} \psi^{*}(x) \partial_{\mu} \psi(x)=2 \omega^{2} .
$$

WH At the early stage of quantum mechanics de Broglie has well understood that the quantum occupies the space entirely/8/. Of course, information may be transmitted by means of non-strictily localized objects too. Such situations are described by wave groups and by s-matrix elements (possibly, in the framework of the time-energy uncertainty relation/9/). There is a point of view that strict causality is the Ansatz which can be checked only indireotlif, through dispersion relations between amplitudes in the p-space. However, for soft photons we can oheck it directly (in the x-space).

$$
\sum_{p e r m . o t y_{i}} \Delta^{(-)}(x-y)\left(x_{1}-y_{1}\right) \ldots \Delta^{(-)}\left(x_{n}-y_{n}\right)
$$

can be considered as obtained (by means of the Hilbert transforms) Prom real and causal those

$$
\sum_{\text {perin of } y_{i}}^{\Delta(x-y)} \Delta\left(x_{1}-y_{1}\right) \ldots \Delta\left(x_{n}-y_{n}\right)
$$

As to observables we note that in the free case (see eq. (I.65))

$$
\begin{equation*}
\frac{\delta^{2}}{\delta X(x) \delta X(y)}\langle\varphi| \hat{R}_{v}|\varphi\rangle=\partial_{\nu} \Delta(x-y) \tag{7I}
\end{equation*}
$$

1.e., it is expressed in terms of amplitudes (70). The same is true for

$$
\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta \sqrt{2}\left(x_{n}\right)}\langle\varphi|: e^{i x_{\mu} \hat{P}_{\mu}}:\left.|\varphi\rangle\right|_{J_{0} 0}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} e^{i x_{r} P_{\mu}}\right|_{J=0} . \text { (72) }
$$

2. For the coherent state

$$
\begin{equation*}
\langle\varphi|: \hat{\varphi}\left(x_{1}\right) \cdots \hat{\varphi}\left(x_{n}\right):|\varphi\rangle=\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right) \tag{73}
\end{equation*}
$$

Whatever is n^{*}. But, if an upper value n is fixed, one can obtain similar results (up to constant factors) using the truncated states

$$
\begin{equation*}
\widetilde{\varphi}\rangle=\sum_{m=0}^{n} \frac{(-1)^{m}}{m!}(\varphi, \hat{\varphi})^{m}|0\rangle \tag{74}
\end{equation*}
$$

instead of the coherent ones. In the case of validity of the perturbation theory expansion a classical situation, inciuding the inherent to wave theory causality, may be realized with high aoouraoy in the subspace spanned on the veotors with limited numbers of quanta up to n.

[^4]3. The oomplex amplitudes embody the particle aspect* of quantum theory. However, the real amplitudes $\varphi(x)$ are possibly sui.ted to treat wave (classiaal and quantum) theory as a statistios of paths. In partlcular, one oan represent the Δ-funotion (and $\Delta_{\text {rat }}$ too) for $m=0$ as the spherical mean
\[

$$
\begin{equation*}
\Delta(x)=-\frac{t}{4 \pi} \int_{\vec{v}^{2}=1}^{d^{2} \Omega} \vec{v} \delta(\vec{x}-\vec{v} t) \tag{75}
\end{equation*}
$$

\]

1.e., as the integral over all possible values of velooity. This representation leads 1mmediately to the well-known poisson formula, which can be written as follows

$$
\begin{equation*}
\varphi(x)=\frac{1}{4 \pi} \int d^{3} x^{\prime} \int d^{3} v \delta\left(\vec{v}^{2}-1\right) \delta\left(\vec{x}-\vec{x}^{\prime}-\vec{v}\left(t-t^{\prime}\right)\right)\left[1-\left(t-t^{\prime}\right)\left(v_{m} \partial_{m}^{\prime}-i \partial_{h}^{\prime}\right)\right] \varphi\left(x^{\prime}\right) \tag{76}
\end{equation*}
$$

For an arbitrary m we have

$$
\begin{align*}
\Delta(x)= & t^{3} \int d^{3} v \Delta(|t||\vec{v}|,|t|) \delta(\vec{x}-\vec{v} t) \tag{77}\\
\varphi(x)=\int d^{3} x^{\prime} \int d^{3} v \delta & \delta\left(\vec{x}-\vec{x}^{\prime}-\vec{v}\left(t-t^{\prime}\right)\right)\left[i \partial_{1}^{\prime}\left(\left(t-t^{\prime}\right)^{3} \Delta\left(\left|t-t^{\prime}\right||\vec{v}|,\left|t-t^{\prime}\right|\right)\right)+\right. \\
& \left.+\left(t-t^{\prime}\right)^{3} \Delta\left(\left|t-t^{\prime}\right||\vec{v}|,\left|t-t^{\prime}\right|\right)\left(v_{m} \partial_{m}^{\prime}-i \partial_{4}^{\prime}\right)\right] \varphi\left(x^{\prime}\right)
\end{align*}
$$

4. Existence of invariant scalar products $(\varphi, \hat{\varphi})$ and $(\varphi, \hat{\varphi})$ in the cases of external fields and of curved spaces/I5/ permits to construot generalized coherent states similarly to those $i n / I, 2 /$ and to introduce corresponding CSRs.

[^5]takes into account the Einstein conservation law of 4 -momentum in an elementary aot $/ \mathrm{I} 3 /$.

APPENDIX A

As an example of expansion (3.a) let us consider it for the $\hat{\varphi}^{3}(x)$ coupling. When iterating eq. (I), we obtain, up to the fourth order,

$$
\begin{align*}
& \hat{\varphi}(1)=\hat{\varphi}(1)+g(12) \hat{\varphi}^{2}(2)+g^{2}(12)(23)\left\{\varphi(2), \varphi^{2}(3)\right\}+ \\
& +g^{3}\left((12)(2.3)(24) \frac{1}{2}\left\{\varphi^{2}(3), \varphi^{2}(4)\right\}+(12)(23)(34)\left\{\varphi(2)\left\{\varphi(3), \varphi^{2}(4)\right\}\right\}\right)+ \\
& +g^{4}\left((12)(23)(34)(35) \frac{1}{2}\left\{\varphi(2),\left\{\varphi^{2}(4), \varphi^{2}(5)\right\}\right\}+(12)(24)(23)(45)\left\{\varphi^{2}(3)\left\{\varphi(4), \varphi^{2}(5)\right\}\right\}+\right. \\
& \left.+(12)(9.3)(34)(45)\left\{\varphi(2)\left\{\varphi(3)\left\{\varphi(4), \varphi^{2}(5)\right\}\right\}\right\}\right)+\ldots \tag{A,I}
\end{align*}
$$

where we set (I2) $\equiv \Delta_{\text {ret }}\left(x_{I}-x_{2}\right)$ and imply the integrations over indices, entering thrioe. We may represent this expansion in terms of graphs as

The products in (A.I) are not symmetrized yet, unlike eq. (3.a). Dowerer due to the comutation properties of free field

$$
\begin{align*}
& \left\{\varphi(2), \varphi^{2}(3)\right\}_{=}=\frac{1}{3}\left\{\varphi(i) \varphi(3) \varphi\left(3^{\prime}\right)\right\}_{3^{\prime} \rightarrow 3}=\frac{1}{3} \int d^{\prime} x_{3}^{\prime} S^{4}\left(x_{3}-x_{3}^{\prime}\right)\left\{\varphi(2) \varphi(3) \varphi\left(3^{\prime}\right)\right\} \\
& \left\{\varphi^{2}(3), \varphi^{2}(4)\right\}=\frac{1}{i 2}\left\{\varphi(3) \varphi\left(3^{\prime}\right) \varphi(4) \varphi\left(4^{\prime}\right)\right\}_{3^{\prime} \rightarrow 3}, 4^{\prime} \rightarrow 4 \tag{A,2}\\
& \left\{\varphi(2)\left\{\varphi(3), \varphi^{2}(4)\right\}\right\}=\frac{1}{6}\{\varphi(1) \varphi(3) \varphi(4) \varphi(41)\}_{4^{\prime} \rightarrow 4}
\end{align*}
$$

and so on. The numerical coefficients can be found simply counting the terms on left-and right-hand sides.

The expansion $c f$ the Heisenberg operator in terms of free field can be obtained also by the welloknown formula
$\hat{\boldsymbol{Q}}=S^{-1}\left(t, t^{\prime}\right) \hat{Q} S\left(t, t^{\prime}\right)=$
(A. 3)
$=\sum_{n=0}^{\infty}(-i)^{n} \int_{t^{\prime}}^{t} d^{4} x_{1} \ldots d^{4} x_{n} \theta\left(t-t_{1}\right) \theta\left(t_{i}-t_{2}\right) \ldots \theta\left(t_{n-1}-t_{n}\right)\left[\mathcal{S}_{I}\left(x_{n}\right) \ldots\left[\mathcal{L}_{1}\left(x_{1}\right)\left[\Sigma\left(x_{1}\right), \hat{Q}\right]\right] \ldots\right]$
Caloulating linese multiple commatators for $\hat{Q}=\hat{\varphi}(x), \hat{Q}=\hat{\varphi}(x)$ also
leads to eq. (3.a) with the tree structure (for the $\hat{\varphi}^{3}$-coupling to (A.I)).

To obtain the N-ordered form of the Heisenberg operator
the Hori approach 13 used $1 \mathrm{n}^{\langle 1.8 /}$ and leads to

$$
\begin{align*}
& \hat{\varphi}(x)= \exp \left(\int \hat{\psi} \frac{\delta}{\delta \phi}\right): \exp \left(\frac{\hbar}{4} \int \frac{\delta}{\delta \phi} \Delta^{(1)} \frac{\delta}{\delta \phi}\right) \exp \left(i \int \frac{\delta}{\delta \phi} \Delta_{\text {eet }} \frac{\delta}{\delta \delta}\right) \\
&\left.\exp \left(-\frac{i}{\hbar} \int\left[\mathcal{L}_{I}\left(\phi+\frac{\hbar}{2} \tilde{\phi}\right)-\mathcal{L}_{I}\left(\phi-\frac{\hbar}{2} \tilde{\phi}\right)\right]\right) \phi(x)\right|_{\phi=\varnothing}=0, \tag{A.4}\\
& \text { where } \phi(x) \text { and } \phi(x) \text { are not realistic fields, but arbitrary }
\end{align*}
$$ c-number functions. The coherent state expectation value of $\hat{\varphi}(x)$ is

$$
\begin{align*}
& \langle\varphi| \hat{\varphi}(x)|\varphi\rangle=\exp \left(\int \varphi \frac{\delta}{\delta \phi}\right) \exp \left(\frac{\hbar}{4} \int \frac{\delta}{\delta \phi} \Delta^{(1)} \frac{\delta}{\delta \phi}\right) \exp \left(i \int \frac{\delta}{\delta \phi} \Delta_{u t} \frac{\delta}{\delta \phi}\right) \\
& \left.\exp \left(-\frac{i}{\hbar} \int\left[\mathcal{S}_{1}\left(\phi+\frac{\hbar}{2} \Phi\right)-\mathcal{L}_{1}\left(\phi-\frac{\hbar}{2} \Phi\right)\right]\right) \phi(x)\right|_{\phi=\delta=0}=\text { (A.5.a) } \\
& =\exp \left(\frac{\hbar}{4}\left(\frac{\delta}{\delta \phi} \Delta^{(1)} \frac{\delta}{\delta \phi}\right) \exp (i) \frac{\delta}{\delta \phi} \Delta_{\operatorname{zet}} \frac{\delta}{\delta \delta}\right) \\
& \left.\exp \left(-\frac{i}{\hbar} \int\left[\mathcal{L}_{\mathrm{r}}\left(\phi+\frac{\hbar}{2} \Phi\right)-\mathcal{L}_{I}\left(\phi-\frac{\hbar}{2} \Phi\right)\right]\right) \phi(x) \right\rvert\, \begin{array}{c}
\boldsymbol{\phi}=0 \\
\phi(x)=\varphi(x) \\
\text { rator } \hat{\varphi}^{\prime}(x), \text { eq. (7), and its coherent }
\end{array} . \tag{A.5.b}\\
& \text { The above operator } \hat{\varphi}^{\prime}(x) \text {, eq. (7), and its coherent state }
\end{align*}
$$

expectation value (8) are written in these terms as

$$
\begin{align*}
& \hat{\varphi}^{\prime}(x)=: \exp \left(\int \hat{\varphi} \frac{\delta}{\delta \phi}\right): \exp \left(i \int \frac{\delta}{\delta \phi} \Delta_{\text {uat }} \frac{\delta}{\delta \Phi}\right) \\
& \left.\exp \left(-\frac{i}{\hbar} \int\left[\mathcal{L}_{I}\left(\phi+\frac{\hbar}{2} \tilde{\phi}\right)-\mathcal{L}_{I}\left(\phi-\frac{\hbar}{2} \widetilde{\phi}\right)\right]\right) \phi(x)\right|_{\phi=\Phi=0} \tag{A.6}\\
& \varphi(x) \equiv\langle\varphi| \hat{\varphi}^{\prime}(x)|\varphi\rangle=\exp \left(\int \varphi \frac{\delta}{\delta \phi}\right) \exp \left(i \int \frac{\delta}{\delta \phi} \Delta_{\operatorname{eet}} \frac{\delta}{\delta \phi}\right) \text {. } \\
& \exp \left(-\left.\frac{i}{\hbar} \int\left[\mathcal{L}_{1}\left(\phi+\frac{\hbar}{2} \tilde{\Phi}\right)-\mathcal{L}\left(\phi-\frac{\hbar}{2} \tilde{\Phi}\right)\right) \phi(x)\right|_{\phi=\widetilde{\Phi}=0}=\quad\right. \text { (A.7.a) }
\end{align*}
$$

$\Phi_{\phi(x)=\varphi(x)}$ equations contain exhaustive information concerning causality, and in partioular, they are convenient tool to demonstrate oomnutativity of two local operators for space-like separations. Consider
first the commutator of two fleld operators. In the free case the demonstration of commutativity, is very simple
$[\hat{\varphi}(x), \hat{\varphi}(z)]=\left[i \int_{t^{\prime}=z_{0}} d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \vec{\partial}_{4}^{\prime} \hat{\varphi}\left(x^{\prime}\right), \hat{\varphi}(z)\right]=i \Delta(x-z)$.
As to $[\hat{\varphi}(x), \hat{\varphi}(z)]^{t^{t}=z}$ in that $x_{0}>z_{0}$ (without loss of generality), costruct free operator (2) with $t^{\prime}=z_{0}$ and write equation (I) also with $t^{\prime}=z_{0}$. Iterating this equation or using eq. (A.3), we obtain for $\hat{g}(x)$ expansion (3.a) (for example, (A.I)). Commuting term by term, we conclude that each term contains the chain

$$
\begin{equation*}
\Delta_{\text {ret }}\left(x-y_{1}\right) \Delta_{\text {rat }}\left(y_{1}-y_{2}\right) \ldots \Delta_{\text {ret }}\left(y_{n}-z\right) \tag{A.9}
\end{equation*}
$$

among other factors. This ohain is equal to zero for space-like $x-z$
A commutator of tro local quantities of a general form is
decomposed into a sum of terms, each containing commutator of two fields. Finally, in a theory with several flelds (like electro-
dynamics) the only distinction is that the above ohains may include the retarded functions of the different fields.

The commutativity is held for $\left[\hat{\varphi}^{\prime}(x), \hat{\varphi}(z)\right]$, but, in general, not for $\left[\hat{\varphi}^{\prime}(x), \hat{\varphi}(z)\right]$ and $\left[\hat{\varphi}^{\prime}(x), \hat{\varphi}^{\prime}(z)\right]$.

APPENDIX B

There are possible different zero approximations. For example, one can ohoose
$D\left(t-t^{\prime}\right)=\left\{\begin{array}{l}-\left(t-t^{\prime}\right) \\ -\frac{\sin \omega\left(t-t^{\prime}\right)}{\omega}\end{array}\right.$
(a) $\quad D^{(1)}\left(t-t^{\prime}\right)=\left\{\begin{array}{cc}\frac{1}{m} & \text { (a) } \\ \frac{\cos \omega\left(t-t^{\prime}\right)}{\omega} & \text { (b) }\end{array}\right.$
(B.I)

The Pirst of them corresponds to free motion/I.8/, and the second one to oscillator motion (the latter is closer to field theory, see $/ I /$, Appendix B). The Green function $G_{r e t}\left(t-t^{\prime}\right)$ is given

$$
\begin{equation*}
G_{r e t}\left(t-t^{\prime}\right)=-\theta\left(t-t^{\prime}\right) D\left(t-t^{\prime}\right) \tag{B,I}
\end{equation*}
$$

The fewton equations for both cases are
$\ddot{x}(t)=F^{\prime}(x(t))$
$\ddot{x}(t)+\omega^{2} x(t)=F^{\prime}(x(t))$

The ooherent states can be defined as

$$
\begin{equation*}
\{x p\rangle=e^{i(p(t) \hat{x}(t)-x(t) \hat{p}(t))}|0\rangle \tag{B.4}
\end{equation*}
$$

the quantity $p(t) \hat{x}(t)-x(t) \hat{p}(t)=m(\dot{x}(t) \hat{x}(t)-x(t) \dot{x}(t))$ being oonserved In both the cases due to the free equations;

$$
\begin{align*}
& x(t)=\langle x p| \hat{x}(t)|x p\rangle, \quad p(t)=\langle x p| \hat{p}(t)|x p\rangle, \tag{B.5}\\
& \langle x p| \hat{x}\left(t_{1}\right) \ldots \hat{x}\left(t_{n}\right)|x p\rangle=x\left(t_{1}\right) \ldots x\left(t_{n}\right) . \tag{B.6}
\end{align*}
$$

We have noted above that it is sufficiently to use only diagonal elements in coherent states. Others are superfluous (due to overcompleteness of the set of coherent states). Let us give an analogy. In classics a system with n degrees of freedom is characterized by $2 n$ variables such as x_{1} and $p_{1}(1, I, \ldots, n)$. In quantum mechanics each operator $Q \quad$ for a similar system is also characterized by $2 n$ variables, for example, $\left\langle x_{1}^{*} \ldots x_{n}^{\prime \prime}\right| Q\left|x_{1}^{\prime} \ldots x_{n}^{\prime}\right\rangle$ in the $x-r e p r e s e n t a t i o n ~ o r ~\left\langle p_{1}^{\prime \prime} \ldots p_{n}^{\prime \prime}\right| Q\left|x_{1}^{\prime} \ldots x_{n}^{\prime}\right\rangle$ in the mixed $x-, p-$ representation, and so on. The same is valid for the coherent state expectation values $\left\langle\bar{x}_{1} \ldots \bar{x}_{n} \bar{p}_{1} \ldots p_{n}\right| Q\left|x_{1} \ldots x_{n} p_{1} \ldots p_{n}\right\rangle \quad$ too, in contrast to non-diagonal matrix elements, depending on 4n variables.

APPENDIX C

The Green functions $G\left(x, x^{\prime}\right)$ for scalar and spinor fields, interacting with an external electromagnetic one, obey the equations

$$
\begin{align*}
& {\left[\left(\partial_{\mu}^{\prime}+i e A_{r}\left(x^{\prime}\right)\right)^{2}-m^{2}\right] G\left(x, x^{\prime}\right)=-\delta^{4}\left(x-x^{\prime}\right)} \tag{C.I}\\
& G\left(x, x^{\prime}\right)\left[-\gamma_{\mu}\left({\left(\partial_{\mu}^{\prime}\right.}_{\mu}^{\prime}+i e A_{\mu}\left(x^{\prime}\right)\right)+m\right]=-\delta^{4}\left(x-x^{\prime}\right) . \tag{c.2}
\end{align*}
$$

Let us form ourrents (Wronskians)

[^6]\[

$$
\begin{gather*}
G\left(x, x^{\prime}\right)\left(\overleftrightarrow{\partial}_{\mu}^{\prime}+2 i e A_{\mu}\left(x^{\prime}\right)\right) \varphi\left(x^{\prime}\right) \tag{c.3}\\
G\left(x, x^{\prime}\right) \gamma_{\mu} \Psi\left(x^{\prime}\right) \tag{c.4}
\end{gather*}
$$
\]

which are non-conserved

$$
\begin{gather*}
\partial_{\mu}^{\prime}\left(G\left(x, x^{\prime}\right)\left(\dot{\partial}_{\mu}^{\prime}+2 i e A_{\mu}\left(x^{\prime}\right)\right) \varphi\left(x^{\prime}\right)\right)=-\delta^{4}\left(x-x^{\prime}\right) \varphi\left(x^{\prime}\right) \tag{c.5}\\
\partial_{\mu}^{\prime}\left(G\left(x, x^{\prime}\right) \gamma_{\mu} \psi\left(x^{\prime}\right)\right)=\delta^{4}\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right) \tag{c.6}
\end{gather*}
$$

unlike those, containing solutions of equations instead of the Green functions. Integrating over a space-time volume R_{4} with boundary S and using Green's theorem, one obtains

$$
\begin{aligned}
\int_{S} d \sigma_{\mu}^{\prime} G\left(x, x^{\prime}\right)\left(\partial_{\mu}^{\prime}+2 i e A_{\mu}\left(x^{\prime}\right)\right) q\left(x^{\prime}\right) & =\left\{\begin{array}{ll}
-\varphi(x) & \text { if } x \in R_{4} \\
0 & \text { otherwise }
\end{array}\right. \text { (c.7) } \\
& \int_{S} d \sigma_{\mu}^{\prime} G\left(x, x^{\prime}\right) \gamma_{\mu} \psi\left(x^{\prime}\right)=\left\{\begin{array}{ll}
\phi(x) & \text { if } x \in R_{4} \\
0 & \text { otherwise }
\end{array}\right. \text { (c.8) }
\end{aligned}
$$

For the spaoe-time volume between the boundaries $t^{\prime}=$ const and
$t^{\prime \prime}=$ const and with constraint $t^{\prime}<t<t^{\prime \prime}$ one has

$$
\left.\left.\left.\begin{array}{l}
\varphi(x)=i \int d^{3} x^{\prime \prime} G\left(x, x^{4}\right)\left(\partial_{4}^{+\prime \prime}\right. \\
\varphi \tag{C.IO}
\end{array}\right)=A_{4}\left(x^{\prime \prime}\right)\right) \varphi\left(x^{\prime \prime}\right)-i \int d^{3} x^{\prime} G\left(x, x^{\prime}\right)\left(\stackrel{+}{\partial_{4}^{\prime}}+2 i e A_{4}\left(x^{\prime}\right)\right) \varphi\left(x^{\prime}\right)\right)
$$

For the same equation different problems require different

Green functions suoh as

retarded functions $\Delta_{\text {fet }}^{A}\left(x, x^{\prime}\right)$ and $S_{\text {ret }}^{A}(x, x)$,
advanced ones $\quad \Delta_{a d v}^{A}\left(x, x^{\prime}\right)$ and $S_{\text {adv }}^{A}\left(x, x^{\prime}\right)$,
symmetrical ones. $\Delta_{\text {sym }}^{A}(x, x)$ and $S_{s y m}^{A}(x, x)$,
Feynman's ones $\quad \Delta_{+}^{A}\left(x, x^{\wedge}\right)$ and $S_{+}^{A}\left(x, x^{\lambda}\right)$, and
ant1Fegnman's ones $\Delta_{-}^{\Lambda^{\prime}}(x, x)$ and $S_{-}^{A}(x, x)$.
They oan be defined by the integral equations

$$
\begin{align*}
& G\left(x, x^{\prime}\right)=G^{(0)}\left(x-x^{\prime}\right)-\int_{t^{1}}^{d^{4} y^{G} G^{(0)}(x-y)\left\{\text { 2ie } A_{\mu}(y) d_{\mu}^{y}+e^{2} A_{r}(y) A_{\mu}(y)\right\} G\left(y, x^{\prime}\right)} \begin{array}{l}
G\left(x, x^{\prime}\right)=G^{(0)}\left(x-x^{\prime}\right)-i e \int_{t^{\prime}} d^{4} y G^{(0)}(x-y) \gamma_{\mu} A_{\mu}(y) G\left(y, x^{\prime}\right), \\
\text { Where } G^{(0)}\left(x-x^{\prime}\right) \text { are the corresponding free Green Punctions: }
\end{array} \text { (C.I2) }
\end{align*}
$$ latter define solutions of the initial value problems, since the first terms ranish (and dependence on t^{*} too). Similarly, inserting $\Delta_{a d v}^{A}$ and $S_{a d v}^{A}$, eqs. (C.9) and (C.IO) define solutions of the final value problem, since now the second terms vanish (together with the dependence on t^{\prime}). In other oases both terms remain in eqs. (C.9) and (C.IO), the latter being solutions of different mixed initialfinal value problems.

The same is true for the free case too, but one can reduoe eqs. (C.9) and (C.IO) in all the cases to eqs.

$$
\varphi(x)=i \int d^{3} x^{\prime} \Delta\left(x-x^{\prime}\right) \xrightarrow[d_{4}^{\prime}]{ } \varphi\left(x^{\prime}\right)
$$

$$
(C . I 5)
$$

$$
\begin{equation*}
\psi(x)=i \int d^{3} x^{4} S\left(x-x^{\prime}\right) \gamma_{4} \psi\left(x^{\prime}\right) \tag{C.I6}
\end{equation*}
$$

which are valid without any constraints on t and t^{\prime}, unlike eqs.(C.9) and (C.IO).

All we have sald holds for operators $\hat{y}(x), \quad \hat{\psi}(x), \quad \hat{\varphi}(x)$ and $\hat{\psi}(x)$ too.

Considering evolution of one-positron and onemelectron states as the initial value problem, one obtains

$$
\begin{aligned}
& \hat{\Psi}(x)\left|0, t^{\prime}\right\rangle=i \int d^{3} x^{\prime} S_{\text {ret }}^{A}\left(x, x^{\prime}\right) \gamma_{4} \hat{\psi}\left(x^{\prime}\right)\left|0, t^{\prime}\right\rangle \\
& \hat{\Psi}(x)\left|0, t^{\prime}\right\rangle=-i \int d^{3} x^{1} \frac{\hat{\Psi}}{\Psi}\left(x^{\prime}\right)\left|0, t^{\prime}\right\rangle \gamma_{4} S_{a d v}^{A}\left(x^{\prime}-x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\text {vet }}(x)=-\theta(t) \Delta(x)=\Delta_{\text {sym }}(x)-\frac{1}{2} \Delta(x) \quad=\frac{1}{(2 \pi)^{4}} \int d^{4} k \frac{\exp (i k x)}{k^{2}+m^{2}-i k k_{0}} \\
& \Delta_{\text {adv }}(x)=\theta(-t) \Delta(x)=\Delta_{\text {sym }}(x)+\frac{1}{2} \Delta(x) \quad=\frac{1}{\left(2 \pi^{4}\right)^{4}} \int d^{4} k \frac{e x_{p}(i k x)}{k^{2}+m^{2}+i \varepsilon k_{0}} \\
& \Delta_{\text {symm }}(x)=-\frac{1}{2} \varepsilon(t) \Delta(x)=\frac{1}{2}\left(\Delta_{\operatorname{uct}}(x)+\Delta_{a d v}(x)\right) \quad=\frac{1}{(2 x)} P \int d d k \frac{\exp (i k x)}{k^{2}+m^{2}} \\
& \Delta_{+}(x)=-\theta(t) \Delta^{(-1)}(x)+\theta(t) \Delta^{(t)}(x)=\Delta_{\text {sym }}(x)+\frac{i}{2} \Delta^{(1)}(x)=\frac{1}{(2 \pi)^{4}} \int d^{4} k \frac{e x p(i k x f}{k^{2}+m^{2}-i \varepsilon} \\
& \Delta_{-}(x)=\theta(t) \Delta^{(-)}(x)-\theta(-t) \Delta^{(t)}(x)=\Delta_{s y m}(x)-\frac{i}{2} \Delta^{(1)}(x)=\frac{1}{(\pi n)^{4}} \int d^{4} k \frac{\exp (i k x)}{k^{2}+m^{2}+i \varepsilon} \\
& \left.\left.S_{()}(x)=(\gamma)-m\right) \Delta_{(}\right)(x) \\
& \text { Inserting } \Delta_{\text {ret }}^{A} \text { and } S_{r e t}^{A} \text { as } G(x, x) \text { to eqs. (C.9) and (C.IO) the }
\end{aligned}
$$

and the final states together with the retarded Green functions have frequences of both signs (the Klein paradox).

Actually, in quantum field theory evolution of an electron corresponds to the Fegnman initial-final problem. According to eq. (C.IO) one can represent

$$
\begin{aligned}
\hat{\Psi}(x) & =-i \int d^{3} x^{\prime \prime} S_{+}^{A}\left(x, x^{\prime \prime}\right) \gamma_{4} \hat{\Psi}\left(x^{\prime \prime}\right)+i \int d^{3} x^{\prime} S_{+}^{A}\left(x, x^{\prime}\right) Y_{4} \hat{\psi}\left(x^{\prime}\right)= \\
& =-i \int d^{3} x^{\prime \prime} S_{+}^{A}\left(x, x^{\prime \prime}\right) X_{4} \hat{\psi}_{+}\left(x^{\prime \prime}\right)+i \int d^{3} x^{\prime} S_{+}^{A}\left(x, x^{\prime}\right) X_{4} \hat{\Psi}_{+}\left(x^{\prime}\right) \quad \text { (C.I9) }
\end{aligned}
$$

and obtains for the electron-electron transition amplitude

$$
\begin{equation*}
\left\langle 0, t^{\prime \prime}\right| \hat{\psi}_{\alpha}\left(x^{\prime \prime}\right) \hat{\bar{\psi}}_{\beta}\left(x^{\prime}\right)\left|0, t^{\prime}\right\rangle=i\left\langle 0, t^{\prime \prime} \mid 0, t^{\prime}\right\rangle S_{+\alpha_{\beta}}^{A}\left(x^{\prime \prime}, x^{\prime}\right) \tag{C.20}
\end{equation*}
$$

Similarly, for the positron-positron, vacumm-pair and pair-vacuum transition amplitudes one obtains

$$
\begin{aligned}
& \left\langle 0, t^{\prime \prime}\right| \frac{\hat{\Psi}_{\beta}}{\Psi_{\beta}}\left(x^{\prime \prime}\right) \hat{\Psi}_{\alpha}\left(x^{\prime}\right)\left|0, t^{\prime}\right\rangle=-i\left\langle 0, t^{\prime \prime} \mid 0, t^{\prime}\right\rangle S_{+\alpha \beta}^{A}\left(x^{\prime}, x^{\prime \prime}\right) \quad(c, 2 I) \\
& \left\langle 0, t^{\prime \prime}\right| \hat{\psi}_{\beta}\left(y^{\prime \prime}\right) \hat{\psi}_{\alpha}\left(x^{\prime \prime}\right)\left|0, t^{\prime}\right\rangle=-i\left\langle 0, t^{\prime \prime} \mid 0, t^{\prime}\right\rangle S_{+\alpha \beta}^{\prime}\left(x^{\prime \prime}, y^{\prime \prime}\right) \\
& \left\langle 0, t^{\prime \prime}\right| \hat{\Psi}_{\alpha}\left(x^{\prime}\right) \hat{\Psi}_{\beta}\left(y^{\prime}\right)\left|0, t^{\prime}\right\rangle=i\left\langle 0, t^{\prime \prime} \mid 0, t^{\prime}\right\rangle S_{+_{\alpha \beta}}^{A_{\beta}}\left(x^{\prime}, y^{\prime}\right) . \quad \text { (c.23) }
\end{aligned}
$$

The operators $\hat{\psi}\left(x^{\prime \prime}\right)$ and $\hat{\psi}_{+}\left(x^{\prime \prime}\right)$ are complicated quantities. In terms of $\hat{\psi}(x)$ eq. (C.I9) has the following non-inear (Manypartiol* ${ }^{\text {n }}$ form
$\hat{\Psi}(x)=-i \int d^{3} x^{n} S_{+}^{A}\left(x, x^{\prime \prime}\right) X_{4} V^{-1}\left(t^{\prime \prime}, t^{\prime}\right) \hat{\Psi}\left(x^{\prime \prime}\right) U\left(t^{\prime \prime}, t^{\prime}\right)+i \int d^{3} x^{\prime} S_{+}^{A}\left(x, x^{\prime}\right) \gamma_{4} \hat{\Psi}\left(x^{\prime}\right)$ (c.24)
Apparently, it is more natural to consider the operators
$V\left(t^{\prime \prime}, t^{\prime}\right) \hat{\psi}(x)=-i \int d^{3} x^{n} S_{+}^{A}\left(x, x^{\prime}\right) \gamma_{4} \hat{\psi}\left(x^{\prime \prime}\right) U\left(t^{\prime \prime}, t^{\prime}\right)+i V\left(t^{\prime \prime}, t^{\prime}\right) \int d^{3} x^{\prime} S_{+}^{A}\left(x, x^{\lambda}\right) X_{4} \hat{\psi}\left(x^{\prime}\right)$
$U\left(t^{4}, t^{\prime}\right): \hat{\psi}(x) \hat{\psi}(y):=$

$$
\begin{align*}
& =-\int d^{3} x^{*} d^{3} y^{n} S_{+}^{\hat{1}}\left(x, x^{*}\right) \gamma_{h} \hat{\psi}\left(x^{n}\right) S_{+}^{A}\left(y, y^{n}\right) \gamma_{h} \hat{\psi}\left(y^{\prime \prime}\right) \cup^{Y}\left(t^{\prime \prime}, t^{\prime}\right)- \tag{c.25}\\
& -\int d^{3} x^{\prime} d^{3} y^{n} S_{+}^{A}\left(y, y^{\prime \prime}\right) \gamma_{4} \hat{\psi}\left(y^{4}\right) U\left(t^{\prime \prime}, t^{\prime}\right) S_{+}^{A}\left(x, x^{\prime}\right) \gamma_{4} \hat{\psi}\left(x^{\prime}\right)+ \\
& +\int d^{3} x^{\prime} d^{3} y^{\prime} S_{+}^{A}\left(x, x^{\prime \prime}\right) \gamma_{4} \hat{\psi}\left(x^{\prime \prime}\right) \cup\left(t^{\prime \prime},,^{\prime}\right) S_{+}^{A}\left(y, y^{\prime}\right) \gamma_{4} \hat{\psi}\left(y^{\prime}\right)- \\
& -V\left(t^{\prime}, t^{\prime}\right) \int d^{3} x^{\prime} d^{3} y^{\prime} S_{+}^{A}\left(x, x^{\prime}\right) X_{q} \hat{\psi}\left(x^{\prime}\right) S_{+}^{A}\left(y, y^{\prime}\right) \gamma_{4} \hat{\psi}\left(y^{\prime}\right) \tag{c.26}
\end{align*}
$$

and so on. In : $\hat{\psi}(x) \hat{\psi}(y)$: it is implied ordering with respeot to $\hat{y}\left(x^{\prime}\right)$ and $\hat{y}\left(x^{\prime}\right)$. The inal expressions are N-ordered with respect to $\hat{\psi}(x)$ (if it is so for U) and are oonvenient for taking of coherent state expectation values. The vectors

$$
V\left(t^{n}, t^{\prime}\right)\left|0, t^{\prime}\right\rangle
$$

$$
\begin{gathered}
V\left(t^{\prime}, t^{\prime}\right) \hat{\psi}(x)\left|0, t^{\prime}\right\rangle \\
\left.V\left(t^{\prime \prime}, t^{\prime}\right): \hat{\psi}(x) \hat{\psi}(y): 10, t^{\prime}\right\rangle
\end{gathered}
$$

are result of evolution in terms of the interaction picture. When t_{x}, t_{y}, \ldots tend to t^{\prime} or t^{H}, one obtains the many-quantum interprem tation of the negative frequency parts (the solution of the Xlein paradox, cf. $13, I 6 /$).

As to the initial value problem we note the formulas

$$
\begin{align*}
& \frac{\delta}{\delta J\left(y_{1}\right)} \cdots \frac{\delta}{\delta J\left(y_{n}\right)} \varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)=\left(\left.\frac{\delta}{\delta J\left(y_{1}\right)} \cdots \frac{\delta}{\delta J\left(y_{n}\right)}<\varphi \right\rvert\,: \hat{\varphi}\left(x_{1}\right) \ldots \hat{\varphi}\left(x_{n}\right):\{\varphi\rangle\right)= \\
& =(-i)^{n} \sum \Delta_{\text {ret }}^{A}\left(x_{1}, y_{1}\right) \ldots \Delta_{\text {att }}^{A}\left(x_{n}, y_{n}\right) \\
& \text { (C. 27) } \\
& \frac{\delta}{\delta \eta\left(y_{1}\right)} \cdots \frac{\delta}{\delta \eta\left(y_{n}\right)} \psi\left(x_{1}\right) \cdots \psi\left(x_{n}\right)=\left(\frac{\delta}{\delta \eta\left(y_{1}\right)} \cdots \frac{\delta}{\delta \eta\left(y_{n}\right)}\langle\psi|: \hat{\psi}\left(x_{1}\right) \cdot \hat{\psi}\left(x_{n}\right):|\psi\rangle\right)= \\
& =i^{n} \sum(-1)^{P} S_{\text {ret }}^{A}\left(x_{1}, y_{1}\right) \ldots S_{\text {ret }}^{A}\left(x_{n}, y_{n}\right)^{\prime}, \tag{C.28}
\end{align*}
$$

where the sums are over all n ! permutations of $y_{I}, \ldots y_{n}$, p being 'he parity of permutation.

Note also the identities

$$
\begin{align*}
& \left.\left.\tilde{G}(x, y)=i \int d^{3} x^{\prime \prime} G\left(x, x^{\prime \prime}\right) \overrightarrow{\partial_{4}^{\prime \prime}}+q_{i} e A_{4}\left(x^{\prime \prime}\right)\right) \tilde{G}\left(x^{4}, y\right)-i \int d^{3} x^{\prime} G\left(x, x^{\prime}\right) \overrightarrow{\left(\partial_{4}^{\prime}\right.}+2 i e A_{4}\left(x^{\prime}\right)\right) \tilde{G}\left(x^{\prime}, y\right) \tag{c,30}\\
& \tilde{G}(x, y)=-i \int d^{3} x^{n} G\left(x, x^{\prime}\right) \gamma_{4} \tilde{G}\left(x^{4}, y\right)+i \int d^{3} x^{\prime} G\left(x, x^{\prime}\right) \gamma_{4} \widetilde{G}\left(x^{\prime}, y\right), \tag{c.29}
\end{align*}
$$

for example,

$$
\begin{align*}
& S_{\text {rat }}^{A}(x, y)=i \int d^{3} x^{\prime} S_{\text {ret }}^{A}\left(x, x^{\prime}\right) X_{4} S_{\text {ret }}^{A}\left(x^{\prime}, y\right) \tag{C.3I}\\
& S_{+}^{A}(x, y)=i \int d^{3} x^{\prime} S_{\text {ret }}^{A}\left(x, x^{\prime}\right) X_{4} S_{+}^{A}\left(x^{\prime}, y\right) \tag{6.32}
\end{align*}
$$

I. И.В. Полуоаринов. Сообщения ОИНИ (дуона) Р乞-7896, 1974.
2. И.В.Полубаринов. Сообщения ОИли (дубна) Р2-8362, 1974.
3. R.P.Feyman. Phys.Rev. 26, 749 and 769, 1949 .
4. G.C.Hick. Phys.Rev. 80, 268, 1950.
5. F.J.Dyson. Phys.Rev. 82, 428, 1951.
6. E.R.Caianlello. Nuovo Cim. 10, 1634, 1953; 13, 637, 1959; 14, 185, 1959.
7. S. Hor1. Progr. Theor. Phys. 1, 578, 1952.
8. L.de groglie, PhD thesis, "Recherches sur la theorie des Quantan (Univ. of Paris, 1924); see Aner.J. Phys., 40/9, 1315, 1972.
9. M.F1erz. Helv.Phys.Acta 23, 73I, I950.

IO. J. Hil geroord. Dispersion relations and causal description. North-Holland pubiishing oompany, Ansterdam, I960.
II. Н.Н. Боголюбов, Д.В.Ширков. Введение в теорию кванжованньх полей. "Наука", Москва, 1973.
I2. P.A.M.Dirac. The principles of quantum meohanios. oxford, at the Clarendon press, 1958.
13. А. Эйнштейн. Собрание научньх трудов, т.3, Москва, "Наука", 1966, cTp. 393.
I4. D.I. Blokhintzev. Joum. of Phys. USSR 2, 7I, I940.
I5. Н.А. Черников. Материалы لـ Меддународного совецания по нелокальной теории поля в Алуште (СССР), Дубна, I973, стр. 218.
I6. A.I.N土kishot. Nucl. Phys. B2I, 346, I970. Н.Б. Нарохяии, А.И. Нинишов. ЯФ II, I072, 1970.

Recelved by Publishing Department
on December 3I, 1974.

[^0]: *) Unlike the mean squared coordinate and momentum, which are subjected to the uncertainty relation.

[^1]: $x)_{\text {Thus, }}$ one introduces its own free operator, interaction representation, integral equation (I) and coharent states for each time t^{\prime}.

[^2]: x Onlike an analogous formulas for field theory, which are absent in/I.B/(posisibly because of using an inconvenient form of the coherent states).

[^3]: x) Apparently, one can consider this as a generalization of the concept "analytical signal" ("premenvelop") to the case of (noninnear) fleld theoretical problems.

[^4]: * Dirac has noted that expectation values have the additive property unlike multiplicative one $/ I 2 /$ But if one defines the product of free field operators to be the $N \rightarrow p r o d u c t ~ t h e n ~ f o r ~ i t s ~$ coherent state expectation values the multiplicative property is ralid too.

[^5]: * Thus, multiplying of exponent factors
 $\exp \left(i \vec{p}_{1} \vec{x}-i \omega_{1} t\right) \exp \left(i \vec{p}_{2} \vec{x}-i \omega_{2} t\right)=\exp \left(i\left(\vec{p}_{1}+\vec{p}_{2}\right) \vec{x}-i\left(\omega_{1}+\omega_{2}\right) t\right)$

[^6]: ${ }^{x}$ Such a representation for the density matrix has been used by D. Blokhintzev $/$ I4/. However such matrix elements are complex quantities unlike real those in classics and in CSR.

