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1. Introduction 

One of the most promising approaches to study the infrared be­
haviour of quantum chromodyriamics is the attempt to formulate the 
non-Abelian ga·uge theory in the loop-space. Instead of the gauge­
-dependent entities and Yang-Mills equations one studies in such a 
formulation the properties of the gauge-invariant functionals 

( 1) W[c ]"' i Tr<ol TPex.p(iSJd><-r A~(x))lo>· 

(the Nilson loops) and functional equations for W[c] 11 •21. This 
approach, however, faces many problems. In particular, W[c] is a non­
local divergent functional of the gauge·-potential: it cannot.be renor­
mali~ed by the ordinary R-operation /J/ restricted to the local ope­
rators. The renormalization properties of ·w[cJ for an arbitrary con­
tour C were studied, e.g., in refs./4-s/, and the main conclusion 
thereof is the following: W[c] is multiplicatively renormalizable to 
all orders of perturbation theory (PT). Llore specifically, if the loop' 
is smooth and simple (i.e., without self-intersections) the

0

divergent 
quantity W[c] can be made finite by expressing it in terms of the 
renormalized QCD coupling constant and multiplying the result by 
e1<p(-KL(c)). where K is a linear divergence end l(c) the length 
of the contour C • It was also proved that the Wilson loop is multi­
plicatively renormalized. in the case it has a finite number of self­
-intersection points end cusps corresponding to angles / oi} (the re­
levant infinities are referred to es cusp singularities). 

In the present paper we restrict our analysis to a simple loop 
(without self-intersections) end study the structure of the·cusp sin­
gularities in higher ordsrs of PT. In sect. 2 we define the regulari­
zation procedure for singularities that appear in a perturbative ex­
pansion of eq.(1), we construct there also the subtraction procedure 
and study some properties of both. In sect. 3 we calculate the cusp 
anomalous dimension to order o(.s and formulate the general scheme 
for explicit calculations. In sect. 4 we present our results for the 
two-loop cusp anomalous dimension. In sect. 5 we study the general 



form of the cusp anomalous dimension in the limit o >> f (where 0 
is the Minkowskian cusp angle) for an arbitrary order of PT. In sect. 
6 we analyze some properties of our results for the "timelike" cusp 
angles r?lated to the Glauber singularities. In conclusion we for­
mulate main results of the paper. 

2. Regularization and Subtraction Procedure 

If one expands WfcJ in the PT series 

W[cJ 1 {~ • n..c. /-'-1 ,i; f<n 11 )(2) 
• t- ti L<...•iP ':f'dx1 ... ~dxn v-c()(1 > ... '> x,..) Tr Eiu ... ,i, 11 (x1, ... , x,. 

l'\•2 C C 11' 1- . 

th~re appear the ultraviolet (UV) singularities both from the ultra­
violet integration regions for the Green function <=i ,.1 ... ~ 0

(x1,. .. , Xn) 

and from "contraction into a point" of some set of contour integra­
tions. In what follows it is always implied that all integrals are 
dimensionally regularized. To analyze the UV divergences of eq.(2), 
we incorporate the·approacb / 4/ in which the one-dimensional fermions 
living on the contour C are introduced. In this approach eq.(2) can 
be rewritten as 

W[c) = <o(T~(O-rto)lo> 

• j'l)l(<T)'Z)2£c:r)'2l~ 7:) c '.2) c QKf (,s,,-,.1 (4,c,c)-t- i. s('-f{ (A,i!,~» 

where the modified action Se.ft'. is 
L ~ 

Se.f{. = • 4·da- r~(<T)'o~ -i?(6') + •:J ~(<T) x,.._ia-) Ar- c x(<r)) '2(cs)] (J) 

and furthermore the boundary conditions x,-. (L) =)(('-Co) , -?:tl)=- -r(o) 
are imposed. 

To study the renormalization properties of the local Lagrangian 
(J), one can apply the ordinary R-oparation since the counterterms 
resulting from its application have (for a smooth simple loop C ) 
structure of the original Lagrangian 141• In other words, after the 
renormalization one bas . 

. - 11 ~ - it, -1 .3_,. - §. 
A➔ AR=-i!~ z A, C ➔ CR=-z'~ zc, 'J ➔ [JQ= -i?1 i'!>z('- 2'J 

-f F - 1'2 / 
0( ➔ O(R = .!'~ O{ I ~lO-) ➔ z?Rto-) =(-r~ ) i'l<r) I e: ~ <t-Yl 

and incorporating in addition the Slavnov-Taylor condition 

-~/~- F/ F -21 I i?!, - i!'1 .i?,5, - -21 i?!, 

(4) 

~ F 
(where -21, -.?1 , i' 1 are the renormalization constants for the three-
-gluon, four-gluon and fermion-gluon vertices, respectively) one ob­
tains the expression for the Wilson loop (defined on a smooth con-
tour) which is finite in the limit E-t-O, E= 4-Yl being the di-
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\ 
l 
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mensional regularization parameter*). Thus, for a simple smooth con­
tour the renormalized contour average Wl?(c_;~Q,f) is given by 

Wic;3R,f-(.)=e.m w(c;ltR,t<;E-), W(C;'jR,f-l,E)= Q W(c;§,e:), (5) 
I E~o , 

where W is a regularized, but not renormalized r.h.s. of eq.(2) 
and f a subtraction point. In what follows we use the MS subtrac­
tion scheme /g/ for which the renormalization constants 'i!t, ~: are 
known in Feynman gauge at the two-loop level /?I. · 

However, if the loop C has a cusp characterized by angle o , 
then WR even after applying to it the R-operation defined by eqs. 
(4),(5) possesses in addition the cusp singularities resulting from 
integration in vicinity of the cusp. The relevant divergent subgraphs 
are those containing a singular point (the cusp) and being two-par­
ticle (rainbow) irreducible with respect to the lines corresponding 
to the one-dimensional fermions. General structure of these sub­
graphs is shown in fig. 1. To construct the renormalized Wilson loop, 
we incorforate in this case the subtraction procedure k~ proposed in 
refs./2, I. The action of Ky on the functional W(c;13R,~,{;) defi­
ned _in eq.(5) produces the renormalized contour average with the cusp 
singularities subtracted for each divergent subgraph of fig.· 1, 

WR(c~;~i:i,1-<,cl!');: e.,,, K'1r W(c~;~Q,1-1, E}= l?;n, k,_ R W( C;r; ~' E ), 
! E ➔O I E➔O 

(6) 

where Cr denotes a generalized subtraction point of the ky procedure. 
The cusp divergences are multiplicatively renormalizable, and the ac­
tion of Kr on a loop functional containing a single cusp singularity 
is defined by 

k;r W(c;r; ~R ,t-t,€) = zC<.t._/fJQ, ~;{!,elf,€) W (Cr, ~R, f, E-). (7) 

The r.h.s. of eq.(6) would be finite if then-th term of the PT expan-
sion 2=r('JR;;q.,,c,-,E)· f 82

h ~"' equals (up to finite terms and .,.o 
taken with an opposite sign) the cusp divergence of the whole n-th-
-order graph contributing to W with all subd-ivergances subtracted 
before. Fixing the finite part of ~n one fixes a particular Kzr sub­
traction scheme. We shall use the two schemes described b'elow. 

The cusp singularities of an arbitrary subgraph are given. in the 
dimensional regularization by a sum of pole terms. If one defines ~n 

be given just by the sum of the poles 

•) The regularization used in .ref./5/ in contradistinction to the di­
mensional regularization violates the chiral invariance of the Z­
fields Lagrangian and requires an additional renormalization of their 
mass in eq.(4). .• 

3 



n. -K 
7, ('Y E-) = '> E Cl (.Y) z=I'\ I £_ l::>'1 

lc:•1 
(8) 

MS one arrives at an MS-like scheme to be referred to further as K~ , 
with the generalized subtraction point c.,- coinciding with the R-ope­
ration parameter f- 2 of eq. (5). Note that the coefficients of· expan.,­
sion (8) aa well as .en 1 s themselves depend in the J<,;5 scheme only 
on the cusp angle cf , since the UV singularities of eq.(2) for an 
arbitrary loop C depend only on the first derivative Xftr:r) / 8/, 

i.e. on the cusp angle in our case. 0.Ving to this important pro­
perty of the contour averages we can define - ~n corresponding to 
some arbitrary graph w,,· ordered along C~ to be equal to the contri­
bution of the same graph (with the subdivergences subtracted before­
hand) but ordered a long another fixed contour Cir .also possessing • 
a single cusp point with angle o and having the length 1/f'- • It is 
easy to realize that in the subtraction scheme k 1-;oM defined in this 
way (and being an analog of the standard MOM-scheme) the following 
boundary condition 

WR (c\,, ~R, f, c\.) =-1 <9> 

is fulfilled. Furthermore 
-1 , -1 

i:=sr(f/R,o'if ,Cr,E)=(w(c;,;dQ,(',E)) =(w(i,o,Uit 'ilR, E)) , (10) 

where an arbitrary loop is characterized by its length, cusp angle a, 
and by a s'et of some dimensionless parameters lt} • 

The subtraction procedures described above posses all the neces­
sary properties of the R-operation, and as a result, the renormali­
zed loop averafe, eq.(6), satisfies the following renormalization 
group equation 2/: 

(f~r ..-f(~fa)~~R + rwsr ('lf,~rJ)W~(Lf,cf,i?~,;)1<)=-0, (11) 

where the anomalous dimension is given by 

cl "" 'c..sr(a,@R)= - e..rri t'l ~ w(cr,~R.i,t,E). (12) 
e~o .{~r,<, 

As emphasized above, r""'•r depends only on a single contour parameter, 
the cusp angle 7f • 

Our ultimate goal is the calculation of the anomalous dimension 
in higher orders· of PT. Some of its general properties can be estab­
lished on the basis of the exponentiation theorem of refs.18•101 ha­
ving a straightforNard generalization onto arbitrary contour averages 
of eq.(2). The theorem amounts to the statement that the dimensionally 
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regularized but nonrenormalized contour average W[c] can be repre­
sented in the form 

W(c ;3,e-) = <exp( f c1.; L c..,<w) Fn<w>), (13) 
n•i WEWln) , 

where summation in the exponential is over all diagrams w' of the 
set W(n) of the two-particle (rainbow) irreducible (2PI) contour 
averages of an n-th order of PT. (It is straightforward to observe 
that the criterion of the two-particle irreducibility coincides with 
the definition of ''webs" given in ref/ 101). Furthermore, Fn(w) 
denotes a contour intergral present in the expression for W and 

Cnlw) the "maximally non-Abelian" J1o/ or the "colour-connected" 
1 111 part of the colour factor corresponding to the contribution 
yielded by the diagram W to the total expression for the contour 
average, eq.(13). For an n-th order in d 6 there exists an estimate 

C'n lw) CF 11/·n-1 ( 14) 

(exact definition of C 11 is given in ref/111). The diagrams whose 
colour factor does not possess a term of eq. (14) type do not contri­
bute to the sum over W in eq.(13). 

Of course, eq.(13) is only a formal relation unleas the renor­
malization prescription and the renormalized analogue of eq.(13) are 
defined. We are interested in loops possessing the cusp singularities. 
To this end we apply to both sides of eq.(12) the operation kyQ int-

roduced above. Note now that the expone~tial factor in eq.(13) is given 
by a sum of contour integrals. Hence, the transformation given by eq. 
(4) is sufficient for a consistent renormalizat'ion, i.e., 

Rw(c ;~,E)=<cxp(I_~;:1 L.. CnlW) QFnlw))· 
"•1 W(;Wln) 

Denoting 
n '2p1 2PI ~ 2f'l ) 

o(s Fn(W)= wn (w,c'/f;3,E), Rwn = wn (w,c;r;~R,(-l,G 

we find that . 
~ ) ( 00 

- • ~ 2 PI ) W(c11,'iJR,~,E =exp[. I_ c,.cw)Wn (w,ci; 'i/eY•,E) • 
'"1 wEW'ln) I 

( 15) 

Just like in the above discussion, the r.h.s. of eq .• (15) possesses 
the noncompensated UV poles related to the cusp singularities remo­

MOM ved by the l<"/f -operation. Consider first the action of the /("If -

procedure on eq.(15). By virtue of eq.(10) we have 
MOM~ ( ~ - )-1 ...., ( ) K11 w(ca-;~R.f,E-)= W(Crj'JR,f,E) \,y c"lf;'JR,f-<,E' 

f 
"" . [~ 2i'I ~ 2 PJ: ]} 

=exp L. L Cn(w) wn (w,Cy;SR,1-1,E)-Wn (W,Ccr;~R,k,'=) ' 
n.a,( WEWlY'I) I I 

(16) 
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where it is take~ into account that all the topologically equivalent 
loops possessing the cusp singularity have the same colour factor 
cn<w). Note now that the 2PI contour averages present in tha expo­
nential factor of eq.(16) have no divergent subgraphs, and the ac­
tion of the subtraction procedure K,;1°,..., in this case amounts to the 
subtraction of the contribution of the same graph containing a sing­
le pole -1;E but ordered along c\, , i.e., 
~2Pr . ~ 2PI - MOM~ 2PI 
WI! (w,ci,,~R,f,E-)-Wn (w,c'll';~Q,~,1:)=k'lf wn (w,c.lf;:}R,f,E-) 

and, hence 

( _ ) n. (r ') ) . MOM 2PJ( V Wn C'll';~R,1-1,CT ·= ~n, l?xp L L_ CTI\W 1(7$ (? W~ W,Cll";a,€) ( ) 
><. I ~-.o "•1 w«wl") ., o 17 

( °" 2PJ _ 
-: exp L. L Cn (W) We n (w, ell"., 'JR /.(. C'lJ )) • 

r1;c WEW<n) , 'f, 

The validity of this important relation in the J< ;15 -schem~ 
is not obvious because of the absence of the analogue of eq.(10) 
for this scheme. However, it can be demonstrated (the proof is given 
in the Appendix) that in this case there exists a relation between 
the renormalization constants for the cusp singularities and the 
pole part of the 2PI contour averages: 

Z MS ( ) (- ~ , "'2PI , . ) 
C<-1.sp 5R,o,t,E =exp-LL c,,(w)Wn (w,clf;:/Q,r,G)j . (18) 

n•i WEW(") oees a 
Ao a result, P 

MS = 
k'lf QW(clf;~,E-)=eKp(I. L c.,(w)kMSR w2f'I(w,c jCI fJ. (18b) 

~•t W€W(h) ¥ '1 If </I ~ 

Thus, the exponentiation -theorem (13) is valid for the renormalized 
contour averages at least within the framework of the two subtraction 
procedures used in the present paper: 

W1/cy;~12'f.i.,c1 )= ex.p(w.t'\c~;'iJR.~, cy)), (19) 

where 
2Pl n. , , 2 PI Wll. = c-i~ L L Cn\W) K,r Q W . 

~ ➔ O h'7.1 W(;W(h) t, 

Incorporating now the RG equation for the nonrenormalized con­
tour averages one obtains from eq.(19) the equation for w~PI: 

( 
'il "iJ ) 2PI _ hr- +t<~R)'il§R WR (cr,';JR,~,ci,)=-- rCLt.,/o,~Q) (20) 

which has the following important conse1uences1 
a) Using the explicit form of w:P we obtain_the relation bet-

ween the cusp anomalous dimension and the contribution of the 2PI 
contour integrals 

6 

; 

\' 

00 
, ,J._ 2Pl -r "'-s.p(?f,~R) -=-I_ L.. Cn tw) ,{e,;f<. ~ rt (w, c,-; fjR,f-', C -r) 

"'~f W'fi:W{h) \ , 

ll. ~ , ti.. W,.._, 2f>I( ) 
=-c.onL-L.. c.,cv),n w,c 1 ;gR,M,E. 

~ ... o ""I w~w<"l ""<l>lf n I 

(21) 

This means that r=•rc~;~R), firat, as expected, does not depend on 
the generalized subtraction point c~ and, second, in an n-th or­
der of the PT series expansion it contains only the "maximally non­
-Abelian" 1101 or "colour-connected" 1111 colour factora. In parti­
cular, in the QED case eq.(21) contains only the first term of the 
series. 

b) The. general form of the solution of eq.(20) is 
~R(f") 

,,.,ZPI( . - )= w2PI( . - -)- jd fc,,_~<-r,~n. (22) 
VVR Ca,~j;?,r,c1' '1 c:ir,'JR,f'-,C1r _!'J b(a) 

. ~R(f") r " 
2PI 

The expression for WR ~ontains the f -dependence in BQ and in 
a single logarithm e:,f , and there exists some point · f • where 

Wt1
(cir;~R,f,cir)=O• (23) 

Hence, the general solution of eq.(11) can be written as 
. '.JR(f) . 

( J r«<•r(Y,~)) 
WR (cl'; 'JR ,t<, cy) =- exp - .lg c. , 

~R!f) f' 9) 

(24) 

where F is the solution of eq.(23) depending on the 
to WR .only from 2PI contour ~verages of eq.(19). 

contribution 

J. One-Loop Approximation 

In the preceding section we established that the cusp_anomalous 
dimension depends only on a single characteristics of the loop, the 
cusp angle. Hence, to calculate it, one can use the simplest loop 
shown in fig. 2 formed by two lines and closed at infinity. Further­
more, we restrict our analysis to the 2PI graphs yielding a nonzero 
contribution to the expansion (21). 

To begin with, we formulate firat the Feynman rules for the 
modified action eq.(J), in the case of the contour of fig~ 2 both in 
momentum-and configuration representations•). 

rJ Transformation from the configuration space into the momentum one 
for the one-dimensional fermions is defined by the relation 

"" •'l""-e:o- ""'5"'e -,ea-
-\'. le.)= Ja.a-e +(er) , -{-to-)= z:;;: e -f<e) 

a 

.7 



The latter has the dimension n = 4- E- for gluonic lines and is one­
dimensional for the ~ -fermions. In addition to ordinary QCD gluon 
vertices eq.(3) contains two other elements, viz., the propagator of 
one-dimensional fermions and the vertex describing the interaction 
between gluona and fermions: 

e 

t I( s,. A 

e e' •~ nr Ar-tns) 

s, (l(s2- 5 1) 
~ 

e+iE 

"" I ,~nr-Ar<1.:)'o(e+ Ci:::1'"1)-e) 

(25) 

where s. 11/'- = ( Pr, qr) is one of the vectors characterizing the direc­
tions of the- two lines shown in fig. 2 •. It is worth noting here that 
fig. 2 may be treated as the amplitude of elastic scattering on a 
singlet potential of an on -case-shell (l =0) one-dimensional fermion. 
The contributions to this amplitude are due to both the self-energy 
corrections.[(e)= I1o)t- ~~<o)e-t .•. to the fermion li~ea and vertex correc-
tions r(e,e'; '11') • The latter satisfy the equality 

oI. £e)/ r (o,c ;o) =- -- ' 
de e.o 

following from the gauge properties of eq.(3). Hence, the total re­
sult for the angular singularity of the ~iagram shown in fig. 2 is 
given by 

r(o,o,r)t-I. 1e)/ = rco,0, 1 )·- rco,o;o) 
e e:o 

(26) 

and to calculate it one can consider only the vertex corrections 
which in the lowest nontrivial order in the strong coupling constant 
~s are determined by the diagram shown in fig. 3a. In the following 
the k-?; RMS subtraction procedure is used. 

The regularized expression for the contribution of the diagram 
3a in Feynman gauge is 

2 rl1-i) 4-n
00 00 

2 -1-1 
'111.a..=(i~)<pq)cF 4",,-1½ f J"'-sJ.t.-1:[(ps-rq-t-)-io] . 

Using the scaling transformation s-t-/;- = '>. , .s = 'AX one can re-
write it as 

rtll-i) 4 °" 1 1-.!! 
'l?!"-::(•~j)2<pq)c,= 4:~ f'--ns:~-3JJ.xt(fX+q>c;}2-,0] z (27) 

0 0 

where the notation X = i- )( is introduced. Generally speaking, 
the integral over A appearing in eq.(27) does not exists because 
it converges on the lower (ultraviolet) limit only if l't. < 4 where­
as on the upper (infrared) limit it converges only for n.-, 4 • The 
appearance of the IR divergences is a penalty for the (relative) 
simplicity of the contour chosen since the infinite length of this 
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contour just determines the essential scale for wavelengths of the 
gluona exchanged by the one-dimensional fermions. To define the A -
integral of eq.(27) correctly in the IR region, one can use another 
regularization scheme different from the dimensional one. More speci­
fically, as an alternative scheme we use the fictitiona gluon mass 

A , i.e., the following modification of the gluon propagator in 
the momentum representation 

1 
Kz +•O - l<~ 1\2 

... io 

or, in the configuration representation 

• ' 1-i- .€. € 
• i '("·)

2
ti. 2 irEv ( ✓ z..) 

411z -xz .. io - 411 2-e -if,..;o • cos. 4 "-1+-! /\ .- x .... o ' 

where ki+~ is the McDonal~ function. 

(28a) 

(28b) 

Calculati.on in this scheme allows one to define the ?. -integ-
rel of eq. (27) as 

4-nJ°" ,0, _ f >,."--~ -
" 

_1 (L)4-n 
4-n /\ 

(29) 

where /\ has just the meaning of the IR cut-off parameter (i.e., 
the scale, inverse to the contour length L : I\ ~ 1 IL ) • The X -
integral remaining in eq.(27) can be easily obteined by using the 
following angular variables 

xfpz.+ x./q'-e'"' · 2</, 
= e )( JpL + x ..[cjt..r;;t~ 

The angle 7f between p and 
is defined by 

(pq) 
cha = ,JpZqi 

~ .{X - - ch <I, d.4 
(Px-tq>i)2 - sl-.4 (30) 

q (fig. 2) in the Minkowski space 

(31) 

The'correaponding Euclidean Tesults can be· obtained by a mere rede­
finition of the angles 

~ M = l o E • ( 32) 

The final result for the renormalized contribution of the diagram 
3a (up to the irrelevant finite part) is 

'l?la,R (~,9~,f/A)-= k;1sRM5,n"- =- ~ ci:~dh-a-~ ~: ' (33) 

where ol.s.= g: /4-it" • Taking into account also eq.(26) we find 
the one-l~op contribution to the exponential factor in eq. (19) 

9 



2PI o( 1-1.2 
W R.,onc,-<!oc/ C.y j ~R ,f) = - 2: CF (.rciho--1) '2t, ~ (34) 

and the one-loop cusp anomalous dimension 

rcu,.p,cne-l¼x,,r ("lf,'ifa)= ~.SCF ('J'"Ciha--1) 
(35) 

4. ~o-Loop Approximation 

In the ~£ order the colour factor entering into eq.(19) is 
proportional to 

c2 (W) "' CF /.J (36) 

and the set of the 2PI vertex diagrams containing the term display­
ed by eq.(J6) in their colour factors is shown in fig. j(b)-(e). Be­
low we present the results of their calculation in Feynman gauge • 

For the graph Jb) we have the expression 
1l1 -= (,c,)4cpq/c (c - !f.) r"l1--1) ~.el4•") . 

'i Q F F Z 1',,,."' I YI 
oc, s., oa .St . -I- -

• l.{s, Jis, Jds4 f.{s!> ((cps1+qs_./-iO)(<ps.,+qs,.)~i.o)] 
2 

which after the scaling transformation s2 = x s
1 

, s3 : 'j .s't 

.:1+s4 : :>. , .s1 a :>.-e contains an integral over ~ that can be defined in 
a way similar to eq.(29) 

2(4-")joa ~ = _1_ (f_)'2.(4-n) 
f<- 0 xzn-1 2(4-n) /\ 

c,r1culating now the integrals over )( and ::J gives 
'lll .i: ( ") r'ci- n (.f::..)2c4-n) c:h 2

ir 
1:=1bTTncF CF-2 2(4-~) /\ 4,.1,•~ - y (J7) 

,J.!::.!...e.,2e~~ ~?+-2e , 
";iii i!e--r;.~ 2+-~Q-Y 

Changing further the angular variables according to eq.(JO) and 
applying the subtraction procedure we get the regularized version 
of eq. (J7) r 

Tl'te,R. ( r, ~R. f / /\) = ( ~ )2cr= ( er: - ~) dh 2.aJa4-4, C'r-4,) d-h 4- ~ f ·( JB) 
0 

The calculation of the diagram Jc can be most conveniently per-
formed in the momentum representation 

. "'- . 2 Jd.,l<. n,-.v (K) ( i )2 (J9) 
111 - - ( c ) C · - ----- - - • 

c - ~ F pt 'lv (2rrf ci:p+io)(l:q~.o) k._ 

where z YI .,. n 
2 'aN i1r-.. rc2-t)r,._,:-1) 6 ..,_ 2 

nfv(K)= (fJfv 1(- l:f<t;") ~ (-1::')2-i rtlt-2) . ~ 
is the regularized gluon polarization operator possessing a UV pole 
removed by the renormalization procedure eq.(4) in the MS scheme 
with s ~ 2 

l 3 -= -t + 3 f'/ 11,,;2 4_,, 

IO 

i 

:l 

l 

After the application of the R-operation to eq.(39) it is ne­
cessary to redefine the resulting IR divergent expression according 
to eq.(28). Thie gives 

m ccr aR ~/A.)-= kM
5

Q -rn =_1~)2~[Ie+, 2
~ .. :!.!.e,,",.]od-lio.<4o) 

c,R, > Q 'I - l MS c \"IT' 9 (, /\'- 9 ,-• 

The regularized contribution of fig. Jd) 
4 ,1

00 
"" - - r 2c"-1) 1-R »z<l a (!::Jl ( pif) Cr:_( CF- z )Jas._J«i;.J.!s1 Jas~ t(, \. [(< ps..., -.9.s4 )~ ,o) (p'"Cs1-s~ ):_ io)] 

0 s.J. s:.i. o .,.. • 

after integration over s1 , s3 contains a UV pole corresponding to 
the fermion-gluon vertex correction -1-~ 

oa oa [ ] ._ 

111.t = 
1
,'J

2
n Cp9)<p2) 1i-"cF- ( cF- ~) r\ ~-1)1..

2
('<-") }.ls

2 
J.ts't <r\+qs{·-,~ s 4-'l (41) _ 

0-rr - 1· o O (-t,)n-J. .z 

end removed by the renormalization of eq.(4) with 
-zF= -1+ (c _!!_) ~ _!,_. 

1 F 2 4,,.2- 4-n 

Redefining the integral (41) we obtain the result of the action of 
the R-operation on Tu.( :· , , z- n 

· h 4 -zc~-") , z •) z. ] 
_ o(_. 2 N ~d- -y ~ -YI 1 ~ f A>< C pq) ( p x , 

R1n.{-(,r:-)cF(cf-~)[-(4-n)2CJ + 2(4-h)._cJ w lrcpx+9it>2-•o) 3-~ 

where from subtracting the cusp singularities and performing the 
cha_nge of angular variables (JO) we find the renormalized expression 
for the graph Jd): 

, 1'11,1. 12 ("¥, ~R,f<II\) = ( '::' )2c.F (cF-1) [ f-a- d,hq e.,/ f~ .. ½ octh:r e.., f_ 
1 

J° L (42) 
- db· J-"4-t c.lch4, e.., t:. ) . 

2 O /\L 

The most complicated is the calculation of the diagram Je) con­
taining the three-gluon vertex. We represent the corresponding fac­
tor Vrvp(K,'2,-1<.-e) in the :.Orm 

vfVf(l<,e,-1<-e) = Vf'vp (1<,e) + 'l>fvf' (K,e) 

(cf. refs. 112 • 131 ), where 

~v/k,e_}: (2e+k+CJvf'+21<j~f"-2Kvflff'• J)f-"f'(1<,(!.)=-ev§f'f-(l+1<)p fJ,-.v 

satisfies the simplest Ward identity 
- [ z. 23 I(,... vf'Vf (1<,e) = (l(+e)- e ~Vf' (43) 

The "D-vertex" produces the following contribution 
':L"' 4Jl._ a.~e " f zcpq) ( pq') J 

'rlte,1>~- 2 ~ (Z,,)"-(2.,..)" ><Le."-r1::.e)• <1"-)(p1<) + <q1::)<pe) • (44) 

The first integral hes the _structure of that corresponding to fig. 
Jc) and is easily calculated. The result of applying the R-operation 
to eq.(44) {after necessary redefinitions) can be written in the 
form 
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2 ( Y d-hir f<- 2 <4-..,) .dhr / .t._ \ 4 -., 
R 'lr!Q,:D-::(~)c:FA( - 4(4-"1) 2 1n-J.)CJ + 2l4-.,)-..\ A) 

+ _1_ff'-)2(4-")]<f. J'•hl i_ ~(P)(+q~~)~qZ'-<2.<J.9°1 
tE.l4-.,)l.:t,. o 'Jo (Px+q.l(,y).. 'lz ><._':J'::J 

After the change of angular variables, integration by parts and sub­
traction of cusp divergences we get 

n - (o1.5 )2 r .rc{hrn 2._E 'd"c.-l:k-10 t...z. 
Ka-"-'me,D-'lrle,1>,R(1',~R,fll\)= ir c:FtJl-~~ 11 &- -4-t-t, N· 

11' 2.. 2 ,r { c.-fh4- ~hr f<:i. (45) 
t 96 'lc-th1dl,, ~ .. ·+Jc.tho s.h r J,,1.,J, .r.h .. -a-- •h'4- f!.i .r.h 4 ~AL] · 
For the contribution of the V -term we first rewrite the ver­

tex factor in the form 

- 2 [. ~) ~1 VWf'(k:,e.) Pv Pr= p (2e.-K)f' (~t'C (P,d ·+ (Pi::) • 

Now, using eq.(43), it is easy to see that the second term in this 
equation (longitudinal with respect to Kr ) is cancelled by the cor­
responding contribution from the vertex function of diagram 3d). As 
a result, the sum of the V -contribution from the diagram 3e) and 
the total contribution of the diagram 3d) after calculating the e -
integral does not contain the UV-poles related to the fermion-gluon 

vertex 4 p2 a 
• jj 4-n n)r,l~,c_ 7('-

+ = ,c Af - r<.~- - ~--1'rl..,_ 1'fle,V F 1'111zf 2 l2,r)'' t;Z(.::p•io)(i::q-,.,-c,) n (46) 

J1 4-l'lsf P.l<vf - 2 2. ._1"i-3 
• d).). .l.~(➔-Zx) kv (~i. 11 - ~ )ilf'~- k">.X)- A:2); X- ,OJ , 

u O , Pi:: 

where >. • i-). • Performing 1;he IR redefinition and subtracting the 
cusp singularity one can rewrite eq.(46) in the form 

'Yl'ld,R(l,$J~.f//\)t-'»2e;v,i/~,~~.f/~):-(~)2¥( f4\·I) enf,. • (47) 

where the -rr2 -term corresponds to the flt"' -part of the projector pre­
sent in eq.(46), while its second term yields 

f 1 __ ¥~\N -2shZ.J--2 T s~24- n~h4-
I= c{haJ.1.xx H-2x)J.11y jJtJ.-h._" (x-+ xy ""i7"") = cihoj.14- hz _ hz.' "'1 h..., 

o o o i a lo., Y o ~ 0 .s. 't" lo , 

Thus, subtracting eqs.(47) and (42) we find the final result for 
the renormalized amplitude of V -part of diagram 3e) 

?'>{ - (o a JJ../A) =- -(,;/._,,)2c rv(- ~c.thr e.,,2 ,-...2. - -ird-l,~ n l'-2 
e,v,Q ,aR,, 11" F 1b /\,. 4 ~ /\ 2 (48) 

2. T 

+~ e,, ~ + J c~ho :.h~r J't4 ,.h.:-.w ~ ::r (!.. *) , 
It is worth noting here that the cancellation of double logari­

thms of f 2 in the sum of eqs. (48), (45) is a consequence of the 
fact that the vertex correction of diagram 3e) gives a zero contri­

F but ion to the renormalization constant ;?;1 of eq. (4). 
Substituting the total contribution of the 2PI vertex diagrams 

3b)-e) calculated above (with a proper account of combinational fac-
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tors) we obtain the following result for t_he two-loop .contribution 
to the exponential factor of eq.(19): 

2 l'I (o/ )2 [ 1 i n 2 2 
wR,-iwo-eoc./-ir,~R.f/A) = - ; CFr,./ 48 (oc:ho-1) i;,, f .. 
+ { ~Ic-1rc.f.hr-1) + -4' - 2!...,_ Cadha-1)- ½ dJ.-r J"-H d-1.4-

+2 r ,;g .- o , 

+ ½cc-H,~J,t4,<l,(0-4-)dh4,- ½ c.tha i.h-..r J.14- ~zvlh'\~: e.,, sh~J e.,, f\] 

(49) 

o o > ¥- • sh'-½' /\ 

For the gauge-invariant cusp anomalous dimension this gives 

r C:"'.,_""°'f'( o, ~R)-= 2(~)2cf rv[ TI l'(cth1"--f)-t ~ - ;; ( 1 c.fhr-1) 
f' • , y (50) 

-l c.thl' J<t44,dh4, + l cth\rj.:LHl.,--4-)cfh </,- ~ d-hr ,.h2i fd4, ..J,~h4--,
1 

~- sh;rJ: 
o O . -6 sh .-,h + sh4-

Continuation of eqs.(49),(50) into the Euclidean space can be 
performed by changing the angles as prescribed by eq. (32). 

5. Asymptotic Behaviour of the Cusp Anomalous Dimension 

In this section we consider the behaviour of the cusp anomalous 
dimension in two limiting cases for the Minkowskian angle a: 

a) a~= in this case 

'lf=~Q..,_ Qz.>>mz., 
mz. , 

( 51) 

where 
2 2 z. 2 z. Q=-<p-q) ,p~q=m 

and 
b) 'If- 0 ; in this case 

o=vQ.,_/m• Q2<<m2. (52) 

In the limit (52) one can represent rcus,,Co,~R) as 

r Co <l ) = o(,.c :!\ 2(cx")2c N (.Y..2.(2- 4"-,.)+ 2.£ :f..
2

] (53) 
C«S(' '<1R. Y➔O ,r F ~ ll" F f6 ':J +2 3, 

2. 

and hence r "'-•r vanishes as ~.. when o➔ O 
In the opposite limit (51) the two-loop term of the cusp ano-

malous dimension 
O(s n Ci..,_ ro1.,, 2 [ H n Q..,_ -n,. e.., Q,.] 

(54) reus/018R)lf~oo ,rCF\M ...,,.1- 2\,r)cf,v +2 v,,, M' - 24 ...., .. 

does not contain evi Q: • in a power higher than one, because in 
03. m . 

Feynman gauge the ~ Gl'l""',. -terms due to the ]) -parts of the diag-
rams of fig. 3e (see eq.(45)) are cancelled by those due to the 
diagram 3b (eq. (38)), and the double logarithms due to the V -parts 
of the diagram 3e (eq. (48)) are cancelled by those due to the diag­
ram 3d (eq. (42))._The constant term 67/72 in eqs. (50), (53), (54) 
is an artifact of the scheme employed because it appears after one 
applies the RM

5
-operation to remove the subdivergences from diog-

rams 3c,d. 
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It should be noted that the path-ordered exponential corres­
ponding to the path shown in fig. 2 absorbs all the IR singulari­
ties of the amplitude of quark scattering by an external colour­
-singlet potential, the initial quark momentum being p and the mo­
mentum transfer Q2 (see ref/141 ). In the limits o- o,~ this 
amplitude was calculated in ref.1131• Our results (eqs. (53),(54)) 
are in complete agreement with those obtained there. 

Let us prove now that the cusp anomalous dimension (eq. (21)) 
in the limit o » 1 is linear in ~ :: for an arbitrary order 
of PT. To this end we incorporate the Feynman rules ( eq. (25)) in 
momentum representation and note that the UV pole related to the cusp 
singularity of the 2PI contour averages (eq. (19}-(21)) is due to the 
integration over the UV region of the fermion and gluon momenta while 
its dependence on 7f is determined by integration over small angles 
between the tangent vectors to the curve on wbicb the fermions are 
"living" and momenta of the emitted gluons. A general structure of 
these angular integrals singular in the G.y,_, .. »1 limit can be stu­
died by using standard methods of the factorization tecbnique/15 • 16I. 
Note that the Lagrangian of the one-dimensional fermions (eq. (3)) 
bas the following properties: the one.:.Oimensional_fermions interac­
ting with gluons cannot change their "helicities", and, hence, the 
emission of the collinear gluons with physical polarizations by the 
fermions is suppressed. _There 
contour gauges defined by the 
for which the gauge potential 
strength 

exist the whole class of the so-called 
g!!uge condition Pex.pCi8)"-~ Ar)· -? 
Ar is a linear functional of the field 

- J ~rp A 
A~(l()T d.l\/~ EivpCt!-;A) (55) 

C /'-

and, hence, the gauge field has only physical degrees of freedom. 
Using the dimensional analysis of ref.115/ it is now easy to find 
that in physical gauges .the power of the logarithm en G: is equal 

"" to the number of independent angular integrations, i.e. to unity for 
the 2PI subgraphs. Thue, UV cusp singularity coefficient for the 
2PI diagrams of eq.(21) in the limit Q2.»M

2 

n Q' rithm 1M-., , and hence, 
"" 

is a single logs-

r(Ms (i,~R)= I. L ol; Cn(-v)(~\'\(w)e., ~:+ Qn(w>). 
p "•1 WEW(") 

(56) 

The fact that in Feynman gauge the propagation of the longitudinal­
ly polarized gluons is also allowed leads to a more singular struc­
ture of angular integrals, However, higher powers appearing in sepa­
rate diagr8ms with each other cancel in the gauge-invariant sum 
(eq. (38)). 

14 

It is worth emphasizing here that the cusp anomalous dimension 
(eqs. 05), (50)) is regular in o everywhere except the point 

0 =- i,r (or o=T in the Euclidean space-time) corresponding to the 
"collapse" of the contour shown in fig. 2. The contour average (re­
normalized as well as nonrenormalized) equals 1 in this case. This 
means that in the regularization scheme used in ref.l5/ the cusp 
singularity for o= ,,. possesses a linear divergence: ex.p (- I< L we.) 

( see the Introduction), where L<.oe. is the length of the "collapsed 11 

part of the contour, i.e. in this limiting case the very definition 
of the cusp anomalous dimension is meaningless. 

6. Glauber Regime of the Anomalous Dimension 

In the process of our calculations in sect. 4 it has been imp­
lied that all the intervals between ~ny two points on the contour 
shown in fig. 2 have the same sign (this is equivalent to the state­
ment that the three kinematic invariants p~q~<pq) have the same 
sign), which allows one to continue analytically the results obtai­
ned into the Euclidean space using eq. (32). Note also that-if the 
two points of the contour shown in fig. 2 are separated by a time­
-like interval, then the path-ordering along the contour coincides 
1vith T (or anti-T ) ordering of the gauge potentials in eq. (1). 
Consider now the class of contours for which these properties are 
not valid, e.g., fig. 2 but with the change 

1--+ - q . (57) 

In the Euclidean space such a transformation leads only to the evi­
dent redefinition of the cusp angle 

'lfE' - ,r- <f E (58) 

in the final results. In the Minkowski space-time eq. (JO) is not 
fulfilled, and moreover, the residues of gluon propagator poles 
produce nonzero contributions. In particular, the calculation of 
the dfagram Ja contribution with account of eq. (57) gives 

2PI · ~~ 
We. ,., (ca-;oRµ._)==--°'2 "cF(1i-,..,.)c.-fh 0 -1)e..,-~ (59a) 

~,OnQ- c-ocp Q ,. , it /\ 

and, correspondingly, 

rcu.•r,one-eocp(~,'ijR)= ~tcF (<1r-,,,-)c-l:hr- 1). (59b) 

Note that formally these relations can be obtained from eqs. (34), 
(36) by using eqs. (58) and (32). Let us now find the region of the. 
momentum space of the gluons responsible for the imaginary term in 
eq. (59). To this end we calculate it in two ways. 

Consider the frame where PT= 'ha O , p+ > p- , cf> q+ (with 
+ e- = (t.0 -re!>)/{i being the light-cone variables). Then the integral 

15 



contributing to eq.(59) is 

- 2 s,.(1<.+-.t1<._d,,_\:T (pq) (60) m-= -, C ;..::_:__~__;_-...! . • 5 F (2..-)" (21c:+1::--1<::f-A'-)(11;+p..-i,;-p!:..,0)(1<+q-.-1<-'1++iO) 

The position of'the poles in the complex k- plane is shown in 
fig. 4 with the numbers, representing the denominator factors of 
eq.(60). Taking the residue of the pole 3 · for K+~o and of 2 

for K+>o and using the identity .,..1.0 = Pf ± ,,.,.b°(x) to cal-
X-• 

culate the integral over K.+ it is easy to find that 
( oqi- 00 n-z 00 n-z 

- , • ~-r_11_ f J. KT • 'h J ,I. l<°T ( 61 ) 7>f- zCFol,:, o+ - - + J-z-zT, .. : 2 CFo/!:. C-t- j)' -._-- + ... 
I 9-pq oKT .. " oK-,- ... 1\

2 

where the dots stand for the real part of the integral. Thus, the 
imaginary part of eq.(59) is formed by the region where the gluon 
momentum is mostly transverse 

l;:T )) I<:+~ k- -- 0 , 

i.e., by the Glauber regime for the gluons117/ in which their emis­
sion does not change the virtuality of one-dimensional fermions. As 
kr-➔O, the poles of .eq.(60) 'in this regime move as indicated by 
arrows in fig. 4, and the integration contour is eventually pinched 
in the origin. As a result, there app_ears the singttlar imaginary part 
of eq.(61). 

It is also instructive to calculate eq.(60) in the o{ -represen­
tation / 3/ in which 

. J n J.o1..,. ( , z · ~ 'm.=- ,o{,.cF ~ exp -d(p0<2-qa.3,)-E(«,..-o1, .. o{,) 
"'1 1 

(62) 

and the main contribution to the integral originates from the region 
in the <( -parameter space where the exponential form 

pZ Qz qZ 
A {oi,p,q)=-;;;- (o12 - zo<.3,)( o1,- -Q._C>'3,) 

1 p 
/16/ · vanishes • The requirement 'A= 0 defines a plane 

. QZ . qZ 
s1 . olz : ? ol.!, s2 . "'2 = Qz «3 

illustrated in fig. 5. Accprding to the results of refs.116 •18I in 
the region s1 and S

2 
the "pinch regime" is realized producing 

a regular contribution of each separate hyperplane of eq.(62). How­
ever, in our case there exists also the line o/.2 : o/!> = O common both 
for s1 and s

2 
where the "intensity" of the pinch singularity is 

higher and the corresponding integration gives eqs. (61), (59) poss­
essing the divergences both in UV- ( ol1

1
o/._

1
o13 .- 0 on S1 , s

2 
) and 

in IR- regions ( o11 - oo on 51, 52 ) • Thus, the Glauber regime . of 
the gluon momenta corresponds to a pinch regime in the ol -parameter 
space. One can prove that for the nonzero Glauber regime contribution 

16 

in eq.(59) to exist it is necessary (though not sufficient) that the 
K integration contour be pinched at the origin, while the presence 

of the pinch regime in the « -space is both necessary and sufficient. 
Note now that in the allmved region ell ·~.O the pinch hyperpla­

nes .S
1 

and 52 of fig. 5 (as well as the imaginary contributions to 
eq. (59)) disappear if f 2

, q2 <0 , cpq)">O, i.e., _if any two points 
on the contour shown in fig. 2 are in the space-like region and the 
T-ordering in eq~(1) can be omitted. This means, in particular, that 
eq. (59) as a function of the vectors p, Cf has a singularity on 
the light cone. 

In view of the connection between the IR asymptotics of the con­
tour a·verages and those of the hard QCD processes 714/ we may conc­
lude from the above discussion that contributions due to the Glauber 
regime (which for ~ome time was thought to be a possible source of 
contributions violatin/17/ the factorization for hard QCD processes) 
are completely taken°into account by the 2-loop cusp anomalous di­
mension. 

7. Conclusions 

In the present paper we studied the renormalization properties 
of the cusp singularities of the contour averages. Incorporating some 
properties of the k1 R -procedure responsible ·for subtracting the di­
vergences due to cusp singularities we established the general form 
of the PT aeries for the cusp anomalous dimension in the limit of 
large Minkowskian cusp angles. The two-loop contribution to the cusp 
anomalous dimension was explicitly calculated and its connecti~m to 
the nonleading IR behaviour of the quark form factor was demonstrated. 
We observed also tpat there exist two sources of non-analyticity of 
the results obtained with respect to the cusp angle ,r : first, for 
oM = lir ( TE • -rr ) there appears a linear divergence and second, 
the Glauber gluons in the Minkowski space give a nonzero contribu­
tion to the cusp singularity. 
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APPENDIX 
MS Let Uf!! prove that in the k r -subtraction scheme there exists 

a connection between the renormalization constants r cu.:;p and the 
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pole part of the 2PI contour averages (eq. (18)). To this end we note 
that in this scheme ~cusp (given by a sum of poles of eq. (8)) can 
always be represented in the form 

"° '21"1 

'ZCL<s (T, E'): e)(p(- L 'J e -fne <0 >) • 
I' "•f E e,n 

where +11e li\') are some yet unknown functions of the cusp angle O • 
Substituting this expression and the one for the regularized contour 
average determined by the contribution of the 2PI graphs 

""(<;j 2 l L)G)"' 
w(ct;@,E)= e1<p(W 2

p
1(ca-;~,€))=e><p(I r ¢'1'1<o,h~,t)) 

r\•1 . 

(where <P.,, ( r , {,I, E) is some regular function of E ) into eq. (7) 
we find that 

(

oo ~2'1 Gn "° 2'11 ) 
Wn(c'lf;'JR,J.<.)::e.,.,,exp L €Cf-L) <Pn(r,h~.G-)-I.. ~~ne('l"), 

I< J E ➔ O "=-1 n•f E, 
· esn 

The requirement that the~ -poles be absent in both sides of this 
equation unambiguously fixes the ~ttl coefficients: 

~"e <i) = o , e > 1 +"'1<-r)= 4i..,(¥,h~,o). 

Hence, the final expression for the cusp singularity renormalization 
constant.is given by an exponential of the pole part of the 2PI 
contour averages depending only on the c·usp angle 1" /S/. 

Fig. 1. General structure of the rainbow-irreducible subgraphs. 
The dashed line denotes the contour integration in a vici­
nity of the cusp O. The blob denotes an arbitrary gluon 
subprocess • 

._. 
- - - - ... 

~
-/ ,. ,. ,. 

,,. .,_.,,. .. 
I,. ,,, ,, 

.... - '~· .. ,".._, :~ ......... 
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.... - - -- ~
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-

I 

,.-p '(·. ..... 
Fig. 2. Self-energy and vertex corrections to the contour average. 
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A .. p 9 ·, 
a.) 

A. ,A,. Ado~·.. ,A. 
b) C) ) e) 

Fig. 3. Total set of diagrams contributing to the two-loop cusp 
anomalous dimension. 

Fig. 4. Position of poles related to the gluon propagators of eq. 
(60) in the complex K- -plane in the Glauber regime. 

1 2 . ..... 

I< +,o 

._. 
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2 ..... 

.:+>o 

I<. 

....... 
3 I 

o(.!, 

ott 

I Q.2. 

'"'~" -2 o(, / q . <-

..... 

pL 
O(!,-: QL cJ.2, 

o<2 

Fig. 5 .• Pinch hyperplanes 5
1 

, S2 in the «. -parameter space 
containing the ultraviolet (UV) and the Glauber (GR) regi­
mes of the gluon momenta., 
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~OP4BMcKHH r.n., PaAJOwKHH A.B. 
JHtt$paKpacttaR acHMnTOTHKa nepTyp6aTHBHOH KXA. 

PettopManH3a4HOHHble_· CBOHCTBa BHnbCOHOBCKHX neTenb 
B BblCWHX nopRAK8X TeOpHH B03My~eHHH 

EZ-85-779 

OOAXOA, OCHOBaHHblH Ha HcnOnb30B8HHH $OpManH3Ma KOHTYPHblX cpeAHHX, npHMe­
HeH· K HccneAOBaHHO pettopManH384HOHHblX CBOHCTB npOCTblX BHnbCOHOBCKHX neTenb 
B BblCWKX nopRAKax TeOpHH B03My~eHHH /TB/. PaccMOTpeHbl CBOHCTBa npo4eAYPbl ew-
4HT8HHR yrnoewx·oco6eHHOCTeH P-ynopRA04eHHblX 3KCnoHeHT. B nOPRAKe a! Bbl4HCne­
Ha yrnoeaR aHOManbHaR pa3MepHOCTb. 06~HH BHA ee pa3nomeHHR B PAA TB HaHAeH 
B npeAene 6onbWHX yrnoe H3nOMa KOHTypa B npocTpaHCTBe MHHKOBCKoro. HccneAO­
BaHa attanHTH4HOCTb nony4eHHOro ewpameHHR no yrny H3nOMa. DpoAeMOHCTPHPOBaHa 
HX CBR3b C ttenHAHPYO~eH HH$paKpaCHOH acHMnTOTHKOH KBapKOBoro $OPM$aKTOpa. 
ITony4eHHble pe3ynbTaTbl MOrYT npHMeHRTbCR·AnR HaxomAeHHR aHOManbHblX pa3MepHO-, 
CTeH peHOpMrpynnoawx ypaeHeHHH, onHCblBa~~HX HK noBeAeHHe nepTyp6aTHBHOH KXA. 

Pa6oTa ewnonHeHa B fla6opaTOPHH TeopeTH4eCKOH $H3HKH OHRH. 

IlpenpHHT Off~e,D,HHeHHOro HHCTHTyTa RAeplll,IX HCcneAOBaHHA. ~yffHa 1985 

Korchemsky G.P., Radyushkin A.V. EZ-85-779 
Infrared Asymptotlcs of Perturbative QCD. Renormalization 
Properties of the Wilson Loops in.Higher Orders of Perturbation 
Theory · 

The approach based on the use-of the loop space formalism is applied 
for the ·1nvestigation of renormalization properties of the Wilson loops 
in higher orders of perturbation theory. The properties are considered of 
the subtraction procedure for the cusp singularities of path-ordered expo­
nentials • The cusp anomalous dimension is culculated in the order a!. T~e 
general form of Its perturbative expansion ls obtained In the limit of large 
Mlnkowsklan cusp angles y. The analyticity properties with respect to Y of 
the results obtained are investigated. The relation of these results to the 
nonleadlng Infrared behaviour of the quark form factor is demonstrated. The 
final expressions can be applied for construction of the anomalous dimen­
sions of the renormalization group equations describing the Infrared asymp­
totics of perturbatlve QCD. 

The investigation has been performed at the Laboratory of Theoretical_ 
Physics, JINR. 
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