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'I .,'
 Consid~ring hadron rases, one finds that the st?ndard ~rne­," if, ~ \l ",,~(l'f,~,. tic theory, see, e. g . , 11, developed for the -de s cr i.p t i.on of,,} li'"' "J:.r' 'h" h 
l 

\ "~	 . f," atomic gases is far inadequate for studying hadrons. The majo­tl >\ &t ~ ~~\;, .• ::	 I 

1\'1'1\ rity of hadrons is unstable. The lifetime of hadron resonances 
1~ i%~,.rrl' )'i r is so short that' the decay width is comparable to the particle~/	 ,,,I,:"W::!11"	 \-'1;' 

"r'."" ' 

~ 

,1)	 I'''' mass. The resonances are abundantly produced in hadron-hadron'llt	 iJ}~ ~~~'l.., 
I,(;/; . co l l i s í.orts j s ee , e.g/ 2/-.'Thus,to describe a hadron gas, t he reso­

I,t 
nances 'have to be taken into account.However,for the inclusionI'	 

,1,,,"(" .	 ••11 
'f "	 :l'il l of pnstable particles, the Boltzmann equation has to be rnodified . 

I "\l't I Il-t';:f~ \t'~ { The aim of this paper is to consider such a minimal modification,1:~~, 
f ,I,,, I W ~!I 

t, ,{ 'li' "1'{ of r the s tandard classical (non-quantum) theory ar the pheno­
menological leveI. Namely, besides binary collisíons, we take 

,l- into' account two-particle resonance decays and time-reversed 
processes, i.e., resonance formation. Then, we explicitly inclu­

:IM de	 the effect of resonance mass smearing. 
There are other characteristic features of hadrons which are

" 
s t íl l outside our d i scus s i on , Of par.t í cu l ar importance í.s , in 
our opinion, the fact that many hadrons may be· produced in 
hadron, collisions. Binary collisions dominate at relatively low 
incident energies only. The inclusion of such processes is d~f­
ficult and resembles the problems found in attempts to develop 
the transport theory of dense atomic gases, see, e.g.,/l/. 

The non-trivial equllibrium properties of a'hadron gas have 
been widely discussed, in nurnerous papers by R.Hagedorn and 
collabora~ors /3\4/, The Gibbs statistical mechanics and the idea 
of statistical bootstrap model have been used in their conside­
rations. The most important, in oui:' opinion, Hagedorn's result 
is the predic t ion of limi ting hadron' 'temperature contemporari ly 
interpreted as a temperature of phase t~ansjtion to quark-gluon 
plasma/ 4/ . Because the limiting temperature confirmed experimen­

'~I' tally is of the order of pion mass, the average in~ident energy
'" of hadron collision in the gas being in equilibrium does not

.'
t
I

exceed some hundreds MeV. In this inci4ent energy region binary 
collisions dominate what makes our considerations (limited to 
àecays, resonance formation and binary collisions) applicable 

, j"
",.'.' li' for the descriptíon of hadron gas close .t o equilibrium. Anyhow 

our discussion is .adequate for dilute gases whe r e one can neg-:1}, \. ·,
 lect.the collisions with more than two particles in an initial
~~, l '..1
.' 
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i~ the next section, where the connection with experimentallyOur paper is organized as follows. In Seco 11 we defined the 
~easurable quantities. ~ill be established. . .classical distribution function of resonance and some macrosco­


~ical quantities. The Boltzmann equation is generalized in
 We define the distribution function so that
 
'Seco 111. I; Sec.' IV the R-theorem, is proved and an equilibrium
 
state is considered. The equilibrium characteristics of a hadron
 f (p , x) d3 x d4 P ~ (p2) E , x=:( t.•x) (3) 
gas are discussed in Seco V. In Seco VI we conclude our conside­

gives an average number of resonances being at a moment of timerations. 
t in the space element d3 ; with the four-momentum between p and 
p+d4p. The above definition Will be more obvious lf we write down 
the particle four-flow vector11. TRE DISTRIBUTION FUNCTION OF A RESONANCE 

.NlL(x) = rép ~ (p2) Ifr (p,x) , (4) 
Kinetic Theory" by de Groot, van Leeuwen and van Waert',qv. Be~au­
se the ,energy, ~, anq momentum, P. of a resonanee are not con-

In OUI" considerations we follow the textboolc. "Relativistic 

which ia an analogue of a stable particle four-flow 
2nected by t he mass relation .E2 - p2 = m (c ... k 1:1I h'. 1) the f our>
 

. dimensioJal, relativistic formalism is a more natural framework
 II d3 p u
N, (x ).« r---p f(p,x).

st Efor studying hadron gases than the three-dimensional'nonrelati ­
vistiG one.
 

The Lorentz invariant phase-space element of n stable p~rtiç~
 The definition (3), which pLay s- a crucial role in a I I .our consi-· 
le d2 p! E is no't adeqúate f or a resonance sinee tho cnergy fI.~d " i~ derations, Le ts us employ t he s t andard scheme of t he kinetic 
momentum have to be independent (quasi-independent) variables. theoiy for studying hadron resoQances .. 

, I Dealing wifh decaying particles, we are forced to considerRowever,
 
d3
 ~ a mixture of many sorts of par~icles. Thus, we denote by f1(x,p)-

p 4 2 2' \ (1) . , the distributiop function of an i-th sort of particles. The 
E 

-'- = 2d p Ô (p - m ) e(E) , 
energy-momentum tensor and the entropy four-flow a~e the fol­

where p2 =: ptLp , p=: p/L = (E, p). 10wing
 
The 8bove ~xpression suggests the form of a reBonanee phas~­ lLv 4- 'Il v 

T ( x) = 7rd p i P P ..fi (p, x) , .'space elfment 
. (5) 

d 4p ~ (p2) , ( 2) Il 4 ' 
.S (x)=~ r<:i PiPllfi(p,x)[lnfi(p.x)-l].

where the function ~ , later on called the profile funetion, des­ 1 

cribes the mass smearing of a resonance. We demand Ô to be a LQ­
d4p is the phase-space element Df a stable particle (1) or a re­rentz scalar. t
 

The profile fvnction is assumed to depend on p2 while is ih­ sonance (2). 
? 

dependent of any gas characteri~tics. In particular, we assume 
that.a particle lifetime does not depend on the gas density. In 
general it is not t rue because the density of 'final Beatas of 111. TRE KINETIC EQUATIONS 

i
\a decay process can be significantly different in vacuum and in
 

á dense gas at low temperature. For example, due to the Pauli
 Let us' consider the mixture ·of NS and NU sorts of stable and".. 
quenching, t he lifetime of the N* resonapce decaying into a pion unstab1e particles, respectively. Assuming that a ,resonance de-
and a nucleon can be much longer in nuclear matter than in va­ I cays int'o two 'stable p~rtic~es,. one finds the following set of 
cuum*. We conclude as follows. Assuming t ha t' the profile func­ k i net í.c equations .
 
tion depends on p2 only, we limit our considerations to clas~
 f ssica! gases. The' form of the ~(p2) function will be discussed pUatLfi(p,x) = eiS + D i , i ~ 1,2;.~. N~. (6a) ,. 

*In fact~ the experime~taly measurable lifetime of resonance .and 
in nucleus is shorter, than that in vacuum becau~e of the reso­ \ 

, Pua(l tj . ( p " x) = er+ Dr. j = 1 , 2 , ••• NU, C6b)nançe coltisions with nucleons~ 

'.. 32 " ->
' ­



where Ci is the standard collision term describing the· bin~ry' 
" /5/ Wh ' . 1 d .1nteract1ons, see e.g.,. en a resonance 18 1nvo ve 1n 
a collision, the phase-space element (1) has to be replaced 
by (2). 

NU NB 4 i 2" cf3i\ 
}: (dp/!,.'(p)----.D~ == í 
k=l	 .1' .1 E.1= 1 k 

'[ j-+ik	 "ik-+j, 1 
. f,l ( P j' x) W (p .11 P , Pk) - f i (p , x) fk (Pk ' x) W ' (p , P"k I p) , 

NB N S 'd3 - d3
­u	 Pk.;I r--Pi-D i == I 

, i= 1 k= 1 Ei Ek 

ik-+j ';' j-+ik, 1 
,fi(p,i",x)fk(Pk'x)W[	 (Pi,Pk1p)-fj(p,x)W (P\Pi,Pk)' 

where ,W j-+ ik (Pj Ipi ,'Pk) is the t r ans ít í.on rate for the decay o f 
the rescnance of an j-th sort having four-momentum P j into two 
p~r~~cles o~, i -t~ and k -th s.ort'B with momen,ta Pi arid Pk • ,. 

W1k J (Pi~PkIPl) is the transit10n rate of the 1nverse process OI 

resonance formation. 
Let us rewrite the equation (6b) in the non-covar1ant,- more
 

f ami.Liar, -f orm
 

'	 'CU NB ,Ns 
ja -	 ~ r 3- 3­

-~-- f j ( P , x) + v Vf i ( P , x) = - + I ~ d Pl d P lt •at ,E i= 1 k= 1 

- Wik-+ j (p l'P lp) Wj-+ 1k (pl Pl ,P ) . -(7)
k	 k 

[f. CP -,x) f (p ,x) ------- - Cj(p,x) ---------.---] , 
1 i	 k k EE E EE Ei k	 i k 

where v=p/E.Recalling a.phys1~al interpretation of the distri ­
bution function, one finds from (7) the following connection of 
the transition rates with the m~asurable quantities 

i k j 
( 2 11.)3 W -+ (P i ,Pkl Pj ) d4 ~j (p2)1 E = dqik-+j I· (8)Pj Ll i 

Ivi -~~:I- E i E jE1t	 ' , 

and 

. ik	 I'P i , p') 3- =d!'i -+ ikW.l-+· (p k d3.p (9)
j --~-- d Pi k

-----E-E~E k 
i .1 

where u i k 
-

-+ j is the cross 8ection of j-th resonance formation; 
Ivi - V I is t he relative yelocity o f particles with four-momenta

k 

'" 4 

" 

.~	 ik
P 

i 
,and Pk • r.1-+ s the partial decay width. The p r esence o f : í 

• .f	 a (277)3 coefficient in, the formula .(8) is related to the fact 
that the phase-space elements present in the kinetic equations 
are no t divided by (211)3 while in the uui t s which are used fi = i 

I" 
I' 

~quals unity. Thus, the (211)3 coefficients are ~bsorbed by the 
t r ans.i.t i on rates.. -­

Since a four-momentum is conserved in any: reaction, one can 
wr í t e , 

W.1·~ik/ 1'- ) _.( ,. ) (4)( ) 
. ~ P .I P i ' Pk = a Pj I P i Pk. 8 P j - P i -=-P k '	 ( 1O) 

4
Wik -+ j (p i : P IPj ) == a (p i P k IPj.) s( ) (p j - P i ., Pk ) •	 ( 11) 

lt 

Substituting (10) and (11) in (8) and (9), we determine the 
coefficients a. For the decay process the decay products are 
assumed to be isotropically distributed in the center-of-mass 
of decaying particle. In this way 'we are- arrived tó the formulac 

-	 'fi' (1ik~.1 
;/ ik-+j , ik (4) . 

W (Pi,PkIPj)= 8 (Pj-Pi-Pk)' (12) 
./ . (2TT)3L\.l(p~) 

[-s k .1í 

j-dk. Mj! (4)
W (p I p ,P ) == ------- ( P - P. - P ) , (i3)

j i k L õ '.i. k 
ik 

:.ti' 
where Fik is the Lorentz invariant f~ux factor

,~!~ 
~, " 
(.	 1 - - I 2 2 2 1/2 1 Z: 2 2 2' 2 2 1/2
t Fik == Ei 

E
k Vi-Vk =((PiP~) -PiPk ) ="2 ({Mj'-rn!'-rnk) -4m jrnk )


LJ
 
/ 

M2 - ( .. )2 _ 2 
j = P i + Pk - P j 

í s the Lorentz invariant t wo-rpar t i c Le phase-rspaceLi k 

d3 p ép\. _r i k (4)'1' 277 2 2 2 ,2. 2 2 1/2
L i k = --------...-8 (Pj -Pi-Pk)=-2-,((Mj-mi-rnk) -4rn irnk ) 

~ , ~ Ei E k M j	 '$' 

L and F	 are related by the formula L ik == ~- •Fi k Mj 
t t» 

Let us discuss how to determine ~he profile function. lf we 
assume that the transition rates sa~isfy the detailed balance 

~ 
condi tion ' "" 

" 

..:'	 ik j
f!. "d-+ i k 

(p IPi ,P =W ... (P ,Pkl P ) ,
j k) i j~\ 

-1.'	 5'-.. 
~ 



\ 

r: 

/< one gets	 
\,' 

Lik F'k ik ... jj	 2 1 1 U" 
.,~. (p ) = --- ------, --'-- • (14) 

(2")3 \ M r.l~ikj 

~elow we wí11 discuss the above formula. But now we show another 
way leading to Eq. (14),. We assume that, the t ransi t í.on ra t e s 

... satisfy thebilat~ral normalization copditions 

4 j 2 ik ... j " ~ 4 j 2 [-s í k ( I' ) (15)'7 rd P ~ (p ) w~\ (p i ' Pk I PJ) =;:1 rd P ~ (p ) W P j Pi' Pk 

and 

3	 '3 d3 ~ 
d P i d Pk ' ik ... .I . . Pi Pk j ... ík. 

I r---- W (p. 'PI{ I p.) = I. (-- --- W (p j IPi ,Pk). (16) 
,i,k- E i Ek 1 J i,k E i Ek 

The above expr e s s í.ons related to unitarity of the S --matrix 
are briefly discussed in Appendix. 

Putt'ing (12) and (131 in (1S} and (16), one finds the fol-' 
~owing equations \ / 

"	 ;;­
c	 F ili ... j -, M r j ... ik 

. ik o	 j i 2'I -------- = I. _...:_--~. (p )
 
\. j (2" )3 .I L ik
 

ànd
 
.ik-+J'
FI _ik o -' L,i k
 

i ,k 
. 

( 2~3------- =IM. r j -d k ".
 
,	 i,k J • 

.. 

Because the first equation hfs to be satisfied for any i,k pairs 
while the second one for any j, we get the relation 

F'~k' O' ik-+.1 M .~.l (p2 )< r j -+ í k.
 
~------ =,---}---_...:._-------- ,
 

(2")~
 L i k 

wltich is equivalent to Eq , (14). In this approach the f ormul a 
(IA) ptovides the detaited balanc~ conditio~. Thus, the detail~d 
baldnce occured to be a consequence of the bilater81 non~aliza­
tion conditions (15) and (16), the four-momentum conservat{on 

íartd' the .as sumpt i on of the isotropic d í.s t'r i bu t on of decay produ­
dúcts in tpe center-of-mass of the decaying particle. 

As -the profi le f unc t-i on chã'rac t e.r i ze s a resonance but not; 
a decay chánnel, the formula (14) should gíve the same results 
f or different-' i, k pairs. We cannot r i gorou s Ly prove that t he 

6 

1· 

, f, 

profile function described by (14} is unique. However, we pre­
,s~ntsimplified argumentation and then we show that the i~de­

,", 

pendence Qf i,k indexes is realized for the Brêit-Wigner forro.	 \ 

of	 the cross section.
 
One expects' the following relation
 

Imi k .1 ,2 I m.I'" tk 1 
2 

(17) 
1 mfn .1 1

2 Im j-+f~'I·, 

where mis the transition matrix of the indicated proces~. The 
11 above relation is strictly 'correct when the interaction is
J invariant under tim~ inversion what is the case, at leas~t ap- ' 
'''I'' 
~~	 Rroximately, for strong interactions. ~f the decay width 'ca~ be 

~ ~I 

1\;	 factorized as tollows. 

j i k ik 2
~'l	 r -+ =!m j 

... 1 , (18)
~	 

L i k 
! 
.}I we get from Eq. (17) the condition 
1\\ 
,.~~ ..	 .I .... ik ILFikUik .... j'1	 r ik 
·t 

= -~j.... Y.;-/LP:- '\-~ Ffn u Pn .... .1
 
'1
 ·r 

~ ,I! which makes the formula (13) independent of i,k indexes. However,". 
t he f ac t or i-za t i on (18) is totaly justifiedfor narrow resonances I, 

onl'}. ., 
>;:'" A resonance formation is usually described 'by the Breit ­ ,',I
\'~ Wigner cross settion, see, e.g.,/67

J' 

.\
 
ik .... j
,~! ik .... j n r· r j


'1 1\ " o = --- ------------ ,
 

~,' p*2 (Js.- M )2 + r,2 / 4
 
j1	 2 ' J 

''1' 
i' 

- 2 Fik	 ' 
.~	 wheie P* = --,- is the eM momentum squar.e ~ .JS is the CM energyS	 . 

ik 
,,~	 an~ lj-'l j 

.... a r e t he total and partial decay widths, respecti ­
vely. Mj is the average resonance mass. Substituting the above~ formula in (14), we find ' 

j 2 1 ri 1	 ( )
~ (M j ) =--- ---. 19· 

2 tr M j (M . _ Mj ) 2 + r.2 1 4 
.J J 

# •	 Thus, uniqueness of. the profile function for the Breít-Wigner
l'i 

cross sectio~ has been demonstrated.~: 
Considerations similar t9 those leading, tq the formula (14)

1J, may he repeated for binary collisions. In this case the profile
 
~ 1~ 

func(ion is expressed through the cross sections of reaction .

t' 

\	 " 7 



.... , 

a + Q..... r e sonance + c and the inverse one. Because the profi le (20). Standard c6nsiderations, see, e.g., Ref.S, provide the 
function arising from the binary collisions and the three par­ JUttner equilibrium function, i.e., a relativistic analogue
ticle reactions (resonance fprmation and decay) has to be th~ of	 the Ma~ell-Boltzmann d í.s t r i.bu tion 

I,same, one can get relations betwee~ the cross sections of the 
different processes, where the resonance is involved. 

IV. H-THEOREM AND AN EQUTLIBRIUM STATE 

The entropy proâuction H is 

H= a "s11 =;- ~ (d 1>k ~n fk pILa11 fk • 
_ k 

ASSUTI1ing that the distribution functions satisfy the kinetic 
equ~tions (6), plLa~fk can be replaced by the collision terms 
of ~he,right side of Eq. (6). If we assume that the transition 
rates for binary collisions and those of thre~-particl~ interac­
tions satisfy the bilateral normalization conditions, 
we can consider separately the entropy production re­
sulting from the binary collisions and the three-particle 
reactions. Anyhow it should be stressed that such an assumption 
is stronger than that arisihg from unitrarity of the S-matrix, 
see Appendix. 

With the help of the bilateral normalization conditions one 
finds 

3- j 2 
H=}{B + ~ d3~!. _~_I\ d4p j t1 (p j) . r- Eki,.1 ,k E i 

j-+ik· -[ '-1 11 '] ik ..... .1( 1')1I[K -	 fn K - 1] f j W' (P.i I Pi' P k) + K + rn K - 1 fi fk W Pi' Pk P.i J, 

where HB is the entropy production due to. the binary reactions, 
/5/	 . see,	 e.g., ' 

f i ( P i) f k( Pk )
 
I< == --------------- ,
 

f j .( p j), 
The operations leading to the above formula are quite analogous 
to those described in Ref.S. It is seen that H~o and the entropy 
production vanishes when 

..
 
f i (P i ) fi((I\ ) = fj (p j ) ror Pi +Pk = P

j
• (20)
 

Equilibrium, defined as a maximum entropy state, ís reached 
when the distribution functíons satisfy the functional relation 

8 

g exp ( 11 - uVpv
r;q(p) = (2T')~V T --), (2t)

(t 
~lh'ere g s the numbe r of internaI degrees of freedom 'o f an j --thí 

sort of particles, V is the volume of the system, 'u" is the 
r	 rour-velocity of the system as·a wbole. Thus, the form of the ' 

equilibriu~ distribution functions of stable and unstable par­
ticles is the same. 

At the end of this sectipn let us observe that the decay 
and formatioIl processes provide an additional contribution to 
the entropy production. So, the presence of resonances in a sy­
stem accelerates its equilibration and consequently TIlakes shorter 

' .. the relaxation time. 

V.	 ~~CROSCOPIC CHARACTERISTICS DF TH~ HADRON GAS
 
IN EQUILIBRIUM
 

In this section we consider macroscopic characteristics 
like dens.í ty and nt erna l energy of the ga s, We focus our a t t err-'í 

tion on the resonance compànent of the gas. For simplicity we 
assume t.bat particles do not carry any conserved charges. Thus, 
the numbers of particles are unlimited and the chemical potentiqls 
of alI typ~s of particle~ are eq~al to zero. 

Using'the formulae (4) and (S), one finds the density and 
the internaI energy density of an j-th sort of resonance. 

nj = (d4p ~j (p2) Ef,rQ(p). V,I == (d4p L\,1 (p2~ E2 r t .Q( p ) . (22) 
\ 

The equilibrium distribution functioIT (21) in the rest fr~me 
of the system (u V = (1,0,0,0)) for 11 = O is 

f eq ( p ) _ 1 -E/Tj	 --_._-~ • (23) r 
(1) (271)3Y 

I
l In the formulae (22) we change the variables (E,p) ..... (M.p). where 

" M2 = E2 - p2.Putting (23) in (22) and integrating with respect to 
momenta, we get 

00 '2 1 2 
n j =	 r dMM~.J (M ) 1----- TM K (M/T) I, 

.	 2 2 
o 271 y 

9 



.....\' 

\: 
I. 

~~. /' 

U j = r'dMM~j (M 2 ) I : ' T 2 M 2 [....M.- K l(M/T) + 3K ( MI T ) ] I, (24)
2 

~ 2" V T 

where K1 ar;t-d K2 a re the so-oalled MacDonald func t i ons /7/· • In the 
parantheses under the integraIs (24) one recognizes the density 
ànd, internaI energy density of stable particles, se€" e.g., /5/ r 

The resonance characteristics are those of stable particles \ 
averaged 'over the mass. One1may wonder, what is the normaliza­
tion ~f the profile function. The explicit calculàtion shows that 
for t he Br:eit-Higner form (19) rdMM~(M)= 1. However , in this 
case ·the lower limit "of the above integral has to be -shifted 
to minus infinity. This operation is correct for the resonances 
wi th M»f·.Indeed the Brei t;;-Wigner formula is of physical meaning 
for "narrow" r e s'onances only. 

Substituting the Breit-Wigner profile function (19) in the 
formulae (24), we obtain 

I f 

1 Tfj M 2
 
n =----

00 

(dM . K

2 2(M/T) 

, 
j 4 " 3 V O (M _ Mj ) _ f j2 I 4 

2
1 T í j 00 M2 /M

Uj ~ ~- --- r dM l- [ 3K
2

(M / T) + -- K 1(M / T)] • 

4"3 V O (M-MJ)2 +f:/4 \ T 

~ince the above integraIs cannot be calculated analyticaJ)y, let 
us consider two limits. 

-' 2 2For Mj»fj ànd T»fj tlte functions M K2 and M [3K 2 + (M/ T ) K1], 

respectively, taken at M::: Mj can be t r ans f erred f rom the integ­
raIs. Elementary integrati.on provides the results 

I I 

-2
 
1 TM j ­

n l =----K2 ( M . / T ) ,
 
. 2"2 'v .1' 

T2M~ M., _ (25')\ 1 .I ~ - .I .
U j =----- [t>K (M. / T) + --- K (M. / T)] . 

. 2"2 V 2 J T 1 J 

~s it would be expected, we Ihave recovered the formulae foj 
stable particles. It should be stressed that this result is not 
quite trivial as the ptocedure of determining the -prof i Le f unc-: 
tion is not tFivial. 

Unstability?hould strongly mani f e s t itself at fi »T.Because, 
we are interested in the qualitative effects of the'mass smea­
ring we use t he Brei t-Wigner formula for ·the "wide" resonance 
what,is not quite correct: See the comment at t~e end of this 
section. We assume· t'ha t ~i is of the order of Mj what addi tio­

10 ,/ 

na l l.y prov·ides M'j'» T. Under such condi t.í.orrs we can put t he . _. 2 2 1 . 
r f~nction [(M-Mj) +r..l/4r taken at M=O in front o f the 

trntegrals. Then· .... 

4 5 
3 T f.1 3 T f.1 

n j == --------- U·';;--------. (1 p) 
, 8"2 V M: + f.2'/4 ' .J 2'"2V M~ +- f

j 
2 / 4 

, .1 .I . 

I 
I 
t._ \ We "have used the equality /7I 

00 a-l a-2 a+v. a-v
(x K (x) dx = 2 f (------) f (-'---),

v 22' 
O 

wher e f(z)' is the Euler gamma func tion and Re e> I Re v I • Let us 
compare the forrnula.e (26) with analogous expressions for .stable 
part ic les (forrnul~e (25) for 1\1 j » .T. ) • I 

st _ 1 TM.1 3/2 .... M.I/ T [ ~_!.-J' . n =: --o (--) e 1 + ~ _ ,
 
: ,I V 2" 8 M
 

j " (27) 
, st T M 3/2 - ":" M /T 27 T 
U ' ' ;; _.!- (--j ) - M . e j [1 + - ";--..:--] •
 

.I V 2" ,.1 8 M.
 
".1 

,. 

~We see that the concentrati~n 'of the resonances of average mass 
M highly exc~eds the concentrati~h of stable particle~wit~ ma~s 
~. . 

It is the well-known experimental fact/ 2/ ~hat in hadr0n-had­
ron co-3-lisi'ons at hign energy there is an abundant resonance . 
production as 00mpared to pion yield. This abundance seems to 
oecrease with incident energy. For many authors a big yield of 
relatívely massive resonances was a crucial argument ~gainst 

thermodynaclical approaches to pa~tic)e production in hadt~n co1­
lisions since it· was asserted ~h~t the generation of massive 
partic les was exponent a l l.y suppres sed according to the ,for- Ií 

. mula (2I). As shown, the ~otmula (27~ can highly understimate 
the resonance yield what seems to invalidate the above argumen- ~ 
t a t i.on ; \ . : 

From the formulae (2&1 one cqn find the energy per particle \ 
for a .hwide"· resonance- at low .temperature & = KT . The above 
e~pression resembles the oue for .massless pa~ticles. It shows 
h9 W í.mpor t ant the effect of mass smearing can be , 

à~ th~ end of this section the ~ornrnent is in order. Our re­
su l ts concerning "wide" resonances are based on the B,rei-Wigner 
profile function (J9). There is a cornrnon concensus. that the 

'"
 

';.. 

J 

\. 

~.. 
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energy dl s.t r í.butí.on, of the resonance should be of the Brei t ­
\Jigner form-near a maximum of the mass distribution. The 'problem 

of distribution "taí l s ", which are import'ant for the validity 
\ of the -formulae (26), 'is cumbersome. The r e are rigotous argu­
m~nts ~hat the "tails" ~hoqld deviate irom the-Breit-Wigner form 
while it is not clear how to modify them. For extensive discus-, 
sion of the problem which, is, on the other hand,. related to 
a non-exponential charactér ôf the decay làw, see the review/ 8/ . 
In the context of haqfon resonançes the problem of mass dis­
tribution has been discussed in Ref.9. 

We conclud~ this section as <follows. While the formulae (26) 
, may be- Lriva l í d due to uncer t a í'nt i.es of the Bre í t.-Rfgne r d í s t r í.« 

bution "tails"; the qualitative -rE!sults of this section seem 
-to be correc t . 

" 

VI. CONCLUDING RE}~RKS 

Let us discuss the assumptions Leading to Our kinetic theory 
model of hadron gas. The first important assumption occurs in 
the distrib~tion function definitiori (3). Narnely, we assume that 

íthe profile function Ls. po s í t í on-dndependcnt , .As t has been ar­
gued in this way, quantum effects have been neglected. In the 
other case it would not be possible to determine the profile 
function with the help of the formula (14). Since the profile 
functiog present in (3) is noê sp~cified, no otqer as~mptions 
are made at r h í s step of model -f ormu.La t í.on , Then, the ]dnetic 
equations have been considered and the collision-terms have 
beén ãef ned , We have as sumed tha t the profile f unc t i-on- can beí 

extracted from the transition rates in the way ànalogous to the 
extraction of the delta functions o(p2 - m2 ) for s t ab l.e par t í c l es 
with mass m , The precise. meaning of this operat i ori is stated in 
the formulae (8) and (9), where the transition rates are con­
nected ~ith the experimentally measurable quantities. Later on, 
no ~ssumptions characteristics for our model ar~ made. 

The reshlts of Sec.V are more or less oDvious. Macroscopic 
charac t e r í s tícs of re"~onance~ are those of stable particles 
averaged over mass. Anyhow the~e are two important ingredients 
tf the formulae (24). It has been shown that the e~u1librium 
functions df resonan~es coicide with those of stab}e particles. 
On the other hand, the profile fynction, i.e., the weight func-

Itlon in (24), has been uniquely determined. 
We conclude as follows. The approach based on the distribution 

func~ion definition (3}and the notion of profile function pro­
vides the self-consistent formalism very similar to the stan­
dard one and compatibl~ with ~hysical intuition concerning un­
stable particles. 

12 , 

-,
 

I am grateful to Prof. G.M.Zinovjev and his collaborators for 
fruitful di~cussions. 

APPENDIX 

,Unitarity of the 8 pperator provides two equaiities 

II<BI8Ia>.! 
2 =L\<B\Sla>l 2 =1.	 (AI)

A a 

From Eq.(AI)we get the bilateral normalization condition 

~(1<8ISla>12 -1<aI818>1 2 ) = 0 .	 (A2) 
a 

Let us decompose the complete set of states a into states with
 
definite number, N, Df particles lal=IlaNl. We rewrite 'Eq. AZ
 

I N
 
in the form
 

I( I (\<BISlaN>I~ -1<aNI818>12))==o.
N u

N 

For determining the profile function.and proving the R-theorem
 
we have used the assumption that
 

~ (I <8~ SI aNI 
2 --I <aNI 818>1 2 ) = O •	 (A3)

aN 
which is stronger than Eq,(A2)arising from unitarity of the
 
S~matrix. It is seen, however, that Eq.(AJ)is strictly correct
 
for interacti~ns invariant under time inversien what is the
 
case (at least appro~imately) for strong interactionsr
 

<, 
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11pya •~HHCKH C • 
K TeOpHH TP8HCnopTa aApoHHWX ra30B 

E2-85-85 

ApryMeHTHpyeTCJI C)IWieCTBeHHaR pom. aApoHHWX pesoHaHcoa a onJ)eAeneHMM 
xapaKTepHCTHK aAPQHHOrO rasa. 8 pa6oTe paSBH&aeTCft KHHeTH~eCKaft MOAenb 
aApOHOB. C no~bm ~YHK~MH n~HnR, KOTOpaft . ftSOReTCft aHanorOM AenbTa-.yHK~HM 
MaCCOBOH OO&ePXHOCTM Anft CTa6HObHWX ~aCTH~, OOpeAenReTCft KnaCCH~eCKaft He­
KBaHTOSaR ~YHK~HR pacnpeAent:HMR pe30HaHCOB. AnR y~eTa npo~eCCOB ~pMMpoBaHHft 
H pacnaAOB pe30HaHCOB ~aeTCft ypa&HeHHe 6onb~MaH8. 4To6W onpeAenHTb 
HeH3BeCTHyo ~YHK~MD n~,npeAnonaraeTCR, ~TO CKOPQCTH nepeXOAa YAO&neT­
BOpRDT yCnQBMD ABYCTOpoHHeH HOpMMPQBKM HnH npHH~Hny AeTaObHOrO paBHOBeCMR. 
~YHK~Mft npo¢MnR Bwpa.aeTCft ~epe3 Ce~eHHe ~PMHpoSaHHR pe30HaHca H WHPMHY 
ero pacnaAa . AoKasaHa H-TeopeMa H noKa3aHo, ~To ~pMa paaHoaecHOH ~yHK~HM 
pacnpeAeneHHft pe30HaHCOB COBnaAaeT C ~YHK~HeH pacnpeAent:HMft CTa6HObHoH 
~acTH~w. Hsy~aoTCR paaHoaecHwe xapaKTepHCTHKH a~poHHoro rasa H AeMOHCTPHpyeT 
Cft Ba*HOCTb 3C!MIIeKTa HeonJ)eAeneHttOCHI M8CCW peSOHaHCa. 

Pa6oTa awnonHeHa a na6opaTOPHH TeopeTH~eCKOH ~H3HKH OHRH. 

Coo6-.eHHe 06r.e.ti)IBeBBOro HBC'niTYT8 Jlll.epltiX HCcn~NJIII'A • lly«<aa 1985 

Mrdwczynski S. E2-85-85 
Towards Transport Theory of Hadron Gases 

An impOrtan t role of hadron resonances for determ ining the characteristics 
of hadron gases is argued. A kinetic theory model of hadron gas is developed. 
A classical, non-quantum, distribution function of a resonance is defi­
ned with the help of the profile function being an analogue of the mass 
shell delta function of stable particles. The Boltzmann equation is ge­
neral ized to include the resonance decay and resonance formation processes. 
To dete rm ine the unknown profile function, the transition rates are as-
sumed to satisfy the bilateral normali zation or the detailed balance con­
dition. The profile function is expressed th rough the resonance formation 
cross section and the decay width . The H-theorem is proved, and it is shown 
tha t the form of the equilibrium distribution function of a resonance coin­
cides with the one of a stable particle. Macroscopic equilibrium charac­
t eristics a re studied. Significance of the resonance mass smearing effect 
is demonstrated . 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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