


1. Introduction

One of the most promising approaches to study the infrared be-
haviour of quantum chromodynemics is the attempt to formulate the
non-Abelian gauge theory in the loop-space. Instead of the gauge-
-dependent entities and Yang-Mills equations one studies in such a
formulation the properties of the gauge-invariant functionals

w(c ] ~Tr-<0ITPexP(‘3§’dX ("))’°> : | S

(the Wilson loops) and functional equetions for W (<] 2 2/. This
approach, however, faces many problems. In particular, W[c] is a non-
local divergent functional of the geuge potential: it cannot be renor-
meliéed by the ordinary R-operation /3/ restricted to_the local ope-
rators: The renormslization properties of‘\v[tl for an arbitréry con-
tour C were studied, e.g., in refs. 4-8/, and the main conclusion
thereof is the following: W/[c] is multiplicatively renormalizable to
all orders of perturbation theery (PT). More specifically, if the loop
is smooth and simple (i.e., without self-intersections) the'diyergent
quantity W[c] can be madé finite by expreseing it in terms of the
renormalized QCD coupling constant and multiplying the result by
exp(-KL(C)). where K is & linear divergence and L(C) the length

of the contour C . It was also proved that the Wilson loop is multi-
plicatively renormalized in the case it has a finite number of self-~-
-intersection points and cusps corresponding to angles {7 } (the re-
levant infinities are referred to as cusp singularities).

In the present paper we restrict our analysis to a sigple loop
(without self-intersections) and study the structure of the cusp sin-
gularities in higher orders of PT., In sect. 2 we define the regulari-
zation procedure for singularities that appear in a perturbative ex-
pansion of eq.(1), we construct there also the subtraction procedure
and study esome properties of both., In sect. 3 we calculate the cusp
anomalous dimension to order o and formulate the general scheme
for explicit calculations. In sect., 4 we present our results for the
two-loop cusp anomalous. dimension., In.sect. 5 we study the general’
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form of the cusp anomalous dimension in the 1limit ¥ > { (where ¥
is the Minkowskian cusp angle) for an arbitrary order of PT. In sect.
6 we analyze some properties of our results for the "timelike" cusp
angles related to the Glauber singularities. In conclusion we for-
mulate main results of the paper,

2. Regularization and Subtractioh Procedure

If one expands. W[c] 1in the PT series
wie] - 1+ﬂZktg)"§dxH1. de Ey>..>x)Tr GH fn (x4,... x)(z)

there sppear the ultraviolet (UV) singularities both from the ultra-
violet integration regions for the Green function GEypnﬂntxfru,Xn)
and from "contraction into a point" of some set of contour integra-
tions, In what follows it is always implied that all integrals are
dimensionally regularized. To analyze the UV divergences of eq.(2),
we incorporate the approach in which the one-dimensional fermions
living on the contour C are introduced. In this approach eq.(2) can
be rewritten as

wile = <ol TZ()2(c)I0>

- J2E D202 D DT exp (1Sym (4,6,8)+ i S, (4,2,3)

where the modified action Sg;;_ is
- . ~
Segp = cho' [sma 2(6) +ig F(@) Xy (o) Ar(x(¢)) 2(0‘)] (3)

and furthermore the boundary conditions XF(L) Xrlo) 2(L)=~ 2(0)
are imposed.

‘To study the renormalization properties of the locel Lagrangian
(3), one can apply the ordinary R-operation since the counterterms
resulting from its application have (for a smooth simple loop C )
structure of the original Lagrangian 4 « In other words, after the
renormalization one has '

,Z -N—‘IZ
A>Ap=2, %A corcy=Z,

3
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o<—>o<,2=z_,; o, BE)=> Fplo) = (-2':) 2-2(0') €= 4-n
and incorporating in addition the Slavnov-Taylor condition
2/2, =2,/ % =2 /&
~ _F
(where 24, 2y, B, are the renormalization constants for the three-
-gluon, four-gluon and fermion-gluon vertices, respectively) one ob-
tains the expression for the Wilson loop (defined on a smooth con-
tour) which is finite in the limit €+0 , €= 4-n being the di-

mensional regularization parameter *). Thus, for a simple smooth con-~

tour the renormalized contour average We(cjg‘,'rg) is given by
Wo(Csgaf)=bm W(Ciga.t,€), W(Cige,p,e)= RW(Csg,€), (5)

where W 1is a regularized, but not renormalized r.h.s. of eq.(2)
and a subtraction point. In what follows we use the MS subtrac-
tion scheme 79/ for which the renormalization constants 21F,EZF are
known in PFeynman gauge at the two-loop level ’
However, if the loop C has a cusp characterized by angle ¥ ,
then W, even after applying to it the R-operation defined by eqs.
(4),(5) possesses in addition the cusp singularities resulting from
‘integration in vicinity of the cusp. The relevant divergent subgraphs
are those containing a singular point (the cusp) and being two-par-
ticle (rainbow) irreducible with respect to the lines corresponding
to the one-dimensional fermions. General structure of these sub-
graphs is shown in fig. 1. To construct the renormalized Wilson loop,
we incorgorate in this case the subtraction procedure li, proposed in
rets./215/, The action of Ky on the functional W(cige,p,€) defi-
ned in eq.(5) produces the renormalized contour average with the cusp
singularities subtracted for each divergent subgraph of fig.' 1:

Wy (S gage, E) = &m Ky W(Crge,p €)= bim K RW(Casg,e), (6

where Ei denotes a generalized subtraction point of the Kr procedure.
The cusp divergences are multiplicatively renormalizable, and the ac-
tion of Ky on a loop functional containing a single cusp singularity
is defined by
Ky VNV(Cﬁﬁtza(*:e) = stP(Qo,Ki,“,Ez.@) w (cy; da, 4, €). M
The r.h.s. of eq.(6) would be finite if the n-th term of the PT expan-
sion Za.uf(ﬁtﬂl Ky, €)" ZOSZH equals (up to finite terms and
taken with an opposite sign) the cusp divergence of the whole n-th-
~order graph contributing to_lv with all subdivergences subtracted
before., Fixing the finite part of Zv\ one fixes a particular K& sub-
traction scheme. We shall use the two schemes described below.

The cusp aingularitiee of'an arbitrary subgraph are given in the
dimensional regularization by a sum of pole terms. If one defines #,
be given just by the sum of the poles

*) The regularization used in ref. /5/ in contradistinction to the di-
mensional regularization violates the chiral invariance of the Z-
fields Lagrangilan and requires an additional renormalization of their
mass in eq.(4).
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Krq
one arrives at an MS-like scheme to be referred to further as K;ﬂs,
with the generalized subtraction point E} coinciding with the R-ope-
ration parameter fl of eq.(5). Note that the coefficieﬁts of expan-
sion (B) &8s well as Z,'s themselves depend in the KK scheme only
on the cusp angle ¥ , since the UV singularities of eq.(2) for an
arbitrary loop C depend only on the first derivative XF(G)
i.e. on the cusp angle in our case. Owing to this important pro-
perty of the contour averages we can define - Z, correasponding to
some arbitrary graph R&J ordered along Cy to be equal to the contri-
bution of the same graph (with the subdivergences subtracted before-
hand) but ordered along another fixed contour Eir also possessing .
a single cusp point with angle ¥ and having the length 1/#.. It 1s
eapy to realize that in the subtraction scheme F:K defined in this
way (and being an analog of the standard MOM-scheme) the following
boundary condition

M/Q(Ez")ngt'(lE‘d’)‘:‘l | (9)
ig fulfilled. ﬁurthermore ‘ '
zwsr(gg,x;ﬁ,E,,e)-:(w(ay;gp,ﬂ,e)) =(Wea,495, 90, €) (10)

where an arbitrary loop is characterized by 1ts'leﬁgth, cugp angle o,
and by & éet of some dimensionless parameters 1]

The subtraction procedures described above posses all the neces-
sary properties of the R-operation, and as a result, the renormali-
zed loop avera7e, eq.(6), satisfies the following renormalization
group equation

((-L,D'F +‘-'>(3Q),2—89+ r%r ("o',ga)>\/\/‘2(t‘tx,z,{q§,3g)=0y (1)
where the anomalous dimension is given by
. A —
r = - Gm e Cyi9n, M, €)- (12)
%P(?,QQ) ETO Ae“" evl W( viga. )
As emphasized above, E“‘P
the cusp angle ¥ .
Our ultimate goal is the calculation of the anomalous dimension
in higher orders of PT., Some of its general properties can be estab-
lighed on thg basis of the exponentiation theorem of refs./8’1o ha-

ving a straightforward generalization onto arbitrary contour averages
of eq.(2). The theorem amounts to the statement that the dimensionally

depends only on a single contour parameter,

v

regularized but nonrenormalized contour average W[c] can be repre-

sented in the form
wi(c;g,e)= exp(z ay cniw) F, (W)) (13)
WGWU\)
where summation in the exponential is over all diagrams W of the
set W (n) of the two-particle (rainbow) irreducible (2PI) contour
averages of an n-th order of PT, (It is straightforward to obeerve
that the criterion of the two-particle irreducibility coincides with
the definition of "webs" given in ref./1o/). Furthermore, F, (w)
denotes a contour Iintergral present in the expression for W and
Cnlw) the "ﬁaximally non-Abelian" /10/ or the "'colour-connected”
/11/ part of the colour factor corresponding to the contribution
yielded by the diagram W to the total expression for the contour
average, eq.(13). For an n-th order in o there exists an estimate

Catw) ~ < N1 (18)

(exact definition of C, is given in ref./11/). The diagrams whose
colour factor does not possess a term of eq. (14) type do not contri-
bute to the sum over W in eq.(13). .

Of course, eq.(13) is only a formal relation unless the renor-
maslization prescription and the renormalized analogue of eq.(13) are
defined. We are interested in loops possessing the cusp singularities.
To this end we apply to both sides of eq.(12) the operation K,Q int-

roduced above, Note now that the exponential factor in eq.(13) is given
by a sum of contour integrals. Hence, the transformation given by eq.
(4) is sufficient for a consistent renormalization, i.e.,

Rw(c;g,€)= exP(Zd Y W) RF, W) -

wew(m)
Denoting

o( F (w)- 2PI

ZPI
ZPI(W Cl’g;e) Qw (W C’J’gQ, ,6)

we find that

Vv(cx>3g,r e) exp( Zl c (W)VV (wgc,; ge'rlg))- (15)

ntwewWin

Just like in the above discussion, the r.h.s. of eq,(15) possesses
the noncompensated UV poles related to the cusp singularities remo-
ved by the K, -operation, Consider first the action of the k:MOM
procedure on eq.(15). By virtue of eq (10) we have

Ky W(c; ga €)= (W(cw‘aa,ﬁ ey’ (Cﬁﬁn ( €)
: (16)
-exp{z Z_ c (w){W (w Cy5 9e, e) W (Tw c"'g‘?’f‘ < ]} ‘

na{ WEW(N)



where it is taken into account that all the topologically equivalent
loops possesgsing the cusp singularity have the same colour factor
Cnlw). Note now that the 2P] contour averages present in the expo-
nential factor of eq.(16) have no divergent subgraphs, and the ac-
tion of the subtraction procedure K{?°'1 in this case smounts to the
subtraction of the contribution of the same graph containing a sing-
le pole ‘/e but ordered along T, , i.e.,

ZPI(

WGt 9= W0 G g, e, €)= KT W Tw, S go )

and, hence

UACT KL @mQKP(Z

nz{ WEwin)

Cplw) K:OMQ WZPJ(W, <y; g,e)) an

-exp(z 2 c (w)WQ (wCr)gQ‘u?))

Nt WEWIn) .
The validity of this important relation in the K -schemg

is not obvious because of the absence of the analogue of eq.(10)

for this scheme. However, it can be demonstrated (the proof is given
in the Appendix) that in this case there exists a relation between
the renormalization constants for the cusp singularities and the
pole part of the 2PI contour averages-

”S(an,we»exp(z 2 Gl W, czngQ,«e); ). (18a)

n={ WEwW
=l Q
* Ag a regult, potes

MS
C M fI
K QW( x,ge) exP(Z Z c (W)K SQ W2 L(W, 515;6))- (18b)

s wWeW(n)
Thus, the exponentiation theorem (13) is valid for the renormalized
contour averages at least within the framework of the two subtraction
procedures used in the present paper:

— 2e1 —
Wo (€53 901, 8= exp (W, (a5 90,0, €), - (19
where -
QZP‘_ Cim Z D Cntw) Ky R szl
€40 n24 wEW(n)

Incorporating now the RG equation for the nonrenormalized con-
tour averages one obtains from eq.(19) the equation for VVEPI:

? 7 2pI —
(fLiF +f>(gg),§§Q)WQ (c,;ag,!.(, SO =~

which has the following important conseguences:
a) Using the explicit form of VV we obtain the relation bet-

ween the cusp anomalous dimension and the contribution of the 2PI
contour integrals

Fa“P(’a', %) (20)

ms@--z 2 C‘Wuen(‘W "lw, <55 G, Ty)

na{ WGW(h)

“S‘i"o;. ém,‘f““’)xeﬂ,‘ W2, 339, €) -

This means that ﬁu“f(wjgﬂ), first, as expected, does not depend on
the generalized subtraction point <, and, second, in an n-th or-
der of the PT series expansion 1t contains only the "maximally non-
~Abelian" /10 or "colour-connected" /1 colour factors. In parti-
cular, in the QED case eq;(21) contains only the first term of the
geries.

b) The. general form of the solution of eq.(20) is

(21)

o
= T, (¥,9)
PI(CK}QQ,H,CX): w,” <y ge, F.&)- Jag ._cs«_sr_%_g_ . (22)
v QQ({-«) F’Lg

]
The expression for VV: Icontains the IS -dependence in Jo and in
a single logarithm aqF., and there exists some point ° F’ where

WQZP (CKiaQ\(‘L’,C!)zo' (23)
Hence, the general solution of eq.(11) can be written as
Gal(p) . _
W (C-[;?Q l.(, CV)" exp( j 9) . (24)
F‘93
9 q*)

where F: ig the solution of eq.(23) depending on the contribution
to W, .only from 2PI contour averages of eq.(19).

3. One-Loop Approximation

In the preceding section we established that the cusp anomalous
dimension depends only on a single characteristics of the loop, the
cusp angle. Hence, to calculate it, one can use the simplest loop
shown in fig. 2 formed by two lines and closed at infinity., Further-
more, we restrict our analysis to the 2PI graphs yielding a nonzero
contribution to the expansion (21).

To begin with, we formulate first the Feymman rules for the
modified action eq.(3), in the case of the contour of fig; 2 both in
momentum -and configuration representations * .

*) Trensformation from the configuration space into the momentum one
for the one-dimensional fermions is defined by the relation

OQ

- iqo - ~ifa
fe)= fJaoe 7€), So)= —e £(e).
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The latter has the dimension n- 4-¢ for gluonic lines and is one-
dimensional for the #Z -fermions, In addition to ordinary QCD gluon
vertices eq.{3) contains two other elements, viz.,, the propagator of
one-dimensional fermions and the vertex describing the interaction
between gluons and fermions:

——— 8(s,-s.) :

s, s, 2 C+ie : (25)
¢ e! ig . r_(ns) igng Al“(k)‘c?(e'«« (kn)-€)
where 5nﬁ=(;%,qh) is one of the vectors characterizing the direc-

tions of the two lines shown in fig. 2. It 1s worth noting here that
fig. 2 may be treated as the amplitude of elastic scattering on a

singlet potential of an on -mass-shell (£ =0) one-dimensional fermion.

The contributions to this amplitude are due to both the self-energy

correctionsZ(€)=Zto)f%%f\efm to the fermion lines and vertex correc-

tions T(g,¢';y) . The latter satisfy the equality

Feo,050=- 2249
2€ 0.0

following from the gauge properties of eq.(3). Hence, the total re-
sult for the angular singularity of the diagram ahown in fig. 2 is
given by
Z(e)l
¢:0
and to calculate it one can consider only the vertex corrections
which in the lowest nontrivial order in the strong coupling constant

F(o,05%)+ = [(0,0;%)— Io,0;0) (26)

oy are determined by the diagram shown in fig. 3a. In the following -

the K;45 Qrﬂs subtraction procedure is used.
The regularized expression for the contribution of the diagram

3a in Feynman gauge is
PR (2_ D 4“
= (1gY (P e stJd.{ [(PSTq‘{.‘)—LO]
Using the scaling transformation s+{- A 5, S= AX one can re-
write it as

n
2

2 r(z-9 = 1 1- 3

= (i = 2 amm 2 ; (27

Mm, = (:9Y (pgd e 73 o G Ja(x {(rqu)-to] ) )
o )

where the notation X= 1- X is introduced. Generally speaking,

the integral over A appearing in eq.(27) does not exists because
it converges on the lower (ultraviolet) limit only if n< 4  where-
ao on the upper (infrared) limit it converges only for n>4 . The
appearance of the IR divergences 1s a penalty for the (relative)
simplicity of the contour chosen since the infinite length of this

contour just determines the essential scale for wavelengths of the
gluons exchanged by the one-dimensional fermions. To define the A -
integral of eq.(27) correctly in the IR region, one can use another
regularization scheme different from the dimensional one. More speci-
fically, as an alternative scheme we use the fictitions gluon mass

A , i.e., the following modification of the gluon propagator in

the momentum representation

1 1
—_— — (288)
k?+«i0 k% A%io

or, in the configuration :epresentation

1, €
. : At \3Y T ¢
< _.-‘_ : (m) i 2cos '“e K“ A«/-xﬂ o)., (28b)

41\ —Xa 42'

where Ki+§ 1o the McDonald function.

Calculation in this scheme allows one to define the A -integ-
ral of eq. (27) as '
nTar 4 (# o | (29)
A B S e T) ’
where A has just the meaning of the IR cut-off parsmeter (i.e.,
the scale, inverse to the contour length L : A~ 1/L ). The X =
integral remaining in eq.(27) can be easily obteined by using the
following angular variables
xipr+ XVqre¥ - 24 (P chd
—_— = @ , s 4 - d4{' (30)
xyJp* + X\gte (Px+g¥X) 4
The angle ¥ between p and 9 (fig. 2) in the Minkowski space
is defined by

P
CL\'K = W . : (31)

The'cérresponding Euclidean results can be:obtained by a mere rede-
finition of the angles

Uy = i TE (32)

The final result for the renormalized contribution of the diagram
3a (up to the irrelevant finite part ) is

Mg (5, 9e, f/A) = Ky "Ry M = = 32 e wethy 6 L5 (33)

where o = g:;’éw . Taking into account also eq.(26) we find
the one-loop contribution to the exponential factor in eq. (19}



2PI
R,one -€ocp

. o 2
(Cz;gg,r&): - E—icF(gcl-hq-Oehf;\_i (34)
and the one-loop cusp anomalous dimension

. , (35)
rcusp,cne—&x.r (K'gﬂ)z -%SCF (7c4h3’_4) .

4, Two-Loop Approximation

In the a£ order the colour factor entering into eq.{19) is
proportional to ' ‘ ‘
CZ(W) ~ < N (36)
and the set of the 2PI vertex diagrams containing the term display-
ed by eq.(36) in their colour factors is shown in fig. 3(b)-(e). Be=-
low we present the results of their calculation in Feynman gauge.
For the graph 3b) we hage the expression
T ( -1)  2(4:in
-(tg)(fq)ch(cF 7?;“’ e )] ) L, )
j-is stz st J“Ss [((ps +qs_,)-—«0)((f>s +qs, )-;o)]
which after the scaling transformation $,= X S, v =Y S s

2
§4+8, = A, $;,=A2Z contains an integral over A that can be defined in
a way similar to eq.(29)

24-mTax 20-n)
T e = s ()

C lculating now tne integrals over X and Y gives
s 2(6-n) 2
’mg=16‘rr"cF(CF 2) 2 %) <2

2@y n) 4 sh'y (37)
j 22(—3 6hz+ze y
2e %2 v ¥

Changing further the angular variables according to eq.(30) and
applying the subtraction procedure we get the regularized version
of eq.(37)

v r .
Me o (7, o, j/A) = () e (e~ cihzzrjd44*<v-¢)c4’\+eﬁ% T (38)

The calculation of the diagram 3c can be most conveniently per-
formad in the momentum representation

Mpv (k) P \2
™= 0 RAJES g C ) ©9)
where

(= g'n  oxY T2-DIrTE-0 zn-;

nlAV K)= (gflv k V) 2 (2m" -k 1)2- ren-2) “Thoq

is the regularized gluon polarization operator possessing a UV pole
removed by the renormalization procedurs eq.(4) in the MS scheme
with g e

Zg<: 1+ z Nv B2 4om
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After the application of the R-operation to eq.(39) 1t 'is ne-
cessary to redefine the resulting IR divergent expression according
to eq.(28). This gives

o - KR, TR B 3.5 rthnto

The regularized contribution of fig. 3d)
”’l :(ts) (P‘Y)CF(CF z)jds J,xszj.(s Jd 16 — [((p +7s4) .o)(P s~ ,)--o)]

after integration over s, 53 contains a UV pole corresponding to
the fermion-gluon vertex correction [ ],-g

9 2 n_ 2(4 ) (Psz.*q‘ﬁ)L ] 4-n
ML= ion PO ) e e (< ——-)I"( JJ f YT N (41) .
and removed by the renormalization of eq.(4) with

F LI
20= 4r (- NE& o

Redefining the integral (41) we obtein the result of the action of
the R-operation on My & 5 2-1

ot Ax (pq) (P x
R"m,( ( ) (CF 7)[ 24:;{2(&) TR n)( ) n-3 J[F;%)LWZE]'
where from subtracting the cusp singularities and performing the
change of angular variables (30) we find the renormalized expression
for the graph 3d):

mdﬂ“’ 9o, R/A) = (‘)‘F(Cr. )[‘7{&:4117 enl + —’D’CU\B’ev«L
- j,w ché Ga L]

The most complicated is the calculation of the diagram 3e) éon-
taining the three-gluon vertex. We represent the corresponding fac-
tor Vi e ¢,-x-¢) in the form T

fve —

v/‘“’f’ (x,¢,-x-€) = VI“VP (x,0) + D/‘”P (x,e)
(cf. refs./12’13/), where
Viap (0@ = (284 Y Gop v 2k0 Gov = 2 Gpp ) Do (4,0 = = by Gpp = (€419, Gpov
satisfies the simplest Ward identity

(42)

- - 2 L2
Krl V/"WP (K,e) = [(Kfe)- é ]gVF . . (43)
The "D-vertex" produces the following contribution '
L R AT R 1 [ 2(P9) TP ]
_-_L .
Mep Jas) @ e L@y’ @po (44)

The first integral has the structure of that corresponding to fig.
3c) and is easily calculated. The result of applying the R-operation
to eq.(44) (after necessary redefinitions) can be written in the
form : ‘

11



2 Yelhy 2“’“") redhy 4-n
R 'me,:l):(?) <'.="/[ 4(4»,) (h-s) 1\) 24-my* (L)

2(4-wy ! (Px+qu)+ q%%%9g
K’
* 16(4-'\)(T> 543 i‘(x(PM qxy)* 9% x*yg5 ]
After the change of angular variables, integration by parts and sub-
traction of cusp divergences we get

Kg R M5 = Mg '2(7'99'#/’\) (a,) : [ zc{hrehzf_ n“"&. %

3o rebhy Gl £ clhy oy JAJ— t‘;f"fs& Qn:h"j b *‘1]

For the contribution of the V ~term we first rewrite the ver-
tex factor in the form

Viwp (<, &) R i = Pz(ze*“)F[(arf (Pn)) f’—zfj

Now, using eq.(43), it is easy to see that the second term in this
equation (longitudinal with respect to Kp ) is cancelled by the cor-
regponding contribution from the vertex function of diagram 3d). As

a result, the sum of the V —contribution from the éiagram 3e) and
the total contribution of the diagram 3d) after calculating the ¢
integral does not contain the UV-poles related to the fermion-gluon

(45)

vertex qut*
7’?4+m 6 er F(3- z)cz » k2(kprio)(kq+io) n (46)

3-3
2

d
. édz)« j'AxM 2x) Ky (Guv™ J%—){(FA KAXY> kZAx—-:o] 3
where A=1-2 , Performing the IR redefinition and subtracting the
cusp singulerity one can rewrite eq.(46) in the form

My o8, Go, R/ € T o (3,9, p/m) --(°" (24 +I) en (47)

where the w’-term corresponds to the gluv -part of the projector pre~
sent i{n eq.(46), while its second term yielda

i . shid sht
—clh’a’idxx((—Zx)ldyy !d(i ::,f: (x+ xyz l“”) cLhzjddv - W@nsw

Thus, subtracting eqs.(47) and (42) we find the final result for
the renormalized amplitude of V -part of diagram 3e)

2
meyg“ 9o, p/A) = (da) r-"/( 'zcékr Q“Z_ N -sc-l—hzr 6"-,*-‘\—2

Lok _cu.pw;w — (J,,,:: 0 L5 )

It is worth noting here that the cancellation of double logari-
thms of sz in the sum of eqs. (48), (45) is a consequence of the
fact that the vertex correction of diagram 3e) gives a zero contri-
bution to the renormalization constant Z of eq.(4).

Substituting the total contribution of the 2PI vertex diagrams
3b)-e) calculated above (with a proper account of combinational fac=~

(48)

12

tors) we obtain the following result for the two-loop contribution
to the exponential factor of eq.(19):

2 v )
Ve, *‘: eocp (% 30, W") - —("‘—’)cw[‘—’mm-qenzf,%i (49)
{ (’66“11_1)., i " " (yedhy- -)-4% ’~‘“\3’J444 cthd
zdk’}'jdcl-‘lv('b'—‘l—)dhl-l— - 4 clhy s Jd4 :\”:;@hizl A :::f 0 ‘ut] ’
For the gauge-invariant cusp anomalous dimension this gives
rfm-emr(z 9r) = 2(«5)cF [Gacthr-0+ £ - & (MM 9 o
(o]
dethd- .
_-Luajmtcmhcu,z wa-@c{w- chhy sh 144 — “1 R ur} |

Continuation of eqs.(49),(50) into the Euclidean space can be
performed by changing the angles as prescribed by eq.{32).

5. Asymptotic Behaviour of the Cusp Anomalous Dimension

"In this section we consider the behaviour of the cusp anomalous
dimension in two limiting cases for the Minkowskian angle 7 :

a) ¥+>oo ; in this case

- Q? 2 2
¥= e“‘:z , QEPmT, (51)
where
Q2="F“i)2 , Pq=m® .
and
b) ¥= O ; in this case
=&/ m: QZ<<m2. (52)
In the 1limit (52) one can represent (7, 9;23 as
= s 9 ot ¥
Moasp (3:90) =, F e T+ 23 FM[,G('Z——)+12 z (53)
2

and hence T, vanishes as Q‘ﬂ—‘z when 70O .

In the oppoaite 1imit (51) the two-loop term of the cusp ano-

malous dimension . N .

gz, fob S [E0S-Z6E] oo
does not contain ?m Qz- in a power higher than one, because in
Feynman gauge the e“ Q‘/Mt -terms due to the D -parts of the diag-
rams of fig. 3e (see eq.(45)) are cancelled by those due to the
diagram 3b (eq. (38)), and the double logarithms due to the vy ~-parts
of the diagram 3e (eq. (48)) are cancelled by those due to the diag-
ram 3d (eq. (42)). The constant term 67/72 in eqs. (50), (53), (54)
is an artifact of the scheme employed because it appears after one
applies the QMS-operation to remove the subdivergences from diag-
rams 3c,d.
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It should be noted that the path-ordered exponential corres-
ponding to the path shown in fig. 2 absorbs all the IR singulari-
ties of the amplitude of-querk scattering by an external colour-
-singlet potential, the initial quark momentum being p and the mo-
mentum transfer Q2 (see ref./14/). In the limits ¥—~ 0, this
amplitude was calculated in ref./ 13/, our results (egs. (53),(54))
are in complete agreement with those obtained there.

Let us prove now that the cusp anomalous dimension (eq. (21))
in the 1limit ¥ > is linear in n -:i—z, for an arbitrary order
of PI's To this end we 1ﬁcorporate the Feynman rules ( eq. (25)) in
momentum representation and note that the UV pole related to the cusp
singularity of the 2PI contour averages (eq. (19-(21)) is due to the
integration over the UV region of the fermion and gluon momenta while
its dependence on ¥ 1is determined by integration over small angles
between. the tangent vectors to the curve on which the fermlons are
"living" and momenta of the emitted gluons. A general structure of
these angular integrals singular in the Qa1 1limit can be stu-
died by using standard methods of the factorization technique/15’16/.
Note that the lagrangian of the one~dimensional fermions (eq. (3))
has the following properties: the one-dimensional fermions interac-
ting with gluons cannot change their "helicitles", and, hence, the
emiggion of the collinear gluons with physical polarizations by the
fermions is suppressed. There exist the whole class of the so-called
contour gauges defined by the gauge condition Pexp(*sfdirAF) i
for which the gauge potential A is a linear functional of the field

strength r

Af‘ Gyp (33 A) (55)
and, hence, the gauge field has only physical degrees of freedom.
Using the dimensional analysis of ref. it is now easy to find
that in physical gauges the power of the logarithm en %g: is equal
‘to the number of independent angular 1nfegrations, i.e. to unity for
the 2PI subgraphs., Thus, UV cusp singularity coefficient for the
2PI diagrams of eq.(21) in the limit ®@*»m? ig a single loga-
rithm g? , and hence,

2

(75 9p) © Z Z el C (w)(a“(w)en—+ Q (w)> (56)

n=t wewin)

(x) = szv ,a—x,r;

The fact that in Peynman gauge the propagation of the longitudinal-
ly polarized gluons is also allowed leads to a more singular struc-
ture of angular integrals, However, higher powers appearing in sepa-
rate diagrems with each other cancel in the gauge-invariant sum

(eq. (38)).

14

i

It is worth emphasizing here that the cusp anomalous dimension
(egs. (35), (50)) 1s regular in ¥ everywhere except the point
F=ir (or ¥=7 1in the Euclidean space-time) corresponding to the
"collapse" of the contour shown in fig. 2. The contour average (re-
noxrnalized as well as nonrenormaiized) equals 1 in this case. This
means that in the regulsrization scheme used in ref./S/ the cusp
singularity for ¥=i{w possesses a linear divergence: exp(—‘Klqaej
(see the Introductinon), where L_, 1s the length of the “collapsed"
part of the contour, i.e. in this 1limiting case the very definition
of the cusp anomalous dimension is meaningless.

6. Glauber Regime of the Anomalous Dimension

In the process of our calculations in sect. 4 1t has been imp-
lied that all the intervals between ény two points on the contour
shown in fig. 2 have the same sign (this is equivalent to the state-
ment that the three kinematic invariants P%q{(rq) have the same
sign), which allows one to continue analytically the results obtai-
ned into the Euclidean space using eq. (32). Note also that-if the
two points of the contour shown in fig. 2 are separated by a time-
~like interval, then the path-ordering along the contour coincides
with T (or anti-T ) ordering of the gauge potentials in-'eq. (1).
Consider now the class of contours for which these properties are
not valid, e.g., fig. 2 but with the change :

9—>-9. (57)

In the Euclidean space such a transformation leads only to the evi-
dent redefinition of the cusp angle

T~ - g (58)
in the final results. In the Minkowski space-time eq.l(BO) is not
fulfilled, and moreover, the residues of gluon propagator poles
produce nonzero contributions., In particular, the calculation of
the diagram 3a contribution with account of eq. (57) gives

2p1 - . R :

WQ one- ?oop( ¥R, f"“) == g?tCF((x“")'L"h?"")a" e (59a)
and, correspondingly, - ’

rwsf one - €oop (1, go) = —CF ((U°‘W)C'€h? 1) ' (59b)

Note that formally these relations can be obtained from eqs. (34),
(36) by using eqs. (58) and (32). Let us now find the region of the.
momentum space of the gluons responsible for the imaginary term in
(59). To this end we calculate it in two ways, »
Consider the freme where pPr=9,=-0, P+> P ,9 > q+ (with
et-qe 2t €3)/YZ being the light-cone variables). Then the integral
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contributing to eq.(59) is

=" 9)
m=_£82CFJ'¢(K A" d ke S— P‘i __ _ . . (60)
2" (2= Z- A (kTP PE o) (kT ki q T i0)

The position of the poles in the complex k™ plane is shown in
fig., 4 with the numbers , representing the denominator factors of
eq.(60). Taking the residue of the pole 3 for kT<O and of 2

for kt >0 and using the identity x:io = P% +iwF(x) to cal-
culate the integral over kTt 1t is easy to find that

‘ C L2
m-= ICFdsﬁ;‘zﬁ)— L Ky

: Na(“-zk
Toqt deEeaz T 5 Cp oAy cUm}r‘!K——T t... (61)

T AR

where the dots stand for the real part of the integral. Thus, the

imaginary part of eq.(59) is formed by the region where the gluon
momentum is mostly transverse

kr Wkt~ k=0,

i.e., by the Glauber regime for the gluons/17/ in which their emis-
sion does not change the virtuality of one-dimensional fermions. As
Kr—'O, the poles of eq.(60) 'in this regime move as indicated by
arrows in fig. 4, and the integration contour is eventually pinched
in the origin. As a result, there appears the singular imaginary part
of eq.(61). v

It is also instructive to calculate eq.(6b) in the o ;represen—
tation /3/ in which

m= io(scFJ_—rld__drex (_i"_(Pq- o)l € (gt o, v ‘ 6
o op (-, (P 99) e ) (62)

and the main contribution to the integral originates from the region
in the « -parameter space where the exponential form

P 2 q?
A= & (- L) (- )

vanishes /16/. The requirement'A: 0 defines'a plane
., L& ) q*
S o(z--';-,d_,, S, %= 2%

{1lustrated in fig. 5. According to the resulte of rere./10:18/ in

the region S1 and Sz the "pinch regime'" is realized producing ' .

a regular contribution of each separate hyperplane of eq.(62). How-
ever, in our case there exists also the line o,=a,=0 common both
for 51 and 52 where the "intensity" of the pinch singularity is
higher and the corresponding integration gives eqs. (61), (59) poss-

* essing the divergences both in UV- ( ooz~ 0 on S s, ) and

in IR~ regions ( oy —+oo on S,,S, ). Thus, the Glauber regime of
the gluon momenta corresponds to a pinch regime in the o, -parameter
space. One can prove that for the nonzero Glauber regime contribution

.
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in eq.(59) to exist it is necessary (though not sufficient) that the
K integration contour be pinched at the origin, while the presence
of the pinch regime in the « -space is both necessary and sufficient.

Note now that in the allowed region «; > O the pinch hyperpla-
nes S, and S, of fig. 5 (ag well as the imaginary contributions to
eq. (59)) disappear if P2.92<0 , (PO, i.e., if any two points
on the contour shown in fig. 2 are in the space-like region and the
T-ordering in eq;(1) can be omitted. This means, in particular, that
eq. (59) as a function of the vectors P, g has a singularity on
the light cone.

In view of the connection between the IR asymptotics of the con-
tour a&eragea and those of the hard QCD processes we may conc-
lude from the above discussion that contributions due to the Glauber
regime (which for mome time was thought to be a possible source of
contributions violatin the factorization for hard QCD processes)
are completely taken:into account by the 2-loop cusp anomalous di-
mension. ’

7. Conclusions

-In the present paper we studied the renormalization properties
of the cuasp singularities of the contour averages. Incorporating some
properties of the Ky R ~procedure responsible for subtracting the di-
vergences due to cusp singularities we established the general form
of the PT series for the cusp anomalous dimension in the limit of
large Minkowskian cusp angles. The two-loop contribution to the cusp
anomalous dimension was explicitly calculated and its connection to
the nonleading IR behaviour of the quark form factor was demonstrated.
Ne obgerved also that there exist two sources of non-analyticity of
the results obtained with respect to the cusp éngle ¥ : first, for
Upq = b ( ¥e-7 ') there appears a linear divergence and second,
the Glauber gluons in the Minkowski space give a nonzero contribu-
tion to the cusp singularity.
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APPENDIX

Let ug prove that in the K;ﬁs ~gubtraction scheme there exists
a connection between the renormalization constants ansp and the
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pole part of the 2PI contour averages (eq. (18)). To this end we note
that in this scheme igaur (given by a sum of poles of eq. (8)) can

always be represented in the form
a0 32"
‘Zw,,,(“)W*P(‘Z‘ e Fre (@) »
Nn=
é<n
where #ne(z) are some yet unknown functions of the cusp angle 7 .

Substituting this expression and the one for the regularized contour
average determined by the contribution of the 2PI graphs

W(rig,6)= exp(W2hey;q,¢) - @xp(;_(‘é_‘t*_“_’da (rdnle))

(where dh(z'Jq},E) is some regular function of € ) into eq.(7)
we find that

) gzn en °°< gzn
W (<53 ga = mexp(2 &gt f il - T, e—e“cne‘"‘))‘

The requirement that the € -poles be absent in both sides of this
equation unambiguously fixes the +n€ coefficients.

e D=0, €>1 faa = B, (x,{n} 0).

Hence, tﬁe final expression for the cusp singularity renormelization
constant is given by an exponential of the pole part of the 2PI
contour averages depending only on the cusp angle ¥

Fig. 1. General structure of the rainbow-irreducible subgraphs. .
The dashed line denotes the contour integration in a viei-
nity of the cusp O . The blob denotes an arbitrary gluon
subprocess.

fod
£

P q-

N

Fig. 2. Self-energy and vertex corrections to the contour averags.
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-Fig. 3. Total set of diagrams contributing to the two-loop cusp

anomalous dimension.

Pig., 4. Position of poles related to the gluon propagators of eq.
(60) in the complex K -plane in the Glauber regime.

Pig. 5. fihch hyperplanes Sf', S,. 1in the « -parameter space
containing the ultraviolet (UV) and the Glauber (GR) regi-
mes of the gluon momenta.
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Kopuemckun r.n., PamouxuH.A.B. .
.| UHdpakpacHan acuMnToTHKa nepTypBaTueHOH KXA.

HeH K MCCneaosaHuio peHopManM3aynoOHHLIX CBOMCTB NPOCTHX BUNbCOHOBCKMUX nerensb

-] cTeii peHopMIpynnoOBLX ypasHeHuit, onucuBawuwux MK noeegeHue nepTypbatusHoit KXA.

E2-85-779

PeHopManu3ayuoHHue CBOMCTBA BMNbCOHOBCKMX neTerb
B BHCWMX NOPAAKAX TEOPUN BO3MYWEHUH

Noaxoa, OCHOB3HHUA HAa WCNONL30BaHUKM GOPMANM3MA KOHTYDHHIX CPEeAHUX, npuMe=

B BLICWMX NOpAAKAX Teopuu BoamyweHuit /TB/. PaccMOoTpeHw cBOMCTBa Npouegypu Bbi=
UUTaHUA YINOBuX -OCOGEHHOCTER P-ynopAgoueHHHX 3KCNOHeHT. B nopaake ag suuncne-
Ha YrnoBaA aHOMANbH3A paaMepHOCTb. 06umit Buag ee paanoxeHuAa B pag TB HavigeH

8 npegene 6onbwMX YrnoB u3floMa KOHTypa B npocTpaHcTee MuHkoBckoro. Hccnepo-
BaHa aHANUTUUHOCTb NOMYHYEHHOrO BHPAKEHUA NO yrny wanoMa. dpogeMoHCTpupoBaHa
MX CBA3b C HENWAVPYOWEN WHOPAKPACHOR ACUMNTOTMKONW KBApKOBOro dopMpaxtopa.
TonyyeHHwe peaynbTaTh MOTyT NPYUMEHATLCA  ANA HAXOMAEHMA AHOMaNbLHLIX Pa3MepHo-

PaGoTa BunonHeHa B flaGopaTopuu TeopeTuueckon ¢uamkn OHAW.

Mpenpuut O6beAMHEHHOTO MHCTHTYTA AMEPHNX MCCienoBamwil, Hy6ua 1985

Korchemsky G.P., Radyushkin A.V. , £2-85-779
Infrared Asymptotics of Perturbative QCD. Renormalization
Properties of the Wilson Loops In.Hlgher Orders of Perturbation

Theory. -

The approach based on the use.of the loop space formalism is applied
for the ‘investigation of renormalization properties of the Wilson loops
in higher orders of perturbation theory. The properties are considered of
the subtraction procedure for the cusp singularities of path-ordered expo-
nentials . The cusp anomalous dimension is culculated in the order af. The
general form of its perturbative expansion Is obtained in the limit of large
Minkowskian cusp angies y. The analyticity properties with respect to y of
the results obtained are investigated. The relation of these results to the
nonleading Infrared behaviour of the quark form factor is demonstrated. The
final expressions' can be appiied for construction of the anomalous dimen-
sions of the renormalization group equations describing the infrared asymp-
‘totics of perturbative QCD.-

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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