

обьединенный
 ИНСТИТут
 ядерных

исследований
дубна

E2-85-887

L.V.Avdeev, B.-D.Dörfel

SOLUTIONS

OF THE BETHE-ANSATZ EQUATIONS
FOR THE XXX ANTIFERROMAGNET OF ARBITRARY SPIN
WITH A FINITE NUMBER OF SITES

Submitted to "TMه"

Introduction

In the last years, a ramarkably-growing intereat is called to exactly integrable models like the generalized Heisenberg magnet. This model describes a pairwise interaction of neighbouring aping 5 in a periodic chain with \mathbb{F} sites. The model has been proposed $/ 1 /$ in the context of the quantum inverse scattering method and for the first time investigated $/ 2 /$ on the basis of the "string" hypothesis about the atructure of the Bethe-ansatz (BA) solutions. However, a further analyais $/ 3-5 /$ showed that thie hypothesis is only a convanient approximation which has not yet found a complete mathematical comprebenaion. In refa. $/ 3-7 /$, deviations from the atring picture have been discovered for excited states. However, it has been aseumed in refa. /6,7/ that, although for $N \rightarrow \infty$ excitations may have a nonstring form, they exiat on the background of a sea of perfect $2 s-s t r i n g s$. In the present paper, we conelder correctione to this idealized picture for inite $\mathbb{N}_{\text {. In }}$. Ine $s=\frac{1}{2}$ case $/ 3,4 /$, the question about a change in
 real roots. This allowed us to estimate $/ 8 /$ an influence of the \mathbb{N} finiteness on their density by the method $/ 9 /$ of eveluating inite-size corrections. For $s>\frac{1}{2}$, it is not less important to take into eocount the 2 -atring deformation that may prove to be by no maans exponentially amall.

1. The Equations and the String Hypothesis

The Bethe-ansatz equations (BAB) for the model/1/ have the form 12/

$$
\begin{equation*}
\left(\frac{\lambda_{j}+i s}{\lambda_{j}-i s}\right)^{N}=-\prod_{k=1}^{M} \frac{\lambda_{j}-\lambda_{k}+i}{\lambda_{j}-\lambda_{k}-i}, \quad(j=1 \ldots M) \tag{1.1}
\end{equation*}
$$

The energy, momentum, and epin of a atate of the magnet ere expressed through a solution of byetem $(1,1)$, a set of M complex numbers $\left\{\lambda_{j}\right\}$;

$$
\begin{equation*}
E=-J \sum_{j=1}^{M} \frac{s}{\lambda_{j}^{2}+s^{2}} \tag{1.2}
\end{equation*}
$$

> O6nçavemiall eyctiryt sucumiat ticcresosiunil БИБЛНОТЕНА

$$
\begin{align*}
& P=\frac{1 \pi}{=} \sum_{j=1}^{M} \ln \frac{\lambda_{j}+i s}{\lambda_{j}-i s}, \quad(\bmod 2 \pi) \tag{1.3}\\
& L=s N-M \geqslant 0 \tag{1.4}
\end{align*}
$$

For the low-lying antiferromagnetic (AF) states ($J>0$; in the following, we set $J=1$) the apin (1.4) is not high, and bence, $M \approx s N_{\text {. }}$ It is clear that a syatem of a large but finite number of nonlinear equations can be solved only numerically. However, before applying a numerical method, one has to specify some preliminary information about the solution. This is because the total number of solutions to eqs.(1.1) is extremely large, and not all of them are physical. There are a lot of solutions with coinciding roots ($\lambda_{j}=\lambda_{k}$ for some $j \neq k$), and fust several of them obey additional restrictions $/ 10 /$ that ansure the existence of (nonzero) Bethe vectors.

The only available information about solutions is based on the "string" hypothesis $/ 11,2 /$. According to $1 t$, as $N \rightarrow \infty$, any solution to eqs.(1.1) consista of " n-strings" of the form

$$
\begin{equation*}
\lambda=x+i\left[\frac{1}{2}(n+1)-m\right], \quad(m=1 \ldots n) \tag{1.5}
\end{equation*}
$$

Whers X is a real number (the pceition of the center), and n is a positive integer (the length of the string). Deviations from the iimit picture (1.5) are supposed to be exponentially small. If one sccepts the hypothesia and specifies a at of n_{j}-strings ($j=1 \ldots K$), then, for their centers x_{j}, the following equations $/ 2 /$ can be derived from eqs. (1.1):

$$
\begin{equation*}
Q_{n_{j}}\left(x_{j}\right) \stackrel{i}{=} Q_{n_{j}}(+\infty), \quad(\bmod 1) \tag{1.6}
\end{equation*}
$$

where the function $Q_{n}(x)$ for the specified configuration ia

$$
Q_{n}(x)=\frac{N}{\pi} \sum_{k=1}^{\min (n, 2 s)} \operatorname{atan} \frac{x}{\frac{1}{2}\left(n+n_{j}\right)-1} \frac{1}{2}(n+1)-\frac{1}{k}-\frac{1}{\pi} \sum_{j=1}^{K}\left\{\left[\text { if } n=n_{j} \text { then } 0\right.\right.
$$

else $\left.\left.\operatorname{atan} \frac{2\left(x-x_{j}\right)}{\left|n-n_{j}\right|}\right]+2 \sum_{k=\frac{1}{2}\left|n-n_{j}\right|+1}^{\frac{1}{2}\left(n+n_{j}\right)-1} \operatorname{atan} \frac{x-x_{j}}{k}+\operatorname{atan} \frac{2\left(x-x_{j}\right)}{n+n_{j}}\right\}$, (1.7)

$$
Q_{n}(+\infty)=\frac{1}{2} N_{\min }(n, 2 s)-\sum_{j=1}^{K} \min \left(n, n_{j}\right)+\frac{1}{2}\left(\sum_{j=1}^{K} \delta_{n n_{j}}-1\right) .
$$

$$
\begin{equation*}
\left|Q_{n_{j}}\left(x_{j}\right)\right| \leqslant Q_{n_{j}}(+\infty) \tag{1.8}
\end{equation*}
$$

The number of configuratione that eatiefy eq. (1.8) turns out/12/ to be exactly the one implied by the completeness requirement. The problem, however, consists in the fact that the string aeta thue presented may differ strongly $/ 3-7 /$ from the true solutions to eqs.(1.1),
even as $N \rightarrow \infty$. Besides, the restriction (1.8) has no substantiation in the framework of the string hypothesis itself. On the one hand, eq.(1.6) is known to have solutions that do not obey eq.(1.8). On the other band, as shown in ref. $/ 5 /$, not to every choice of branches in accordance with eqs. (1.8), does a solution correspond uniqualy: counter-examples appear for extreme branches at eufficiently large N.

2. The Algorithm of Numerical Computations

Despite all these difficulties, for a preliminary classification of the BAE solutions and for finding out initial approximations, we have to use the string picture. It should be noted that eqs. (1.6) for the (real) string centers are written in terms of arctangents (1.7) and do not involve poles in the unknowns, as the inftial exact BAE (1.1). This fact simplifies essentially their numerical solution (for example, by Newton's method, see below). Eqs. (1.6) are analogous to the equations for the sea of real roots at $s=\frac{1}{2}$ (solved, for instance, in refs. $/ 13,14 /$). Thus, a determination of the atring centers for an initial approximation entails no fundamental difficulties. Evaluating deviations of strings from eq.(1.5) is a more serious task.

It can be performed in zeroth approximation. We assume the deviations to be amall and neglect them in eqs.(1.1) on the background of the unit-order quantities and distances between the string centers. This trick has been used in ref./15/ for checking the consistency of the string picture. In this connection we must atrese that approximating products (aums) over roots with a density function $/{ }^{13 /}$ may be incorrect if the initial expression involves a singularity (then, a rule of pasaing over it determines the answer). But this is just the case when trying $/ 15 /$ to evaluate the deviations (see below, sect. 5). In addition, if the number of strings growe proportionally to N, Juat the $O(1 / \mathbb{N}$) deviations (see sect.4) may result in a finite correction that is left as $N \rightarrow \infty$. So, even without the density-function approximation, to zeroth order we obtain only a rough estimate of the actual deviations.

For achieving a better accuracy, we use Newton's iterations:

$$
\begin{equation*}
\sum_{k}\left[\lambda_{k}^{(n+1)}-\lambda_{k}^{(n)}\right] \nabla_{j k}^{(n)}=-\phi_{j}^{(n)} \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& \phi_{j}^{(n)}=N \ln \frac{\lambda_{j}^{(n)}+i s}{\lambda_{j}^{(n)}-i s}-\sum_{k \neq j} \ln \frac{\lambda_{j}^{(n)}-\lambda_{k}^{(n)}+i}{\lambda_{j}^{(n)}-\lambda_{k}^{(n)}-i}, \tag{2.2}\\
& \nabla_{i l}^{(n)}=\partial \phi_{i}^{(n)} / \partial \lambda_{l}^{(n)} ; \quad, \quad, k=1 \ldots M ;
\end{align*}
$$

$\nabla_{j k}^{(n)}=\partial \phi_{j}^{(n)} / \partial \lambda_{k}^{(n)} ; \quad(j, k=1 \ldots M ; \quad n=0,1,2, \ldots)$.
At etep n of the iterations, it is necessery to find the vector (2.2) of logarithmic errore in the BAE (1.1), to compute the $M \times M$ matrix of first derivatives (2.3), and to solve the system of M innear equations (2.1).

Eqs．（2．1）－（2．3）involve complex numbers．However，we can make use of the fact／16／that physical eolutiong of eqg．（1．1）are self－ －conjugate：$\left\{\lambda_{j}^{*}\right\}=\left\{\lambda_{j}\right\}$ ．Then，the problem is reduced to a system of M real equations for independent real parameters．

Newton＇s method（2．1）is a most general method for solving non－ linear equations with a rapid convergence in a vicinity of a aolution． However，in this method it is necessary to keep a large matrix of derivatives in the computer memory（in our computations，we were li－ mited to $M \leqslant 128$ ），and besides，initial approximations ghould be ac－ curate enough because of the following．Formation of stringe and string－like configurations $/ 3,4,6,7 /$ entaile that there are eubetan－ tially nonlinear singularities near the solutions of eqs．（1．1）．As a result，a＂zone of attraction＂for the linear algorithm（2．1）turns out to be very small．On the other hand，a lot of＂parasitic＂solu－ tions with equal roots have a rather wide zone of attraction．For this reason，we have not succeeded in computing a sufficiently full pictu－ re of excitations for high sping $\&$ when the abovedescribed＂etring＂ zeroth approximation for the deviations proves to be too rough．

3．The Pull Set of States for $s=1, N=6$
A search for the BAE solutions at relatively small N and s allowa ue，on the one hand，to verify the hypothesis of the $B A$ comp－ leteness，and on the other hand，to make definite conclusions about the structure of the solutione，that can be extended to higher N and ρ ．

In the $\mathcal{\rho}=1, N=6$ case，the sector of aingiet states $(L=0, M=6)$ is most instructive．In table 1，complete data of these solutions are presented：the string prototyps $\left\{n_{Q}\right\}$ ，a configuration of n－stringe with the corresponding $Q_{n}(x)(1.7)$ ；the number H of holes，physical excitations $/ 2,7 /$ over the AF vaouum；the energy（1．2）$E(J=1)$ and mo－ mentum $(1.3) P \frac{N}{2 \pi}(\bmod N)$ ；the values of the $\left\{\lambda_{j}\right\}$ parameters，their arrangement on the complex plane is skatched in fig．1．Asterisks point out＂doublet＂solutions that have a symmetric＂partner＂$\left\{-\lambda_{j}\right\}$ $\neq\left\{\lambda_{j}\right\}$ With the same energy and opposite momentum．

One can make the following conclusions from considering the pic－ ture of the solutions．Pirat，the string approximation gives a cor－ reot qualitative olassification of states．The AF vacuum－the $2_{-1}^{2} 2_{0} 2_{1}$ state with the minimum energy－is in fact a soa of $2 \mathrm{~s}-\mathrm{strings} / 2 /$ ． However，deviations from perfect strings（1．5）are not elmays amall： only atrings of length $2 \mathrm{~s}+1=3$（or fragments of longer atrings for high－axcited states）have really amall deviations．The least string－ －like is the 2040 state，in which a 2 －string and a 4－string with centers at zero have united into a symmetric complex，the 4 －string
remarkably＂bent＂．Among the solutions，there are examples $\left(1_{0} 2_{0} 3_{0}\right.$ and $1_{0} 5_{0}$ ）with a double root at zero．These symmetric solutione that include the 1 －atring and the perfect 3 －string at zero satiafy the restrictions of ref．$/ 10 /$ ，and therefore，are physical．

Table 1．Configurations，number of holes，energies，momenta， and BAE solutions for singlet states：$L=0, M=N=6, s=1$

$\left\{n_{Q}\right\}$	H	E	$P \frac{N}{2 \pi}$	$\left\{\lambda_{j}\right\}$
$2_{-1}{ }^{2}{ }_{0} 2_{1}$	0	-6.2193525	0	$\pm 438492 \quad 14 \pm .548 \quad 302991$ $\pm .52070559 i$
$1_{0} 2_{0} 3_{0}$	2	－5．081 1388	0	0，0，士．474 49787 I ，士1
$1_{0}^{1} 213_{0}^{*}$	2	-3.9412272	2	-.236 263 $09, \pm-26697274$, -.252 55677 $.50417468 \pm .535930691$
$2_{0}{ }^{4} 0$	4	-3.8762986	0	$\begin{aligned} & \pm .06574596 \pm .502532081, \\ & \pm=.557 \quad 215 \quad 51 \mathrm{i} \end{aligned}$
$2,4{ }^{*}$	4	-3.2500000	5	
$2_{2} 4_{0}^{*}$	4	-2.2757709	4	$\begin{array}{r} .686976 \\ .66 \\ -.338 \\ -.310 \\ \hline .348 \\ \hline \end{array}$
$1_{-1 / 2} 1_{1 / 2} 4_{0}$	4	-2.6578236	0	$\begin{aligned} & \pm 536 \quad 888 \quad 34, \pm .500 \quad 096 \quad 6631, \\ & \pm 1.510 \quad 188 \quad 981 \end{aligned}$
$3_{-1 / 2}{ }^{3} 1 / 2$	4	－2．477 6556	0	$\begin{aligned} & \pm .539 \quad 98689, \pm .532 \quad 03844 \\ & \pm 1.000634 \quad 3561 \end{aligned}$
10 50	6	-1.9188612	0	0，0，士f，± 2.107491031
115_{0}^{*}	6	－1．533 0019	2	$\begin{aligned} & .75707186,-.14638135=x, \\ & x+1.764633 \times 10^{-7 \pm(1-2.304466 \times} \\ & 10-8) \\ & 2.084969851 \end{aligned}$
${ }^{6}$	8	$-.76886975$	0	$\begin{aligned} & \pm\left(.5+2.255 \quad 552 \times 10^{-7}\right) 1, \\ & \pm 1.500 \quad 1500771, \pm 2.775428001 \end{aligned}$

However，the picture obtained cannot，obviously，be considered as an evidence that the string hypothesis is always true．Eseentially non－ string states are formed／3－7／at sufficiently large N on the background of a dense $2 s-$ string sea，and it is clear that one－three strings are simply insufficient for this．

Computations have been also performed in higher－spin sectors， $L=1 \ldots 5(M=5 \ldots 1)$ ．The reaults are presented in table 2 in the same form as in table 1 except the $\left\{\lambda_{j}\right\}$ parameters．The number of solutions In each sector agrees exactly with the prediction based on the comple－ teness in the spin epace；for $s=1$ ，this is

$\sum_{m} \frac{N!}{m!(M-2 m)!(N-M+m)!}-\sum_{m} \frac{m!(M-1-m)!(N-M+1+m)!}{m}$. states with the same energy and momentum. The total number of states together with the ferromagnetic vacuum ($M=0, L=6$), is equal to 3^{6} $=(2 s+1)^{N}$. This veripies the BA completeness.

4. The AP-Vacuum Computations

It is clear that the accuracy of etringe camnot be studied on the basis of calculations only at one N. It is necessary to consider a sequence of anslogous states with different N values, and then to make conclusions about the N dependence. In this section we examine the BAB solutions related to the AF-vacuum state. Its apin (1.4) equals zero, the number of the $\left\{\lambda_{j}\right\}$ parameters $M=s N_{0}$. The corresponding confisuration is the sea of $\frac{1}{2} N \quad 2 s-s t r i n g s$. If we neglect deviations from the idealized picture (1.5), then, for the density of the string centers and for the energy in the $N \rightarrow \infty$ 11mit, we obtain the expreselons $17 /$:

$$
\begin{equation*}
\sigma_{\infty}(x)=\frac{N}{2 \cosh (\pi x)} \tag{4,1}
\end{equation*}
$$

Table 2. Configurations, number of holes, energies, and momenta for states of spin $L=1 \ldots 5 ; N=6, s=1$.

L	$\left\{n_{Q}\right\}$	H	E	$\mathrm{P} \frac{\mathrm{N}}{2 \pi}$	L	$\left\{n_{Q}\right\}$	H	E	$\frac{N}{2 \pi}$
1	${ }_{10} 2_{1 / 2} 2$	2	-5.662 917	3	2	$1,3_{2}{ }^{*}$	6	-1.750 0000	
1	$1_{10} 2_{3 / 2} 2_{1 / 2}{ }^{*}$	2	-4.667 4218	5	2	$1,3{ }_{1}^{*}$	6	-2.070 9148	1
1	10, $2_{3 / 2} 2_{-1 / 2}^{*}$	2		4	2	1, 30	6	-2.0215473	2
1	1. $2_{3 / 2} 2_{-3 / 2}$	2	-3.255 5420	3	2	$1,3{ }^{1}{ }^{*}$	5	-1.681 2707	3
1	2030	4	-4.189 694	3	2	1, $3-{ }^{*}$	6	$-1.198 \quad 283.9$	4
1	2, $30{ }^{*}$	4	$-3.460827 \quad 2$	5	2	40	8	-1.069 6432	
1	$2_{2} 3_{0}^{*}$	4	-2.436 7936	4	2	$4{ }_{1}^{*}$	8	-. 97865347	5
1	23_{1}^{*}	4	-2.483 070	3	2	$42^{\text {a }}$	8	-. 73928265	4
1	$23_{1}{ }^{*}$	4	-3.773 0004	4	3	1020	6	-3.651 3878	3
1	$23_{1}{ }^{\text {* }}$	4	-3.633 7545	5	3	$1_{0} 2_{1}^{*}$	6	-3.149 5527	2
1	$2_{-4} 3_{1}^{*}$	4	-2.750 0000	0	3	$1_{0} 2_{2}^{*}$	6	-2.230 6475	1
1	$2{ }_{-2} 3_{1}{ }^{*}$	4	-1.851 987	1	3	10. 23^{*}	6	-1.500 0000	0
1	$1_{1 / 2} 1_{-1 / 2} 3_{0}$	4	-2.950 916	3	3	$1,2_{3}^{*}$	6	-1.634 4018	5
1	1/1/2 $1_{-1 / 2} 3_{1}^{*}$	4	-2.653 5245		3	$1,2{ }_{2}^{*}$	6	-2.500 0000	0
1		,	-2.081540 4	3	3	1, 2_{1}^{*}	6	-3.092 240	
1	10.4	6	-1.919 5982	4	3	1, 2 *	6	-3.000 0000	
1		6	-1.698 823	1	3	$1{ }_{1} 2_{-1}^{*}$	6	-2.366 0254	3
1		6	-1.673 1786	2	3	$1,22^{*}$	6	-1.561 6187	4
1	1,4-1	6	-1.4069297	3	,	1, $2-3^{*}$	6.	-. 92248804	5
1		8	-. 85938869	3	3	1, $101-1$	6	$-1.848 \quad 6122$	3
1	${ }_{1}$	8	-.783 66038	5	3	30	8	-3/2	
2	$21 / 2$	4	-5.047 7319	0	3	$3{ }_{1}$	8	$\begin{array}{llllll}-1.370 & 222 & 7\end{array}$	
2	$2_{3 / 2} 2_{1 / 2}{ }^{\text {m }}$	4	-4.447 8315	4	3	3_{2}^{*}	8	-1.038 8286	4
2	$2_{3 / 2} 2_{-1 / 2}{ }^{*}$	4	-4.090 576	5	3	33^{*}	8	-. 63397460	3
2	23/2 $2-3 / 2$	4	-3.101 5213	0	4	20	8	-2.671 4615	
2	25/2 $2_{3 / 2}$	4	-3.3866956	2	4	$2{ }_{1}^{*}$	8	-2.362 372	
2	$2_{5 / 2} 2_{1 / 2}{ }^{*}$	4	$\begin{array}{llllll}-3.568 & 729 & 3\end{array}$	3	4	$2{ }_{2}$	8	$\begin{array}{lllll}-1.690 & 389 & 3\end{array}$	
2	$2_{5 / 2} 2_{-1 / 2}{ }^{*}$	4	-3.0702432	4	4	23^{*}	8	-1.0000000	3
2	25/2 2 -3/2	4	-2.174 674	5	4	24^{*}	8	-. 46877865	
2	25/2 ${ }^{\text {- } 5 / 2}$	4	-1.4032555	0	4		8	-1.7353417	
2	$1_{1 / 2} 1_{-1 / 2} 2_{0}$	4	-3.877848	0	4	13/2 $4_{1 / 2}$	8	-1.340 832	
2	$1_{1 / 2} 1_{1 / 2} 2^{*}$	4	-3.413 7102	5	4	$1_{3 / 2} 1 / 1 / 2$	8	-1.137 6276	5
2	$14 / 21-1 / 22^{*}{ }^{*}$	4	-2.367 2139	4	4	13/21-3/2	-	$-.593 \quad 19675$	
2	1030	6	-5/2	0	5	1.	10	-1	
2	$103{ }_{1}{ }^{\text {a }}$	6	-2.268 9019	2	5	1*	10	-3/4	
2	$103_{2}{ }^{*}$	6	-1.771 4707	1	5	$1{ }^{*}$	10	-1/4	

$E_{\infty}=-\left[\right.$ if $s=$ integer then $\sum_{k=1}^{s} \frac{1}{2 k-1}$ else $\left.\ln 2+\sum_{k=1}^{s-\frac{1}{2}} \frac{1}{2 k}\right] N$.
(4.2) For finite N, corrections to these formulas arise, and the shape of 2s-atrings is changed: they "stretch" or "shrink" (for $s \geqslant 1$, the intervals between the imaginary parts of the string membera deviate from unit by a Δ; for the vacuum, $\Delta>0$) and "curve" (for $s \geqslant \frac{3}{2}$, the real parte become different).

Our numerical computations performed for $2 s=2 \ldots 9, \mathrm{~s} N \leqslant 128$, give the following qualitative picture. Maximum deviations from aq. (1.5) are observed for extreme strings, the remotest from the origin. The string-curving effect is relatively amall as compared to their stretching. The following formula approximates roughly the stretching as a function of the string-center coordinate

$$
\begin{equation*}
\Delta(x) \approx C \frac{2 \cosh (\pi x)}{N}, \quad|x| \leqslant \frac{1}{\pi} \ln \frac{2 N}{\pi} \tag{4.3}
\end{equation*}
$$

The coeificient C is of an order of 0.1 and decreases with increasing 5 . The mafority of strings have the $O(1 / N)$ deviations, and for the extreme atrings the deviation probably approaches a constant (1). The mean value of the deviations is of an order of $O(\ln N / N)$. Hence, the effects that break the string picture are by no means exponentially small as it was supposed formerly. It is interesting to note, however, that the string deformations affect weakly the integral quantities like the energy (1.2): the finite-size correction to the AF-vacuum energy,

$$
\begin{equation*}
\Delta E_{N}=E_{N}-E_{\infty}, \tag{4.4}
\end{equation*}
$$

behaves like $O(\sqrt{N})$, just as in the $s=\frac{1}{2}$ case $/ 8 /$, i.e. the relative correction to eq. (4.2) is only $\mathcal{O}\left(1 / N^{2}\right)$.

In tables 3 and 4, the N dependence is illustrated for the $s=$? and $s=\frac{9}{2}$ cases. The numerical data are presented for the minimum, mean, and maximum deviations from exact strings and also for the nergy correction (4.4) with proper N factors. One can see that for higher spin, when the "number of degrees of freedom" for atring deformations grows large, a quantitative agreement with the empirical formula (4.3) becomes worse although the charscter of the dependence is retained.

The apin dependence of the string accuracy and of the energy correction is shown in table 5. Through the computer data up to $s N \leqslant 128$, an extrapolation has been made of the leading-asymptotics coefficients for $\Delta_{\min }$, $\Delta_{\max }$, and ΔE_{N} as $N \rightarrow \infty$. With the growth in s, an improvement of the string accuracy is observed.

Table 3. The string deformations \triangle and energy corrections ΔE_{N} for the $A F$ vacuum at $s=1$

N	$\Delta_{\min } N$	$\Delta_{\text {mean }} N / \ln N$	$\Delta_{\max }$	$\Delta E_{N} N$			
6	.248	467	0	.261	891	3	.0966
0	059	8	-1.316	114			
8	.263	256	6	.245	636	3	.0947
895	0	-1.285	479				
10	.236	365	7	.235	766	3	.0940
232	9	-1.270	731				
26	.226	156	0	.208	477	8	.0931021
3	-1.245	094					
64	.223	030	6	.194	011	3	.0931293
8	8	-1.239	031				
126	.221	686	6	.186	619	4	.0932071
1	-1.237	217					
128	.221	736	8	.186	471	6	.0932088
7	-1.237	185					

Table 4. The atring deformations Δ and energy corrections ΔE_{N} for the AF vacuum at $s=\frac{9}{2}$

N	$\Delta_{\min } N$	$\Delta_{\text {mean }} N / \ln N$	$\Delta_{\max }$	$\Delta E_{N} N$
6	.04604305	.08192703	.04335849	-2.305609
8	.04673268	.07556453	.04246941	-2.213779
16	.03732520	.06540114	.04182617	-2.109443
28	.03414540	.06015586	.04181064	-2.074654

Table 5. The apin dependence of the $N \rightarrow \infty$ asymptotice for the deviations from perfect otrings Δ and the finite-size energy correction ΔE_{N} in the AF vacuum

3	$\lim _{N \rightarrow \infty}\left(\Delta_{\min } N\right)$	$\lim _{N \rightarrow \infty} \Delta_{\max }$	$\lim _{N \rightarrow \infty}\left(\Delta E_{N} N\right)$
1	.220	.0933	-1.235
$3 / 2$.153	.070	-1.484
2	.093	.060	-1.65
$5 / 2$.072	.053	-1.77
3	.053	.049	-1.86
$7 / 2$.043	.046	-1.93
4	.034	.044	-1.98
$9 / 2$.030	.042	-2.03

5. A String-Doformation Estimate for the s=1 Vacuum

In explaining the computer results for finite N, one has to regard a correction to the string-center density (4.1) and the string deformation. While the first problem can be solved by a perfect
analogyto the $s=\frac{1}{2}$ case $/ 8 /$, there are a lot of difficulties involved in evaluating the deformations. As an instructive example, we consider the simplest case of the $s=1$ vacuum. To demonatrate our approximation, we present computations in detail.

Instead of perfect 2-strings (1.5), we atart with complex-conJugate pairs

$$
\begin{equation*}
\lambda_{j}^{ \pm}=x_{j} \pm i \frac{1}{2}\left(\Delta_{j}+1\right), \quad\left(j=1 \ldots \frac{1}{2} N\right) \tag{5.1}
\end{equation*}
$$

Our aim consiats in finding a function $\Delta(x)$ that deacribes the deviations of eq. (5.1) from eq. (1.5), $\Delta\left(x_{j}\right)=\Delta_{j}$, in a first nontrivial approximation as $N \rightarrow \infty$. We are not going to calculate the density correction which is $O(1 / N)^{/ 8 /}$. Therefore, in the first approximation, we disregsrd the shifts of roots with reapect to their discrete positions,

$$
\begin{equation*}
x_{j}=\frac{1}{\pi} \ln \tan \left[\frac{\pi}{N}\left(j-\frac{1}{2}\right)\right] \tag{5.2}
\end{equation*}
$$

that correspond to the σ_{∞} density (4.1). One can get an information about these shifts from considering the phase balance in BAE (1.1). We study the modulus equared of eq. (1.1) for $\lambda_{j}^{ \pm}$(5.1): $\left[\frac{x_{j} \pm i\left(\frac{1}{2} \Delta_{j}+\frac{3}{2}\right)}{x_{j} \pm i\left(\frac{1}{2} \Delta_{j}-\frac{1}{2}\right)}\right]^{N}=\prod_{k=1}^{\frac{1}{2} N}\left[\frac{x_{j}-x_{k} \pm i\left(\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta_{k}+1\right)}{x_{j}-x_{k} \pm i\left(\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta_{k}-1\right)} \frac{x_{j}-x_{k} \pm i\left(\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta_{k}+2\right)}{x_{j}-x_{k} \pm i\left(\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta_{k}\right)}\right]$. 5.3$)$
Here and below, the abbrevietion \pm implies that factors with both signs should be included. The logarithm of eq. (5.3) is rewritten identically:

$$
\begin{align*}
& N \ln \frac{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}+\frac{3}{2}\right)^{2}}{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}-\frac{1}{2}\right)^{2}}=\int d x\left\{\left[\sum_{k} \delta\left(x-x_{k}\right)-\sigma_{\infty}(x)\right]+\sigma_{\infty}(x)\right\} \tag{5.4}\\
& \times \ln \left\{\frac{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta(x)+1\right]}{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta(x)-1\right]} \frac{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta(x)+2\right]}{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta(x)\right]}\right\}
\end{align*}
$$

In eq. (5.4), we have picked out a correction to the "discreteness" of roots. This correction is small, of the same order as Δ (see below). Therefore, we can omit \triangle in calculating the corresponding contribution which is then reduced to

$$
\begin{align*}
& \int d x\left[\sum_{k} \delta\left(x-x_{k}\right)-\sigma_{\infty}(x)\right] \ln \frac{x_{j}-x \pm 2 i}{x_{j}-x \pm i \Delta_{j}} \\
= & \sum_{k} \ln \frac{\left(x_{j}-x_{k}\right)^{2}+4}{\left(x_{j}-x_{k}\right)^{2}+\Delta_{j}^{2}}-N \int_{0}^{\infty} \frac{d p}{p} \frac{2 \cos \left(x_{j} p\right)}{2 \cosh \left(\frac{1}{2} p\right)}\left(e^{-\Delta_{j} p}-e^{-2 p}\right) \tag{5,5}\\
\approx & 2 \ln \frac{2}{\Delta_{j}}+\sum_{k \neq j} \ln \frac{\left(x_{j}-x_{k}\right)^{2}+4}{\left(x_{j}-x_{k}\right)^{2}}-N \ln \frac{x_{j}^{2}+\frac{9}{4}}{x_{j}^{2}+\frac{1}{4}} \tag{5.9}
\end{align*}
$$

The computer results of sect. 4 suggest that it is reasonable to look for a self-consistent solution to eq. (5.8) of the form (4.3) $\Delta(x) \sigma_{80}(x) \approx C$. Then, the integral in eq. (5.8) is taken easily, and we obtain s simple equation for C :

$$
C+\frac{1}{2 \pi} \ln \frac{C}{N}=F_{j}
$$

Here, as well as below, we use formulas from the appendix of ref./7/. The constant Δ_{j} in eq. (5.5) ensures a correct passing over the singularity at $x=x_{j}$.

The main difficulty consists in evaluating the integral, where the imaginary part under logarithm involves a nontrivial dependence $\Delta(x)$. One succeeds in obtaining an analytic expreseion only by making on expansion in $\Delta(x)$:
$\ln \left\{\frac{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta(x)+1\right]}{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}-\frac{1}{2} \Delta(x)-1\right]} \frac{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta(x)+2\right]}{x_{j}-x \pm i\left[\frac{1}{2} \Delta_{j}+\frac{1}{2} \Delta(x)\right]}\right\}$
$=\ln \left[\frac{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}+1\right)}{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}-1\right)} \frac{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}+2\right)}{x_{j}-x \pm i \frac{1}{2} \Delta_{j}}\right]$
$+\left[-2 \frac{1}{\left(x_{j}-x\right)^{2}+1}+\frac{\frac{1}{2} \Delta_{j}+2}{\left(x_{j}-x\right)^{2}+\left(\frac{1}{2} \Delta_{j}+2\right)^{2}}-\frac{\frac{1}{2} \Delta_{j}}{\left(x_{j}-x\right)^{2}+\left(\frac{1}{2} \Delta_{j}\right)^{2}}\right] \Delta(x)+O\left[\Delta^{2}(x)\right]$.
The integral of the first term of eq. (5.6) is evaluated to

$$
\begin{align*}
& \int d x \sigma_{\infty}(x) \ln \left[\frac{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}+1\right)}{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}-1\right)} \frac{x_{j}-x \pm i\left(\frac{1}{2} \Delta_{j}+2\right)}{x_{j}-x \pm i \frac{1}{2} \Delta_{j}}\right] \\
& =N \ln \left[\frac{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}+\frac{3}{2}\right)^{2}}{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}-\frac{1}{2}\right)^{2}} \frac{\cosh \left(\pi x_{j}\right)-\sin \left(\frac{1}{2} \pi \Delta_{j}\right)}{\cosh \left(\pi x_{j}\right)+\sin \left(\frac{1}{2} \pi \Delta_{j}\right)}\right] \tag{5.7}\\
& \approx N \ln \frac{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}+\frac{3}{2}\right)^{2}}{x_{j}^{2}+\left(\frac{1}{2} \Delta_{j}-\frac{1}{2}\right)^{2}}-\frac{N}{2 \cosh \left(\pi x_{j}\right)} 2 \pi \Delta_{j} .
\end{align*}
$$

Then, in the first approximation (5.5)-(5.7), eq. (5.4) takes the form

$$
\begin{equation*}
0 \approx 2 \ln \frac{2}{\Delta_{j}}+\sum_{k \neq j} \ln \frac{\left(x_{j}-x_{k}\right)^{2}+4}{\left(x_{j}-x_{k}\right)^{2}}-N \ln \frac{x_{j}^{2}+\frac{9}{4}}{x_{j}^{2}+\frac{1}{4}} \tag{5.8}
\end{equation*}
$$

$-2 \pi \Delta_{j} \sigma_{\infty}\left(x_{j}\right)+\int d x \Delta(x) \sigma_{\infty}(x)\left[-2 \frac{1}{\left(x_{j}-x\right)^{2}+1}+\frac{\frac{1}{2} \Delta_{j}+2}{\left(x_{j}-x^{2}+\left(\frac{1}{2} \Delta_{j}+2\right)^{2}\right.}-\frac{\frac{1}{2} \Delta_{j}}{\left(x_{j}-x\right)^{2}+\left(\frac{1}{2} \Delta_{j}\right)^{2}}\right]$.
$F_{j}=-\frac{1}{2 \pi} \ln \cosh \left(\pi x_{j}\right)+\frac{1}{4 \pi}\left[\sum_{k \neq j} \ln \frac{\left(x_{j}-x_{k}\right)^{2}+4}{\left(x_{j}-x_{k}\right)^{2}}-N \ln \frac{x_{j}^{2}+\frac{9}{4}}{x_{j}^{2}+\frac{1}{4}}\right] \cdot(5.10)$
The consistency condition requires that all the F_{j} 's must be the same. This is not difficult to verify by substituting eq.(5.2) into eq. (5.10).

The resulta are included into table 6. The F_{j} values increase monotonically with $\left|x_{j}\right|$, therefore, only the extremes are presented. For computing C we used $F_{\text {max }}$ in eq. (5.9). Also the Δ data for the C value obtained are calculated through eq.(4.3). A comparison of tables 6 and 3 shows that our estimate has the least accuracy for extreme strings. This should be expected after the approximations made, (5.5)-(5.7). The errors are connected with the C-order quantities and grow with an increase in deviations.

Table 6. The first approximation of the string deviations for the AF vacuum at $\rho=1$

N	$F_{\min }$	$F_{\max }$	C	$\Delta_{\min } N$	$\Delta_{\operatorname{mean}} N / \ln N$	$\Delta_{\max }$
6	-0.545	-0.538	.1054	.211	.196	.0703
8	-0.594	-0.585	.1047	.227	.186	.0684
10	-0.633	-0.622	.1043	.209	.180	.0575
26	-0.793	-0.777	.1032	.206	.164	.0659
64	-0.941	-0.921	.1027	.206	.156	.0654
126	-1.052	-1.030	.1025	.205	.153	.0652
128	-1.054	-1.032	.1025	.205	.152	.0652
512	-1.278	-1.253	.1021	.204	.147	.0651

It is worth mentioning that the main effect originates from the difference (5.5) between the sum in eq. (5.10) and its approximation through the integral. The relative error of such an approximation is rather large - in our case, $\mathcal{O}(\ln N / N)$ - just on account of the singularity at $X=x_{j}$. This difficulty should be taken into consideration when analyzing critically the verification of the string hypothesis in ref. $/ 15 /$. The self-consistent deviations can diminish as $N \rightarrow \infty$ for the majority of atrings, however, not exponentially.
6. The Lowest Excitations for $s=1$ and $S=\frac{3}{2}$

With the purpose of verifying the string approximation, it is worth comparing numerical data with ths theoretical computations based on the perfeot-string sea pioture $/ 7 /$. The lowest excitations over the AF vacuum for even N are the triplet $(L=1)$ and ainglet ($L=0$)
states with $H=2$ holes located symmetrically at a maximum distance from the origin. Using formulas from ref. $/ 7 /$, we obtain the following expansions for the corresponding excitation energies:

$$
\begin{align*}
& E_{\infty}^{(t)}-E_{\infty}=\frac{\pi^{2}}{4 N}\left[\frac{1}{s}-\frac{1}{\ln N}+\frac{\ln (8 s / \pi)}{\ln ^{2} N}+\left(\left(\frac{1}{\ln ^{3} N}\right)\right]\right. \tag{6.1}\\
& E_{\infty}^{(s)}-E_{\infty}=\frac{\pi^{2}}{4 N}\left[\frac{1}{s}+\frac{3}{\ln N}-3 \frac{\ln (8 s / \pi)}{\ln ^{2} N}+O\left(\frac{1}{\ln ^{3} N}\right)\right] \tag{6.2}
\end{align*}
$$

Here, E_{∞} is the energy of the vacuum (4.2), $E_{\infty}^{(t)}$ is that of the triplet, and $E_{\infty}^{(3)}$ of the singlet, in the approximstion of exact $2 s$-strings for $N \rightarrow \infty$. Our estimates (6.1) and (6.2) are asymptotically correct for $\ln N \gg 1$.

In the $s=1$ case, both states include a real root (the singlet includes a 3 -string in addition) at the point $x_{0}=0$ due to the symmetry of the hole positions $\left(x_{1}=-x_{2}\right)$. The 3 -string at zero remaine perfect, so the einglet includes the double zero root. Like for $N=6$ (sect. 3), solutions of this type are physical for any even $N / 10 /$. Thus, the structure of the lowest states for $s=1$, just as their inomentum (π for the triplet and for the singlet), agree with the atring picture.

It is interesting to ohserve the accuracy of eqs. (6.1) and (6.2) for finite N (table 7). A good sgreement proves to take place only if we compare equ. (6.1) and (6.2) with the triplat $E_{N}^{(t)}$ and ainglet $E_{N}^{(3)}$ energies at finite N over the "tbeoretical" vacuum E_{∞} rather than the actual one $E_{N^{\prime}}$. The reason is the following. Finite-N energies involve a considerable correction $\Delta F_{N}=\mathcal{O}(1 / N)$. This correction is caused, on the one hand, by a change in the string-center positions $/ 8 /$, and on the other hand, by the string deformation. For the vacuum state, these two contributions have identical eigns end add. In contrast, for the lowest triplet and ainglet, a shrinking of strings is observed instead of their stretching: $\Delta^{(t, s)}<0$. As a result, a definite compensation of the contributions to ΔE_{N} occurrs. So, the best agreament is attained when aubtracting the E_{∞}, where no $O(1 / N)$ term is present. It should be mentioned also that in formulas (6.1) and (6.2), one has to take equally into account nonleading terme which arise from an expansion in the reciprocel of the hole coordinates $-x_{1}=x_{2} \approx \frac{1}{\pi} \ln \frac{83 N}{x}$.

The comparison of the sea-string deviations for the lowest excitations with the vacuum ones (table 3) gives no reasons to tell of a "atring stabilization", an improvement of the string accuracy, after adding holes. At $H=2$, no indications appear that the exponential accuracy can be restored at a large number of excitations, as it would follow from assertions about a thermodynamic limit $H \rightarrow \infty$ (вee - . Be, ref. ${ }^{15 / \text {). }}$

Table 7. The string deformations and comparison of the excitation energy with the perfect-string approximation for the lowest triplets and singlets at $s=1$.

N	$\Delta_{\mid \text {min }}^{(t)} N$	$\Delta_{\text {mean }}^{(t)} N / \ln N$	$\triangle_{\text {lmax }}^{(t)}$	$\left[E_{N}^{(t)}-E_{\infty}\right] N$	$\left[E_{\infty}^{(t)}-E_{\infty}\right] N$
6	-0.565 0663	-. 3153695	-. 09417772	2.022494	1.809
8	-0.617 8073	-. 3291137	-. 08970692	2.038441	1.814
10	-0.701 0198	-. 3420910	-. 08743674	2.050427	1.831
26	-0.969 2136	-. 4120149	-. 08280737	2.098167	1.927
64	-1.236 1519	-. 4903651	-. 08100649	2.138276	2.007
126	-1.444 0013	-. 5535464	-. 08013416	2.165009	2.056
N	$\Delta_{\text {lmin } 1}^{(s)} N$	$\triangle_{\text {mean }}^{(3)} N / \ln N$	$\Delta_{\mid \text {max }}^{(3)}$	$\left[E_{N}^{(3)}-E_{\infty}\right] N$	$\left[E_{\infty}^{(3)}-E_{\infty}\right] N$
6	-0.306 0256	-. 1707961	-. 05100426	5.513167	4.443
8	-0.406 2230	-. 1953520	-. 05077788	5.181174	4.427
10	-0.473 1754	-. 2146227	-. 05046928	4.953954	4.377
26	-0.779 6170	-. 3016110	-. 05172736	4.264123	4.088
64	-1.068 8607	-. 3902502	-. 05390637	3.888304	3.847
126	-1.286 5282	-. 4599579	-. 05542363	3.698988	3.702

Completing the section, we consider the lowest ainglets for $\delta=\frac{3}{2}$, $N=16$ and $N=18$. These atates demonatrate convincingly an inadequacy of the string approach. The "perfect" atring hypothesis predicts, on the background of the 3 -string aea, a configuration of two additional strings, of length $2 s+1=4$ and $2 s-1=2$, both at $x_{0}=0$. Only the 4etring at zero may remain exact, eq. (1.5); the other are deformed.

Neglecting the sea deformation and taking into account the finite hole coordinates $\left(-x_{1}=x_{2} \approx, 9\right)$, we would obtain $/ 7 /$, instead of the 2-atring $\left(\lambda= \pm \frac{1}{2} i\right)$, a narrow pair (NP) $\lambda \approx \pm, 7 i$. We can find the analytic solution to the $\mathbb{N P}$ equations $/ 7 /$ for arbitrary $\$$, too, if the holes are eupposed to go to $\pm \infty$. Then, the ($2 s-1$)-string stretches homogeneously by a factor of $2 s /(2 s-1)$. Por $s=\frac{3}{2}$, this leads to $\lambda= \pm \frac{3}{4} i$.

However, at $N=16$, the computer given $\lambda= \pm .928869$ 091. Thus, the $\mathbb{N P}$ adjoins the ses 3 -stringe which shrink to .95023428 as an average. Also, a considerable curving of atrings occura: the difference between the string-member real parts is not lese than half of the imaginary-parts deviation from unit. Still more aignificant is the string-picture violation for the $S=\frac{3}{2}, N=18$ lowest singlet (íg.2). A "collectivization" of the zero root happene between the bent 3 -

Fig. 2
-atring and the $\mathbb{N P}$ which form together a symmetric complex $\pm .04767633$ $\pm .947753251$.

Nevertheless, such an essential deviation from the string picture affects the energy relatively little. The computer values of $\left[E_{N}^{(3)}-E_{\infty}\right] N$ for $N=16$ and $N=18$ are 3.520646 and 3.434215. They are close enough to $\left[E_{\infty}^{(s)}-E_{\infty}\right] N$ from eq. $(6.2), 3.024$ and 3.018 , although the N values are far from onsuring $\ln N \gg 3$. The weak sensitivity of the energy to string deformations seems to be a rather general phenomenon.
7. A Spin Wave for $s=1, N=128$

With an assumption that the perfect 2 -string sea is present, in the $N \rightarrow \infty$ limit, phyaical excitations are reallzed as holes. A hole at a point X gives adaitive contributions $/ 7 /$ to the energy and momentum:

$$
\begin{align*}
& E^{(h)}(x)=\frac{\pi}{2 \cosh (\pi x)} \tag{7.1}\\
& P^{(h)}(x)=-2 \operatorname{atan}\left(e^{-\pi x}\right) \tag{7.2}
\end{align*}
$$

From eqs. (7.1) and (7.2), the diepersion lew follows that coincides W1th the $S=\frac{1}{2}$ case $/ 13 /$:

$$
E^{(h)}=-\frac{1}{2} \pi \sin P^{(h)} .
$$

With the purpose of verifying eq. (7.3), the energies and momenta have been computed for some triplet two-hole states at $s=1, N=128$. For convenience of the analysis, the states have been seleated in which the second hole is situated at $X_{2} \approx 0,1$,e the corresponding to it $Q_{2}\left(x_{2}\right)=0(1,7)$ is absent in the set of 2-strings. The energy and momentum contributions of this hole are fixed about $\frac{1}{2} \pi$ and $-\frac{1}{2} \pi$. In turn, the position of the first hole X_{d} can alter and thereby influence the energy and momentum of the state. Using the dispersion relation (7.3) for the piret bole and setting $X_{2}=0$, wo cen calculate a theoretical excitation energy as a function of the momentum,

$$
\begin{equation*}
E^{(*)}=\frac{1}{2} \pi\left[1-\cos P_{N}^{(t)}\right], \tag{7.4}
\end{equation*}
$$

and compare eq. (7.4) with the actual value $E_{N}^{(t)}-E_{o s}$

We can also take into account a shift of the second hole. The BAE solution contains a reai root between the holes,

$$
\begin{equation*}
x_{0}=\frac{1}{2}\left(x_{1}+x_{2}\right) \tag{7.5}
\end{equation*}
$$

From eqs. (7.2) for both holes, it follows that

$$
\begin{equation*}
\tan \left[\frac{1}{2} P_{N}^{(t)}\right]=\frac{e^{-\pi x_{1}}+e^{-\pi x_{2}}}{e^{-\pi\left(x_{1}+x_{2}\right)}-1} \tag{7.6}
\end{equation*}
$$

Solving eqs. (7.5) and (7.6) together allows ue to evaluate the sum of the theoretical hole energies (7.1), $E^{(2 h)}$, corrected to $x_{2} \neq 0$,

The resulta of the verification are diaplayed in table 8. The real-root position X_{0}, the momentum of the state $P_{N}^{(t)}$, and the energy over the vacuum $E_{N}^{(t)}-E_{\infty}$ are the numerical-solution data. On tha other hand, there are theoretical predictions based on eqs.(7.1)--(7.3): the aimplest estimate $E^{(*)}$ with $x_{2}=0$, eq. (7.4), and the corrected value $E^{(2 h)}$ with the x_{2} determined by eqs.(7.5), (7.5).

Table 8. The numerical verification of the dispersion law for the triplet spin wave at $s=1, N=128$

x_{0}	$P_{N}^{(t)} \frac{N}{2 \pi}$	$E_{N}^{(t)}-E_{\infty}$	$E^{(*)}$	$E^{(2 h)}$	x_{2}
-. 9594740	32	1.574455	1.5708	1.578383	-. 0015410
-. 3321832	37	1.952364	1.9525	1.955245	-. 0005807
-. 2203628	42	2.308 973	2.3113	2.310978	. 0000658
-. 1517936	47	2.621673	2.6257	2.622916	.0007534
-. 0998680	52	2.871558	2.8769	2.872196	.0016884
-. 0559081	57	3.043589	3.0498	3.043808	.0034770
-. 0156832	62	3.127427	3.1340	3.127437	.0102643

Even a rough check through $E^{(*)}$ shows a satisfactory agreement. Regarding the second-hole shift improves the agreement twice. The square-mean difference between $E^{(2 h)}$ and $E_{N}^{(t)}-E_{\infty}$ is about .002. A comparison with smaller-N cases allows us to conclude that this difference does not exceed $O(1 / N)$. The string deformations for the states considered are of the same order as for the vacuum (sact, 4) and for the lowest excitations (sect. 6). A new phenomenon is a chasge of sign of $\Delta(x)$ as X passes through the hole positions. If the numbar of holes grows large, and they fill the real axis dansely enough, this may lead to oscillations and a decrease in $\Delta(x)$ in the thermodynamic limit $H \rightarrow \infty^{15 /}$.

8. The S-Matrix for Some States

Reasoning along the line of ref. ${ }^{13 / \text {, by means of formulas from }}$ ref. $/ 7 /$, we can get an expression for the S-matrix of scattering phyaical excitations (holes) on each other and on complex-roots configurations. The result can be represented as the following relation:

$$
\begin{align*}
& \left.\left.\times \prod_{j}^{M_{f}}\left(e^{-i \pi / s} \frac{\operatorname{sep}\left[-i N P^{(h)}(x)\right]=(-)^{N-1} \prod_{j}^{H} S^{-1}\left(x-x_{j}\right)}{\sinh \left\{\frac{\pi}{2 s}\left[x-x_{j} \pm i\left(y_{j}-s\right)-\frac{1}{2} i\right]\right\}}\right)^{M_{1}+M_{\omega}} \sum_{j}^{m} \pm i\left(y_{j}-s\right)+\frac{1}{2} i\right]\right\} \tag{8.1}\\
& \prod_{j} \frac{x-x_{j} \pm i\left(y_{j}-s\right)+\frac{1}{2} i}{x-x_{j} \pm i\left(y_{j}-s\right)-\frac{1}{2} i}
\end{align*}
$$

Here the notation corresponda to ref. ${ }^{17 /} ; P^{(h)}(x)$ is the hole contribution to the momentum, (7.2);

$$
\begin{align*}
& S^{-1}(x)=\exp \left\{i\left[\pi\left(1-\frac{1}{4 s}\right)+\mathscr{J}(x)\right]\right\} \frac{\Gamma\left(\frac{1}{2 s}-i \frac{x}{2 s}\right) \Gamma\left(1+i \frac{x}{2 s}\right)}{\Gamma\left(\frac{1}{2 s}+i \frac{x}{2 s}\right) \Gamma\left(1-i \frac{x}{2 s}\right)}, \tag{8.2}\\
& \mathscr{\rho}(x)=\int_{0}^{\infty} \frac{d p}{p} \sin (x p) e^{(s-1) p} \frac{\tanh \left(\frac{1}{2} p\right)}{\sinh (s p)} . \tag{8.3}
\end{align*}
$$

The interpretation of the expression on the r.h.s. of eq.(8.1) as Smatrices cen be motivated with the use of the explicit coordinate-BA formula for the Bethe wave vector, generalized to the arbitrary-spin xXX model in ref. $/ 10 /$. The factors for acattering on free NPG , on multipleis, and on wide pairs agree with the BAE form /7/ for these configurations. It is interesting that holes ecatter on themesives, too: $S^{-1}(0)=\exp \left[i \pi\left(1-\frac{1}{4 s}\right)\right]$. As $s \rightarrow \infty$ at fixed x, the hole S-matrix (8.2) tends to

$$
\begin{equation*}
S^{-1}(x) \xrightarrow{s \rightarrow \infty}-\left[\frac{\Gamma\left(1+i \frac{1}{2} x\right) \Gamma\left(\frac{1}{2}-i \frac{1}{2} x\right)}{\Gamma\left(1-i \frac{1}{2} x\right) \Gamma\left(\frac{1}{2}+i \frac{1}{2} x\right)}\right]^{2} \tag{8.4}
\end{equation*}
$$

Just the $s=\frac{1}{2} S-m a t r i x$ squared. Por two-hole states at even N, formulas (8,1) - (8.4) agree with ref. ${ }^{1 / 6 /}$.

For $s=1$, we can express $\varphi(x)(8.3)$ through the known mathematical functions:

$$
\begin{gather*}
\begin{array}{c}
s=1, \quad x \geqslant 0 \Rightarrow \\
\mathscr{f}(x)=\frac{1}{4} \pi+x \ln \tanh \left(\frac{1}{2} \pi x\right)+\frac{1}{\pi}\left[L i_{2}\left(-e^{-\pi x}\right)-L i_{2}\left(e^{-\pi x}\right)\right], \\
L i_{2}(x)=-\int_{0}^{x} \frac{d x}{x} \ln (1-x)=
\end{array} \quad \text { (8.5) }
\end{gather*}
$$

Eq. (8.1) is obtained for perfect $2 s-s t r i n g s$ as $N \rightarrow \infty$. It is interesting to check it for finite N. The lowest triplets for $s=1$ (table 7, sect. 6) have been considered. Because the precise hole positions are unknown, we compute them through the excitation energy with eq. (7.1), remembering the symetry of the states. The energy corrections are sufficiently amall, so one may hope that the error involved does not change the answer qualitatively. If the state includes two holes x_{1}, x_{2} and real root $\frac{1}{2}\left(x_{1}+x_{2}\right)$, then formulas (8.1) and (8.2) lead to the equation $\exp \left[2 i \operatorname{atan}\left(e^{-\pi x_{1}}\right)\right]=\exp \left\{2 i \operatorname{atan} \exp \left[-\frac{1}{2} \pi\left(x_{1}-x_{2}\right)\right]-\frac{1}{2} i \pi+i \varphi\left(x_{1}-x_{2}\right)\right\}$

$$
\begin{equation*}
\times \frac{\Gamma\left[1+i \frac{1}{2}\left(x_{1}-x_{2}\right)\right] \Gamma\left[\frac{1}{2}-i \frac{1}{2}\left(x_{1}-x_{2}\right)\right]}{\Gamma\left[1-i \frac{1}{2}\left(x_{1}-x_{2}\right)\right] \Gamma\left[\frac{1}{2}+i \frac{1}{2}\left(x_{1}-x_{2}\right)\right]} . \tag{8.7}
\end{equation*}
$$

Using eqs. (8.5), (8.6) and taking the values of the complex Γ function from the tables $/ 17 /$, we can compute the phase difference φ between the l.h.s. and r.h.s. of eq. (8.7).

Table 9. The accuracy of eq. (8.7) for the lowest triplets at $S=1$

N	φ	$\varphi \ln N$
8	.049	.101
10	.048	.110
26	.043	.140
64	.037	.154
126	.033	.160

One may see from table 9 that the phase difference diminishes like $1 / \ln N$ with a amall coefficient, and the φ value is comparable -1th $\Delta_{\max }$ (table 7). An analogous examination can be performed for the other two-hole states of secta. 6,7. For nonsymmetric states the hole positions can be determined through the momentum and the real--root location bysolving eqs.(7.5), (7.6). Por ainglete, besides the terms of eq. (8.7), one should introduce an additional factor on the r.h.B., $\left[\frac{1}{2}\left(x_{1}-x_{2}\right)+\frac{1}{2} i\right] /\left[\frac{1}{2}\left(x_{1}-x_{2}\right)-\frac{1}{2} i\right]$, due to the 3 -string. The reaulte are qualitatively the same ae in table 9; e.go, for the first state from table $8, \varphi=-.023$. Thus the scattering phase that has $10-$ garithmic deviations 18 more sensitive to the string deformation than the onergy.

Summazy
The analysis of the BAE numerical solutions for the model/1/ Ieada to the inference that the string picture gives only a qualitative description of the situation.

At $s=1, N=6$, the BA completeness is confimed, and the hypothesis $/ 2 /$ 1s cheoked about the $A P$ grouni state: a ses of $2 s-s t r i n g e$. Por different 3 , the sea atrings deviate from their nominal ahape by $O(1 / \mathrm{N})$ or more, and one cannot generally neglect thase deviations in a further analysis. For the AF vacum, the string deformations decrease with the growth in 5.

The deformations influence the energy rather weakly: the relative correction is $O\left(1 / N^{2}\right)$, the sbsolute one is $O(1 / N)$. This phenomenon is confirmed for low-lying excitations too, particulerly, in verifying the disparaion law for holes. A similarity ia noticeable in the behaviour of the energy corrections to the $s=\frac{1}{2}$ case $/ 8 /$.

The expected diminishing/15/ of the sea-string deformation with enlarging the number of holes is not obeerved for the two-hole states. However, we have found a change of aign of the deformations when pasaing holes. This may be a reason for cancellation of the string deviations.

As concerns the true situation of the BAE roots on the complex plane, it can differ rather atrongly from the string prescriptions for excited gtates at high $\$$. This leade to conciderable difficulties in searching for new solutions.

In the perfect-sea approximation/T/, the phase-balance equation is derived for scattering physical excitations on allowed configurations. At finite K, the equation is satisified with the $O(1 / \ln N)$ accuracy.

We thank M. V.Chizhov, $A_{0} X_{0}$ Tevelick, A. A. Vladimirov, and P. B. Wiegmann for discussing our results.

References

 1981, 5, p. 393;
Kulish P. Po, Sklyanin E. $\mathrm{K}_{\mathrm{*}}$ - Lect. Notes in Phys., 1982, 151, p.61.
2. Takhtajan 工.A. - Phys. Lett. : 1982, 87A, pe 479;

Babujian H. M, - Nuc1. Phys., 1983, B215, De 317.
3. Destri. C., Lowenstein J.H. - Wucl. Pays., 1982, B205, po 369.
4. Woynerovich I. - J.Paye., 1982, A15, D. 2985;

Bebelon O_{*}, de Vega H.J., Viallet C, K, - Nucl.Phys., 1983, B22O, p. 13.
5. Vladimirov A.A. - Phys.Lett., 1984, 105A, p. 418;

JINR, P17-84-409, Dubna 1984 (in Ruseian).
6. Faddeev L. Do, Reshetikhin N. Yu. - In: Proc. VII Int. Confe on the Problems of Quantum Field Theory - JINR, D2-84-366, Dubna, 1984, p. 37 (in Russian); LOMI preprint E-2-85, Leningrad, 1985.
7. Avdeev L. V., Dörfel B.-D. - Nucl.Fhys., 1985, B257, p. 253; JINR, P2-84-685, Dubna, 1984 (in Russian).
8. Avdeev L. V., Dörfel B.-D. - JINR, P2-85-243, Dubna, 1985 (In Ruesian).
9. de Vega H. J., Woynarovich F. - NucI. Phys., 1985, B251, p. 439.
10. Avdeev $L_{\bullet} V_{e}$, Vladimirov A.A. - JINR, E2-85-461, Dubna, 1985.
11. Bethe H. - Zeitachr. Pür Physe, 1931, 71, S. 205 (in German) ; Takahashi M M - Progr. Theor. Phyg., 1971, 46, p. 401; Faddeev $L_{0} D_{0}$, Takhtajan L.A. - Phyr.Lett. , 1981, 85A, p. 375 ; Zap. Nauch.Semin. LOMI, 1981, 109, pe 134 (in Russian).
12. Kirillov A.N. - Zap. Nauchn. Semin. LOMI, 1983, 131, p. 88 (in Ruseian).
13. des Cloizeaux J., Pearaon J.J. - Phye.Rev., 1962, 128, p. 2131.
14. Grieger W. - Phys.Rev., 1984, B30, pe 344.
15. Tavelick $A_{0} M_{4}$, Wlegmann P. Be - Advances in Phys., 1983, 32, P. 453.
16. Vladimirov A.A. - JINR, K17-84-830, Dubna, 1984.
17. Handbook of Mathematical Functions (edited by M,Abramowitz, I.A.Stegun) - NationaI Bureau of Standards, New York, 1964.

Авдеев Л.В., Дёрфель Б.-Д.

Решение уравнений анзатца Бете для XXX-антиферромагнетика произвольного спина при конечном числе узлов

Изучается точно интегрируемое обобщение изотропной $X X X$-цепочки Гейзенберга из N узлов на случай произвольного спина S . Получены численные решения урав нений анзатца Бете, отвечающие состоянию антиферромагнитного вакуума /для SN $\leq 128 /$ и простейшим возбуждениям над ним. В случае $s=1$ проверена полнота базиса бетевских векторов для $\mathrm{N}=6$ и сделана полуаналитическая оценка структу ры вакуумного решения при конечных N. Обнаружено, что для в $=1 \ldots 9 / 2$ имеются отклонения от "струнной" картины решений по крайней мере на $O(1 / \mathrm{N})$. Тем не менее, относительная поправка к энергии вакуума и низших возбуждений составляет $O\left(1 / N^{2}\right)$. Однако уравнение баланса фаз рассеяния физических возбуждений выполняется лишь с точностью $O(1 / \ln N)$.

Работа выполнена в Лаборатории теоретической физики ОИЯК.

Преприит Объеднненного института ядерных исследований. Дубна 1985

