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1. INTRODUCTION

Considering hadron gases, one finds that the standard kine-
tic theory, see, e.g., v/ , developed for the descrlptlon of
atomic gases is far inadequate for studying hadrons. The majo-
rity of hadrons is unstable. The lifetime of hadron resonances
is so short that' the decay width is comparab]e to the particle
mass. The resonances are abundantly produced in hadron-hadron
collisions,see, e. g./g/ Thus to describe a hadron gas, the reso-
nancesAhave to be taken into account.However,for the inclusion
of unstable particles, the Boltzmann equation has to be modified.
The aim of this paper is to consider such a minimal modification
of“the standard classical (non—-quantum) theory at the pheno-
menological level. Namely, besides binary collisions, we take
into’ account two-particle resonance decays and time-reversed
processes, i.e., resonance formation. Then, we explicitly inclu-
de the effect of resonance mass smearing.

There are other characteristic features of hadrons which are
still outside our discussion. Of particular importance is, in
our opinion, the fact that many hadrons may be produced in
hadron collisions. Binary collisions dominate at relatively low
incident energies only. The inclusion of such processes is dif-
ficult and resembles the problems found in attempts to develop
the transport theory of dense atomic gases, see, e.g.,/lﬂ

The non-trivial equ‘librium properties of a-hadron gas have
been widely discussed, in numerous papers by R.Hagedorn and
collaborators 344/, The Gibbs statistical mechanics and the idea
of statistical bootstrap model have been used in their conside-
rations. The most important, in our opinion, Hagedorn's result
is the prediction of limiting hadron ‘temperature contemporarily
1nterpreted as a temperature of phase transition to quark-gluon
plasma/4 Because the 11m1t1ng temperature confirmed experimen-
tally is of the order of pion mass, the average incident energy
of hadron collision in the gas being in equilibrium does not
exceed some hundreds MeV. In this incident energy region binary
collisions dominate what makes our considerations (limited to
decays, resonance formation and binary collisions) applicable
for the descrlptlon of hadron gas close to equilibrium. Anyhow
our discussion is,adequate for dilute gases where one can neg-
lect. the collisions with more than two particles in an initial
state. .
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Our paper is organized as follows. In Sec. IT we defined the
classical distribution function of resonance and some macrosco-
-pical quantities. The Boltzmann equation is generalized 4in
Gec. III. In Sec. IV the H-theorem is proved and an equilibrium
state is considered. The equilibrium characteristics of a hadron
gas are discussed in Sec. V. In Sec. VI we conclude our conside-
rations. ' \
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II. THE DISTRIBUTION FUNCTION OF A RESONANCE

In our considerations we follow the textbook "Relativistic
Kinetic Theory" by de Groot, van Leeuwen and van Weert #8/, Becau-
se the energy, E, and momentum, P, of a resonance are not con-
nected by the mass relation E?-P% =m® (c=k=hwl) the four-
dimensional, relativistic formalism is a more natural framework
for studying hadron gases than the three~-dimensional nonrelati-
vistie one.

The Lorentz invariant phase-space element of a stable pérgigh
le d2p/E 1is not adeqiate for a resonance since tho anergy and -
momentum have to be independent (quasi-independent) variables.
However, - !

p .
__E_=2d4p8(p2—m2)0(E). C ()

where p®=p“p, , P=D"=(E,P).

The above expression suggests the form of a resonance phase-
space element
a‘p A (p®), (2)
where the function A, later on called the profile function, des-
cribes the mass smearing of a resonance. We demand A to be a Lo-
rentz scalar. .

The profile function is assumed to depend on p* while is in-
dependent of any gas characteristics. In particular, we assume
that ,a particle lifetime does not depend on the gas density. In
general it is not trug because the density of final states of
a decay process can be significantly different in vacuum and in
4 dense gas at low temperature. For example, due to the Pauli
quenching, the lifetime of the N* resonapce decaying into a pion
and a nucleon can be much longer in nuclear matter than in va-
cuum™, We conclude as follows. Assuming that the profile func-
tion depends on p? only, we limit our considerations to clas-~
sical gases. The form of the A(pz) function will be discussed

*In fact, the experimentaly measurable lifetime of resonance
in nucleus ie shorter than that in vacuum becavse of the reso-—

nange collisions with nucleons.
\
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in the next section, where the connection with experimentally
measurable quantities will be established. ‘

We define the distribution function so that

f(p,x) Bxd*pA(PHE, =x=(t,3%) . (3)

giYes an average number of resonances being at a moment of time
t in the space element d®X with the four-momentum between P and

p+d4p. The above definition will be more obvious if we write down

the particle four—-flow vector

N¥(x)=rd*p A (p®) p*f (D, %), ) o (4)

" which is an analogue of a stable particle four-flow

<

3..
u da°p
Ny, (%)= f—E—«- t(p.x).

The definition (3), which plays- a crucial role in all .our consi-

dera;ions, lets us employ the standard scheme of the kinetic
theory for studying hadron resonances. *

' Peallng with decaying particles, we are forced to consider
a mixture of many sorts of particles. Thus, we denote by f,(x,p)

.+ the distribution function of an i-th sort of particles. The

~

/
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enngy—momentum tensor and the entropy four-flow are the fol-
lowing ’

™ (=3 ra*s, "0t (p.%) .
u 4 . (5)
87(x) =% (d"p p"f, (p,x) [Inf (p,x) - 1T,
1

e . . :
d°p is the phase-space element of a stable particle (1) or a re-

sonance (2).
ke

III. THE KINETIC EQUATIONS
§

Let us consider the mixture 'of N® and N" sorts of stable an&
unsta?lq particles, respectively. Assuming that a resonance de-{
cays into two stable particles, one finds the following set of
kinetic equations '

p“3,1,(p,x)=C{+ D, i=1,2,...N%. (6a)
-and

* 043 £ (p.x)=C" 4+ DY j=1,2 u i

i u _1‘ ’. = j + j N J=1, ,;uN » . (_6b)
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where C; is the standard collision term descrlblng the. binary"’
interactions, see e. g.,/5/1 When a resonance is involved in
a collision, the phase-space element (1) has to be replaced

by (2). . ’

NU
DBiE p3
i=1

N® oy
T ratp ' () —%-
k=1 : : E,

i j— . o1k .
1 (py ) W (g1 ,my) - (B, %) B (p ) W (0Ll D T

¥ n @°p. &°p
I S S S L.
T i=1 k=1 E, E,

o

L8, (040 ) £ (o) WY (L py 1 2) = £ (0,0 W (1D )T
where Wj*ik(p |pj.pg) 1is the transition rate for the decay of
the rescnance of an j-th sort having four-momentum P, into two
particles of 1—th and k-th sorts with momenta p, and Py
wik>i (p, /pklpi) is the transition rate of the inverse process of
resonance formatiom.

Let us rewrite the equation (6b) in the non-covariant,. more
fapiliar, form

. b N® N® o oo

¥ 2 T [ad p, d°p, .

i=1 k=1

d L =
_5;_fj(p,x)7vvfj(p.>t)—

- . 7)

wi*t (plp py ) -

~1,(p,%) 1,
EE E,

ik § :
W (D (+ 0, IP)
EE E,

[fi (.Di',x) fk(pk'x)

where V=p/E.Recalling a.physigal interpretation of the distri-
bution function, one finds from (7) the following connection of
the transition rates with the measurable quantities

e W ele) L, - . ,
i Lk I atp Al (0 B = ot ' 8)
1V -9l E\EE, '
and
wi>® (p 1p,,p) :
E, E,E;
where o!¥*1 is the cross section of j-th resonance formation;
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the relative yelocity of particles with four-momenta
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p, and Py F'*ik is the partial decay width. The presence of-

a (27)8 coefflcient in the formula (8) is related to the fact
that the phase—space elements present in the kinetic equations
are not divided by (2#)” while in the units which are used h=1
equals unlty. Thus, the (2#)3 coeffickents are absorbed by the
transition rates.

Since a four~momentum is conserved in any reaction, one can
write.
wjﬁik

ik~ ' . . ’
L OIS N E PRV NI BELCI N P (1)

Substituting (10) and (11) in (8) and (9), we determine the
coefficients a. For the decay process the decay products are
assumed to be isotropically distributed in the center—of-mass

of decaying particle. In this way we are arrived to the formulae

ik ot
=} : ‘4
w (pi.pk]pj)= ] 2 — (pj Py- pk)' (12)
- <At (o®)
j»ik <
I ik M;T ]
W 'pww—-—jj—* — 8™ (p,-p,-py), (13)
ik
whete Fj, is the Lorentz invariant flux factor
o - = ) 2 g 2.1/2 2 ’ "1/2

P = BB | ¥ =%yl = (00" 00" - L wT-n?-nd)® —annd)""

o 2 .
Mj~(pi+pk) =pj'
Li;y is the Lorentz invariant two-particle phase-space ‘

a3 P d3p

i k (4) 1/2
Lik:r'};h’“ﬁ 8 (py -py-py) = 2 m? —nm) = 4m? mk)

i k . j ¥
L and F are related by the formula L§k=-ibl— ik

) M2

i

Let us discuss how to determine the profile function. If we
assume that the transition rates satisfy the detailed balance
condition ~ .

wi-ik (p,Ip

FS

ik .
p)=W (PP, D),
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uAj(p2)=

E fd*p AT (p? AN
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one gets

1 Pk P o ik~

(14)
j> ik

zm)?® My r
Below we witl disciiss the above formula. But now we show another
way leading to Eq. (14). We assume that the transition rates
satisfy the bilateral normalization conditions

ik §

(pi.p'kmj):.si_rd‘*ij(pi’-)w““‘<pjzpi.pk> (15)
and )
Ve
a®p, d3p dBP d®p, Lk
i Ey K ik By k

The above expressions related to unitarity of the S -matrix
are briefly discussed in Appendix

Putting (12) and (13) 1n (15) and (16), one finds the fol-’
lowing equations ’ <

\»

F Ulk_” M Fj-'ik . o
% 3 -3 A (p%)
] (27!') ( Lik 3 N
énd ' N R
. ikoj .
Py o " Ly _s m.riik, - :
i,k (27)3 ik A

~

Because the first equation has to be satisfied for any i,k pairs
while the second one for any Jj., we get the relation

Fiheo 0w A o)™

Lik . ] - ; )

wiich is equivalent to Eq. (14). In this approach the formula
(14% ptrovides the detailed balance condition. Thus, the detailed
bdlance occured to be a consequénce of the bilateral normaliza-
tion conditions (15) and (16), the four—-momentum conservation
ard' the assumption of the isotropic distribution of decay produ-
diicts In the center-of-mass of the decaying particle.
As ‘the profile function characterlzes a resonance but not

a decay channel, the formula (14) should give the same results
for different‘i,k pairs. We cannot rigorously prove that the

(2m)?
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profile function described by (14) is unique. However, we pre-
sent simplified argumentation and then we show that the inde-
pendence of i,k indexes is reallzed for the Breit-Wigner form
of the cross section. )

One expects' the following relation

lmik—'j l2 lmjaiklz

\ (17)
o o1 2

R R

»
where M is the transition matrix of the indicated process. The
above relation is strictly ‘correct when the interaction, is
invariant under time inversion what is the case, at least ap-
proximately, for strong interactions. If the decay width 'can, be
factorized as follows.

j-ik j»ik 2
r =M "Ly » \ (18)
we get from Eq. (17) the condition
ik-j j- ik .
Fy o7 _ r /Ly
Fon apn_'j Fj_’?n /Ly
which makes the formula (13) independent of i,k indexes. However,

the factorization (18) is totaly justified for narrow resonances

only.
A resonance formation is usually described by the Breit-
_ Wigner cross section, see, e.g.,
ik-§
olk—bj: n r Fj ,
%2 — -
P (VE-M)® 4T/
2 ’ !
— Fi . —
where p*%-—J£~ is the CM momentum square, V8 1is the CM energy
and I3, , it are the total and partial decay widths, respecti-

vely M; is the average resonance mass.
formula in (14), we find

Substituting the above

1 r‘j 1
2r My (M, -M)Z+Tf/4
Thus, uniqueness of. the profile function for the Breit-Wigner
cross sectiopn has been demonstrated.

Considerations similar to those leading to the formula (14)

may be repeated for binary collisions. In this case the profile

function is expressed through the cross sections of reaction
BN

. (19)



a+h- resonance + ¢ and the inverse one. Because the profile
function arising from the binary collisions and the three par-
ticle reactions (resonance formation and decay) has to be the
same, one can get relations betweep the cross sections of the
different processes, where the resonance is involved.

IV. H-THEOREM AND AN EQUILIBRIUM STATE ) T

The entropy production K is ‘ ]

}(=3“Su=rf: [a%p, mn1,0",1, . : : !
Assuming that thc distribution functions satisfy the kinetic
equations (6), P 8 fy can be replaced by the collision terms
of the right side of Eq. (6). If we assume that the transition .
rates for binary collisions and those of three~particle interac- ¢
tions satisfy the bilateral normalization conditions, “
we can consider separately the entropy production  re- \
sulting from the binary collisions and the three-particle
reactions. Anyhow it should be stressed that such an assumption
is stronger than that arising from unitrarity of the S-matrix,
see Appendix.

With the help of the bilateral normalization conditions one
finds . :

3._. 3_ N
: p, d°p .
HeMp+ = (—i—Xa* a0, :
1,4,k E; By
1»1k

{lx—tx- 116,07 %0 10,003 ke - 1166, W (00, 1D,

where RB i% She entropy production due to, the binary reactions,
5 3

see, €.8., ’
.. £,(p,) £,(p) ‘ ]

fj.(Pj)

4

¢
The operations 1ead1ng to the above formula are quite analogous u
to those described in Ref.5. It is seen that X >0 and the entropy
production vanishes when

f,(p) f(p )= (p,) for p +p =p (20)

Equilibrium, defined as a maximum entropy state, is reached )
when the distribution functions satisfy the functional relation

8

£
(20). Standard cénsiderations, see, e.g., Ref.5, provide the
Jittner equilibrium function, i.e., a relativistic analogue N
of the Maxwell-Boltzmann distributiocn
!

g u—u¥p
7Y (p) = — exp ( Yy,
(2x)°V T

1)

i

1

where g is the number. of internal degrees of freedom 'of an j-th
sort of particles, V is the volume of the system, uY is the
four-velocity of the system as-a whole. Thus, the form of the
equlllbrlum distribution functions of stable and unstable par-
ticles is the same.

At the end of this section let us observe that the decay
and formation processes provide an additional contribution to
the entropy production. So, the presence of resonances in a sy~
stem accelerates its equilibration and consequently makes shorter
the relaxation time. ‘

V. MACROSCOPIC CHARACTERISTICS OF THE HADRON GAS

IN EQUILIBRIUM .

: /

In this section we consider macroscopic characteristics
like density and internal energy of the gas. We focus our atten>
tion on the resonance component of the gas. For simplicity we
assume that particles do not carry any conserved charges. Thus,
the numbers of particles are unlimited and the chemical potentials
of all types of particles are equal to zero.

Using the formulae (4) and (5), one finds the density and
the internal energy density of an j-th sort of resonance.
ny = fa*p AT () EL§%p), Uy = rd*p Al (%) BR1PYp) . (22)
The equilibrium distribution functiom (21) in the rest frame ' .
of the system (u" = (1,0,0,0)) for u= 0 is

- E/T
——
(2n)3V

£5%(p) = . (23) »

In the formulae (22) we change the variables (E,p)- (M,p), where
M2 = E2 P2 Putting (23) in (22) and integrating with respect to
momenta, we get

-

rdMMAJ(Mz){ — 1wk LM/ T,

n1=
0 2%V
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,2_2_V_T2M2[ MK (M/T)+ 3K, (M/T)]1,
w

_ T ammal (M2) | (26) -
0

A}

where K, and K, are the so-called MacDonald functlons/7ﬁ In the

parantheses under the integrals (24) one recognizes the density
and, internal energy density of stable particles, see, e. g.,/5/
The resonance characteristics are those of stable particles . ,
averaged over thé mass. One may wonder, what is the normaliza-
tion of the profile function. The explicit calculation shows that
for the Breit-Wigner form (19) [dMMA(M)=1, However, in this
case ‘the lower limit ,of the above integral has to be -shifted
to minus infinity. This operation is correct for the resonances
with M>>I Indeed the Breit-Wigner formula is of physical meaning
for "narrow" resonances only. \

Substituting the Breit-Wigner profile function (19) in the
formulae (24), we obtain

&

1 Tho= M2
ny-———3 ram T W K, (M/T), .
4.2 Vo (M-8 -T /4
T?T, oo o “ '
e Y. M (3Ry(M/T)+ K (M/T)]. ,
473V (M-M)° +T}/4 \ T e

Since the above integrals cannot be calculated analytically, let
us consider two limits.

For MJ>>I] and T>> Iy the functions M2 Ky, and M BK2-+(M/T)K 1,
respectively, taken at M= MJ can be transferred from the integ-
Irals. Elementary integration provides the results

n. - 1 Eiﬂjx (M /T),
1 2112 v 2

U, = "1 *2 ’2 [3K (M./T)+—M1—K (M./T)]. (2'5")
] 2”2 v 2 i T 1 J

fs it would be expected, we jhave recovered the formulae fot

stable particles. It should be stressed that this result is not

quite trivial as the procedure of determining thelprofile func- '

tion is not trivial. |
Unstablllty should strongly manifest itself at I} >>T.Because,

we aré interested in the qualltatlve effects of the mass smea-

ring we use the Breit-Wigner formula for the "wide" resonance

what_is not quite correct: See the comment at the end of this

section. We assume that I} is of the order of M; what additio-

i
}

V] L}
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nally provides_ M1>>T Under such conditioms we can put the
fynction [(M-M; )2-0-I“L/4]~ taken at M=0 in front of the

ﬁntegrals Then»_ -
- . 1
4 5
N 3 T Fi - 3 T F1
)nj = ’ U= - —9 ) . (2,6)
8r2V Mj+Fi/4 2nV MIiT[/4
' We ‘have used the equality’? v
fquKJX)M=2a~%W a+ujrw a-v)w
o 2 2
where I'(z) is the Euler gaﬁma function and Rea>|Rev|. Let us

compare the formulae (26) with_analogous expressions for stable
particles (formulae (25) for M > T). !

; TM, s8/2 -M /7 ‘
st . 1 i § 15 T
n, =-—m(—~—2=x) {14+ =2 1, h
IR 8~ .
\ - ’ (27)
st 1 TMj 3/2 - —Mj/T 27 m
vzl ) e 1+ 211,
] vV 2r ~ 8 'm

«We see that the concentratlon of the resonances of average mass
M highly exceeds the concentratidn of stable partlcles with mass
M.

It is the well-known experimental fact’? that in hadron-had-
ron collisions at high energy there is an abundant resonance
production as compared to pion yield. This abundance seems to
decrease with incident energy. For many authors a big yield of
relatively massive resondnces was a crucial argument against
thermodynamical approaches to particle production in hadron col-
lisions since it was asserted that the generation of massive
particles was exponentially suppressed according to the -for—.
mula (27). As shown, the formula (27) can highly understimate
the resonance yield what seems to invalidate the above argumen- *

\

tation..

From the formulae (26) one can find the energy per partlcle\
for a M"wide" resonance at low temperature &-=%T., The above
expression resembles the one for massless particles. It shows

how important the effect of mass smearlng can be. -

At the end of th1s section the comment is in order. Our re-
sults concerning '"wide" resonances are based on the Brei-Wigner
profile function (19). There is a common concensus, that the
11
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it
energy distribution, of the resonance should be of the Breit-—
Wigner form medr a maximum of the mass distribution. The problem

of distribution "tails", which are important for the validity
'of the formulae (26), 1s cumbersome. There areé rigotous argu-
ments that the "tails" should deviate from the Breit-Wigner form
while it is not clear how to modify them. For extensive discus-
sion of the problem which, is, on the other hand, related to

a non—exponential character 6f the decay law, see the review/®/,
In the context of hadfon resonances the problem of mass dis-
tribution has been discussed in Ref.9.

We conclude this section as ‘follows. While the formulae (26)
may b 1nvalld due to uncertainties of the Breit-Wigner distri- .
‘bution "tails" ; the qualitative ‘results of this section seem
‘to be correct.

N

VI. CONCLUDING REMARKS '

Let us discuss the assumptions leading to our kinetic theory
model of hadron gas. The first important assumption occurs in
the distribution function definition (3). Namely, we assume that
the profile function is, position-independent. .As it has been ar-
gued in this way, quantum effects have been neglected. In the
other case it would not be possible to determine the profile
function with the help of the formula (!4) Since the profile
function present in (3) is not spec1f1ed, no other asSumptions
are made at this step of model formulation. Then, the kinetic
equations have been considered and the collision” terms have
beén defined. We have assumed that the profile function can be
extracted from the transition rates 1n the way analogous to the
extraction of the delta functions B(p -m~ ) for stable partlcies
with mass m, The precise meaning of this operatlon is stated in
the formulae (8) and (9), where the transition rates are con-
nected with the experimentally measurable quantities. Later on,
no assumptlons characteristics for our model are made.

The results of Sec.V are more or less obvious. Macroscopic
characteristics of resonances are those of stable particles
averaged over mass. Anyhow there are two important ingredients

f the formulae (24). It has been shown that the equilibrium
functions of resonances coicide with those of stable particles.
On the other hand, the profile function, i.e., the weight func-

<

We _conclude as follows. The approach based on the distribution
tuﬁctlon definition (3) ‘and the notion of profile function pro-—
vides the self-consistent formalism very similar to the stan-—
dard one and compatible with physical intuition concerning un-
stable particles.

12 . ' -

tion in (24), has been uniquely determined. -

I am grateful to Prof. G.M.Zinovjev and his collaborators for
fruitful discussions.

APPENDIX

Unitarity of the 8 operator provides two equaiities
SBI<3|S|a>,.|2=§|:<B|sla>12=1. | (A1)
From Eq.(Al)we get the bilateral normalization condition
S (1<8I8|a>|" - | <al 8| B>|*) =0 . (A2)

Let us decompose the complete set of states a into states with

definite number, N, of particles'{n§==2{aNl. We rewrite Eq. A2
N
in the form

2( 2 (1B18lag>|? ~1<a,|8IB>|*) 0.
N ay

For determining the profile function.and proving the H-theorem
we have used the assumption that

2 (1<BI8layl® —1<ayl81B>1*)=0, (a3)
a

N

which is stronger than Eq«(A2) arising from unitarity of the
S-matrix. It is seen, howéver, that Eq.(A3)is strictly correct
for interactions invariant under time inversien what is the
case (at least approximately) for strong interactions.

~
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