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1. I n t r o d u c t i o n 

Matrix elements of hard meson processes in the lowest twist are 
represented by convolutions of a hard parton amplitude, coefficient 
function, with wave functions characterizing meson properties in 
hard processes. Coefficient functions are calculated in perturbation 
theory as series in powers of ~J (~) • In particular, one-loop co­
efficient functions (by which the calculation of subsequent orders 
starts) were earlier calculated for some proce,ses like the pion 
form factor x·'JI'- :1(" 11 •21 and process t t~ ... 1T IJI. The wave func­
tions are determined by physics at long distances and ca~not be cal­
culated by a perturbative QCD. However, perturb~tion theory.may pre­
dict their evolution with Q1 (the kernel of the evolution equation 
is also a series in powers of J...s ( J)) • Therefore, recent two-
loop calculations of the evolution kernel for a nonsinglet pion wave 
function (performed in a light-like gauge/4 ,5/ and in Fe~nman gauge/6/) 
allow us to complete the analysis of exclusive processes including 
pions in the next-to-leading approximation of QCD. To this end, bas-
ed on the calculations/Sf and/6/ we shell construct (sect. 2) a solu­
tion to the evolution equation for the pion wave functior. and analy-
se this solution. Note that in the case of QCD unlike a uore simple 
scalar model, see/7/ the evolution law for the pion wave function 
can be obtained only numerically. (The Table of coefficient determin­
ing the evolution is given in Appendix 2).The obtained solution may be 
used for calculating amplitudes of any exclusive processeP including 
pions. 

A concluding stage is the compilation of contributions from co­
efficient functions and from a two-loop evolution of the pion wave 
functions to the total ~, - correction. In sect. J we calculate 

~ ~ 0 
and analyse the total ~ -correction to the process X X - .1f J 

in sect. 4 we evalu\te evolution corrections to the pion electromag­
netic form factor K ()("~ r . Basic results are summarized in the 
Conclusion. 



2. hvolution of the Nonsinglet Wave Function of a Pion in the Two­

Loop Approximation 

The pion wave function may be determined by its moments/8/ 

~ 
~ .N - ~ . rJ l I <f\(x,~l.)xdx = _t._tJ .. 1 (OidK~h(n'.i) UIP>• (1) 

Jr }c 2(Pn1 

where hv is a light-like vector ( h2 = 0) introduce<!_ to _picj; out 

a symmetric traceless part of the local operator 0.,= d V 'I ) .. J>.. U 1 ..,.,. ,. Gsav "~ 'N 
~ is a covariant derivative; \ \)), a one-pion state with 
~ 2 . 

momentum p ; J'l , the renormalization parameter of composite opera-
tors (or in other words, 11)'1 determines the boundary between "long" 

and "short" distances/ 1 ,!3/); {x .. 1JJ MeV and zeroth moment of{j)(x,~!) 
equals unity. Qualitatively, <p( X, J"1 ) represents the probability 

amplitude of trar1sition of the pion into two massless collinear qu-

arks with momentum fractions 'X P and ( 1• X ) P:: X P •) (in the in-

finite-momentum frame). The change of cp ( X , ~2. ) versus f 1 is desc­
ribed by the evolution equation/8 ,9/: 

\ 
fi ~ cx,,.,l) = r

4

V(x.~;8) CJl<~l)dj = V®cp qrl. )o (2) 

CDr\',,;:\= ([! 1 x\. 
, ., • -'C , 

Here V = Z~ (tl ~(X,~)+ (ifff'll)
2 

V
2

(X, ~) is the evolution ker­

nel for the pion wave function in QCD in the two-loop appro­
ximation/4-6/; 

V2 = 2 cF Nf v,H + 2c~cA v,+ + c; vF-+. o> 
The functions. \/l~,G,f)+ for group factors in {J) are written out in 
Appendix 1, formulae (AI-AJ). (As usual, C0 = ~ , CA • J, and 

N~ is the number of flavours of light quarks). The function ~0(X) 
defines the form of the pion wave function in a low-energy region. 
Note that the result for function \IF has recently/10/ been veri­

fied by a direct numerical calculation, in Feynman gauge, of its mat­

rix elements in the basis of Gegenbauer polynomials, and the agree­

ment has been established with the results found in refs./4- 61. 

-tHereafter we shall use the notation X= 1-X 1 9' = 1- ':1. 

2 

In a one-loop approximation V - ..1.4~.1") v~ the solution to 
e'\. • (2) is well known/9/: since the variables are separable, the 

problem reduces to finding eigenfunctions ~h for the equation with 
kernel ~ • These are Gegenbauer (G.p.) polynomials with the weight 

y g , i.e. t.L. = ~~ C312 (~-9") < y 9 is the weight with which the 
Th h 

Gegenbauer polynomials of index J/2 are orthogonal). ~ what follow\ _ 
we shall also need conjugated Gegenbauer polynomials U, = Lt l2n+'3) C ... \~HJ) 

"' tl, r Th ( h-+~ \ CIH1) " 
and ~ ® T, = Otn n • The solution to eq. (2) then is a series 
over f'kcti:ns ~... (see, e.g. / 13/): -t~l/g 

. •• fnl"'!l o 
IJ' 

1I c t) '~l { J. l1)] 
q><xl)=L ~nlJ'1~)exr{- ~ di 4'11 X., }~tX) = L !n(r! 1J.\~) ~ (x) • <4> 

tt .f~> rf'l;J h h. s 1 . n 
The coefficients 

1
€h (lol;) represent Gegenbauer moments of lD (X) 

l ~ « I ..ls Jo 
C (Me)= P, ®Ill; X .. are coefficients of r.-.,.. in the anomalous di-
tl J 0 In Q " .t !~\ '"'" 2 (2) /12/ D 

mension of the h operator: X h = ~ ~ 11 + ~} Qtl ; - t>0 is 
the first expansion coefficient of ~ -function. 

Let us proceed to construct a 2-loop solution of eq.(2). The 
total evQlution kernel in the 2-loop approximation can be represen­

ted by a sum of two terms, a part of the kernel diagonal in the ba-
. {Ll', v(.b) · v'~l>) s1s '~J· and a nondiagonal part, • We shall write a 

partial solution q>h (corresponding to the gh l~!) coefficient) in 
that form for which the contribution from the kernel dia~onal part 
will be taken into account exactly: 41. 2) 

J 
I/" Nl>) 

q>h = exp {- dt ~ (J:Ctl)} q> ~ . (X, )'t~) (5) 

fn ( f'1i\ 

and the function 
(IO) 

q> to the 0 (J.1 ) order is determined by the 
hV(~) In (5) we made use of the result for mat­

in the Gegenbauer basis/6/: 

nondiagonal part 

rix elements V 

i ® V® th =- ~h. 

Substituting (5) into (2) and incorporating 
11\ (N)) 

equation for 1 : 
h 

(6) 

(6) gives the evolution 

(N~) (1'41) 

~'l.a~~ + p(d.)O.l. - vh ) ~ cph = o 
(N~) 

v = V + K" · (7) 

(Ill>) (t.ih) Ll. 
If V = 0 , then, obviously, 'Ph = Tn (X). The nondiagonal part con-

3 



tributes to <p~IO) in the 0(J.
1
) order. Therefore, an approximate so­

lution for ~~will be looked as ~he series/11 1: 
(N)) - I( 

cp = d. + ~(~) L d, tf) IL ~){) (8) 
1-1 T., 4:r 1<=0 IK 

I( 

with unknown coefficients Jh • Requiring radiation corrections to 
be abser.l( at the normalization point ~0 gives the initial condi­
tion d., l~!) = 0. Inserting {8) into {7) l(and using the initial con­
dition we arrive at the expression for d : 

e . ~~> h w)) I 
(ta) . ( o-!.,,, + ~)1 fc 

v2(Kn) ( 1- [J.!()t,)J ) 
t~l_y(()-f .id}1) 

K llh C 

K 

d = 11 (9a) 

(N)) .-v (10) 

~(l<h) = ~I( 69 v2 ~ +~-~ · (9b) 

K 

Expression (9) for coefficients cl
11 

was first derived in/111. 
However, the authors have used a two-loop kernel ~ reproduced from 
first principles like "residual conformal symmetry on the light co­
ne"/10•11/accep\ed a priori. As a result, they obtained V~ (and 
consequently, d ) that contradict direct calculations/4-6 •101. It 

11 
i A i nt:~.,.P-=r+i n~ "t":' ~~'t~ !~~-:- .:'!!=!'! ,::.:::, ::;.;;:;:-~~~~ .:!...;; -.-o.ll~ tuL ~l1~ r::tvt:U..tU· 

model ~~) /7,
1
0/, in which it provides uniquely structure of the 

evolution-kernel nondiagonal Rcart. The structure thus obtained for 
the evolution kernel allows dh to be computed entirely analytically 
(see Appendix 1 ) • K • 

The elements d 11 are only nonzero for K and tt of the same 
parity and I<'> tt • This is a consequence of the general properties 
of matrix vl(n : the first results from a "geometric" symmetry of 
the evolution kernel, V (X, Y) = V Cx, ~) , and the second from a 
triangular shape of the renormalization matrix {see/61). Allowing 
for this remark and substituting {8) into {5) we get the following 
solution to the evolution equation: 

<p Cx,t) = ~ -fh (~~) ~., cx~rt) {1oa> 

~~~ ~ 
<P ( )(, ft) = eJCF{ --f dt Kh[.ICt\]} ( ~ (x)+ ~ L Jtt tf) 4k(x)). (10b) 

~~!) tt lt.">\-1 

4 

A practical value of a solution of that sort is defined by that how 
rapid is the convergence of the series in (8) (see paragraph 2 at 
tht end of the section) and how accurate are the calcul~,lJ,ons of 
d . Expressions for anomalous dimensional! ties (till) ~ h can be 

fo:ind, e.g., in/121. The calculation of elements V2.l11-'rl) determining 
J I< cannot be accomplished in a complete analytic form because of 
a ~ighly complicated structure of \/r • However, the matrix elements 
for 2 Cr N! YN + 2 c!F CA 'JG can be computed analytically by formu­
la (A7) of Appendix 1: 

( tBI) ((l ( 1) 

2 cF(N~VN+ c,. VG. J(l(h) = Co\~\(- ~h )C.\1(' 

where QI'IIC are given by (A6). The matrix elements of Vr-+ were found 
by numerical integration. The properties of solution (10) thus es­
tablished can be formulated in terms of partial wave functions qph 
with even h , which corresponds to the symmetry of the pion wave 
~ction. So, we write c:ptl in the form 

cp = cpoln\ + h J.,Jf'l} ~(1-t)' 
Ll"ll 

( 11 ) 

where ~~(l1) represents all corrections from the 2-loop kernel, and 
2. 2. 

summarize the results of calculations (here and below ~c = ~ Q e V ; 

A = 0. 1 GeVL 
- -QC]) t 

1. For h"> 2 and f S: 125 GeV corrections from the nondiago­
nal part \l are about by an order smaller than those from the dia-

2 
genal part accumulated in the exponential factor. In other words, 
the \J'J. kernel appears "quaaidiagonal" in the Gegenbauer basis 
(corrections at n • o, i.e. for the asymptotic function, are also 
very small and are considered below). 

2. Corrections of higher harmonics to U, are mainly determined 

dh+l ~ Th ·by the first term in the sum over K (10b). SUbsequent 
h h .. 2. 

coefficients decrease rapidly with growing K , and it suffices to 
take only a few first terms into account (see Appendix 2). 

.l.s.ll') tT\ 
). The total contribution of 2-loop corrections, ~ ~lh) 

increases as h. increases. At h. • 6 this contribution is as much 
as 6% for )( • 0.5 and ~l. .. 125 Gev2• 

So, for a popular choice ~0 • 6 XX , corresponding to t~e 
asymptotic wave function in LLA, corrections come only from \ll•l 

dl( ~2 } 2 
?. - · ~ L c (.x-x) . (\)As(X,~) = 6 XX {1+ 4?1' k~'2. 0 I< (12) 

5 



Calculations show that these corrections are less than 0.4% (at 

)I = 0.5) up to .f· = 6 103 Gev2. 

Another example of the low-energy pion wave function was propos­
ed in ref .f13/: 

<pcz(x,~!) =30Xx (1-4xx). ( 13) 

In this case a relative contribution of the 2-loop correction at 

~2 = J25 Gev2 amounts to about 2% at maxima of the function. By 
using dh tabulated in Appendix 2 the evolution can be calculated 
(at )'t'l. = 125 Gev2) for any wave fUnctions that at .f"\~:::::t 1 Gev2 can 
be represented by a sum of the Gegenbauer polynomials til with h ~ 1 O. 

We have also solved equation (12) by a direct computed algebra 
for h = 0,2,4. However, this way of calculations is very time-con­
suming and makes sense only as a test for the solution proposed here. 
The results of integration are consistent with solution (9), (10).and 
with conclusions 1,2,. 

.. 4 0 
3. The Total Correction to the X x~ 1T Amplitude 

In this section we shall calculate thP. tntAl 

the amplitude ll of the process 

~ -~~~~o~+~~~ +-
~ --------·· 

4 if-

~{\)+ Kr~) - M(~)- spinless pseudoscalar nonsinglet (in 
flavour) meson 

to the next-to-logarithmic order; here it is convenient to express 
the amplitude T in terms of the transition form factor rM~ /14/ 

j(VAf' 

T -4 e ~Q.f r-
- A E.,~ £21J r ,., r 

1 . t 
where Q = - 1 Cj.,- q); P = 'l. + q, i - <1. 

1. 2.\, .,_ ~ l "-
- n ~0 · " and f 2>/ are polarizations of colliding photons, The ,.. ~ ) C.1/A 
form factor F. in the lowest twist can be re~resented by an integ-
ral convoluti:n! of the coefficient function C (X • W) determined 

'P(x, Q1.) /9,3{ 

is large and positive; 

from a hard parton subprocess with the wave function 
the bourdary between lo~ and

1
short distances being defined by the 

quantity 1/IQI , i.e. )« = Q (see sect.1 / 11: 

r-,..
6 

(w) = N c! (x, w)® cp (x, Qt), ( 14) 

6 

for where W= ~~1. the coefficient ]II 
and ect are charges of quark flavours. 

0 ( .>- 1..) 
:Jr equals h ( elol- ed 

The parameter W characterizes the degree 

liding photons. In a symmetric case (at q,~ = \ 
of the photons is real, ~ = 1. 

In our approximation formula (14) becomes 

of asymmetry of col­
) W = 0; when one 

t.fi ~="t~~ = Fg lW)+ ~ ~ (w) = (C
0
(x,W)+ ~ Ci(x,w))®(~ (x,Q)+ t;; ~~lx,cf)).< 15) 

where q:> lX, Q1 ) is a solution of the evolution equation (4) in LLA, 

and the ~rn term C
0 

(X 
1 
W) of the pseudoscalar coefficient func-

tion equals/3, 9/ 

Co ( x,w) = " + x- x. 
1+ W[i-)(] 

So, to establish the ~~ -correction to the form factor - Pi , it 
is necessary to know ~ (X 

1 
W) , the coefficient function of the 

process in order 0 ( d...r) , and ~ , process-independent correc-
tion due to evolution of the pion wave function, (The latter was 

analysed in detail in sect, 2). 
Ill 

The coefficient function C~ was 1·~rst ca.Lcu.Lateu ~n re1. 
both for scalar and pseudoscalar cases. However, when calculating in 
a dimensional regularization there appears a difficulty caused by 
uncertainty of commutation properties of K, in a space of dimensio­
nality :b ;:f 4, This uncertainty was remove% in paper/

14
/ where c'i 

was calculated in the limiting case LJ = 1 and contribution of se­
parate diagrams were given. We have reproduced the result for Ci 
in the ~ scheme of dimensional regularization, and contributions 
of separate diagrams (Feynman gauge) are tabulated in Appendix 3. 
OUr final result coincides with ; found in/3/, and the limiting 
case uu = 1 for each diagram separately is in agreement with' the 

results of ref./14/, 

In the Table for C~ of Appendix 3 the scales for collinear-~ 
and ultraviolet- ./"R. regularizations are taken different. It is seen 

that for the contri~utions of diagrams a and C the part8 pro­
portional to fn [ Ql.fl} are given, respectively, by C0 ® Va. and 

~ ~ Vg+ , where 

7 



are parts of the one-loop evolution kernel ~o) = VQ. + ~ ; V~ = Vto\+ 
(see Appendix 1, formula (A3)), This result, in fact, emerges from 
the factorization theorem for the coefficient of collinear divrrgen­
ce of C4 12 •8 ' 14/, To simplify further analysis, we set Y'l.= ~It= Q.?... 

The total correction to the form factor t: F111,1(W) 

f:;111} ( W) = ~(X ,w)~ (jlotnl (x,d) + C0 llC ,W)® ~(h\ (X, Q1
) ( 16) 

will be treated, as before, with the use of partial wave functions 
(11). The calculation by formula (16) has been made numerically. The 
quantities t; ~ 1111 (W) as functions of W are plotted in Pig. 1. 
In Table 1 contributions of different corrections to ~ ~(n) are 
given for W = 1, 

The calculations performed allow the following conclusions abo­
ut the magnitude of ~s -correction and about the contributions of 
various sources to the correction (in what follows Q2 = 125 GeV2 ): 

1. A relative contribution of ds -corrections grows with n 
(see Table 1) reaching at h. = 8 27% (for (.A)~ 1) of the Born-term 
contribution. 

2. As is seen from Fig.1, F;(h\(W) as a fun7tion of W with 
increasing h. gets concentrated near W _ = 1. It is really n~t dif­

ficult to establish that C0 ® 'll1ln) "' Wn..._ and C~ ® q>OOt) "'w·· 
Therefore, the higher-harmordc corrections are most important when 
one of the photons in the process is near to real. 

3. A dominating contribution to 
the convolution C, ~ q> (see Table 

F.j{h) (c.J) at• h. = 0 comes from 
I) as ~01evolves weakly.For sub-

, OW\ 
sequent harmonics rt = 2,4,6,8 the corrections from coefficient 
function < are comparable with those from the pion wave function~. 
Thus, the latter are to be taken into account for a correct estimate 
of the amplitudes of processes with a real photon. 

It is to be noted that authors of refs,/3/ and/14/ are mistaken 
assuming a complete absence of the evolution of <p~s (see (12)) in 
the 2-loop approximation, In this case ~ is determined only by 
the coefficient function; but this holds valid only when the combina­
tion y y ~(X ~) is symmetric under the change X-"' ~ • However, 
both pa:l"ticu{ar computations/4 •5 •101 and a general analysis of the 
properties of \l(x,~)/6/ testify that this is not so, 

Realistic pion wave functions are extracted from the analysis of 
experiment by QCD sum rules, In Pig.2 plotted are the total correc-
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Table 1. (W=1, ri=125 GeV2) 

h 0 2 

Foch) < 4) t& ~.2& 

~h)l() -0.~35 0.03S 

Js 
~.GIIq«)!) ~l' -0332. 0.02i 

~~" ~.003 O.Of~ 

Lj 6 

1.05 0.9H 

0.12.9 O.i&1 

0.403 o.ts-4 

0.026 0.033 

& 

0.83 

0.2.25" 

0.4&2 

0.031 

9 

Cl(s 

4'il F1 

-0,022 
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tion :~ ~ (w)~ 2 _ with the use of function 'fl(X)~_z_(13/ 131 (the lo­
wer part as the correction is negative) and the Born term F; (W)<!_ a. 
(the upper part), As is seen, the correction is small: smaller than 
4% of the Born term :for all w • This is a consequence of a partial 
compensation between contributions of 0 -th and subsequent harmo­
nics giving corrections with opposite sign (see Fig. 1, Table 1). 

For more wide wave functions the compensation of contribution will 
be still more strong, ru1d hence, the correction will be still smaller 
in magnitude. However, for narrow wave functions and :functions with 
a great amount of hieher harmonics the correction may be significant. 

4. Total Correction to the Pion Electromagnetic Form Factor 

In this section we shall analyse the evolution ~ -corrections 
to the pion form factor F; ( Q_'l·) in the lowest twist. The :form :fac­
tor at sufficiently large transfer momenta Q2 is factorized in all 
orders and for all logarithms of perturbation theory/ 1/ 

f;(Q2.)=J.2. 'P<x1d)®[(X,jj~CQ))~ ~~.d)t~+ 0( ~1)}. (17) 
Q 

u~,...o +he~ ~~?:":':..~::..:::: :':.:.:::'t!~;: [(;;,J, .;.s\~~) ~.., ~lu:o tuupi..i~uU~ uJ. 
- lf ,_, 

hard part on subprocess q 't II~ 'l. 'k , whose second order in J.., ( Q) 
/11 ~ 2 4 1 2 ~ 

is given by : 

,\ ( o{(Q) ) £ (X,YjJ.,(Q); = fo (X,j;J./Ql) {+ 7r ~"(X,~) . ( 18) 

The coefficient function [
0 

was computed in pioneering works/ 15/ 
and/ 161, The :first correct calculation of ~ was made in/1/ in 
Feynman gauge. This result has recently been verified by calculations 
in axial an~ Feynman gauges in paper/2/ in which the dependence of E

1 
on the choice of renormalization scheme has also been studied, Thro-

2 1 
ughout we set scales of ultraviolet~~ and collinear ~ regl!lariza-
tions equal ~t , therefore all logarithms of scale ratios are zero, 
and £ depends on 0 2 

only through al.J(Q) (see/1/ and/21), 

For analysing the role of evolution corrections we made numeri-
2 

cal estimations of the form factor Q F~~)(Q1) (17) using the parti-
al wave functions ~n both taking account of the two loops evolution 
of the latter (according to formula (11)) and in the LLA ( cph~q>~)). 
The results are presented in Table 2 in terms of the total ~ -cor-

10 

rection T1(1\\ to the Born term TOln\ and the partial 
tion orignating only from the coefficient :function E~ : 

T. } { Ql F~~~., I..Q.'l) } 
J..stQ) _ 1-1. = 'l ....... l ' JJTol~-t) ( 1 + T \T11 ) Q FSiln}(G:) 

.'2. Here "-J..lQ\..J l ; 
JJ - "'-"_:s_ c f' )'lj 

- Nc 
N'Tout} = 'Patn)®t0®~0(11\ ; Ec = 

J.. -correc-.s . 

( 19) 

N 
)(j 

As is seen :from Table 2, the radiation corrections are rapidly incre­
asing with n ' and starting from the :fourth harmonics perturbation 
theory breaks. Thus, for the pion wave functions dressed with high 
harmonics the validity of perturbation theory is extended into the 
region of several hundreds (GeV)2 ; a final result for ~(~) is slight­
ly influenced by the evolution J..s -corrections, 

2 2 2. 
Table 2. ( Q = 33 Gev-; ..l< Q ) = 0.14) 

h 0 2 ~ 6 8 

TOlh) 0.2.5 0.12q 0.09 0.013 0.062 

-.... - -- ',., .., "'a A ~'Z {) Ll ~-q I .... , I . . . . I ".c I -- I I 
T"" . ?.06 : H.9 2&.4 : 3... 45.> I 

5. C o n c 1 u s i o n 

In this 
tion equation 
structed the 
like ( 10) may 

paper, we found ~~ approximate solution to the evolu­
in the 2-loop approximation of QCD and numerically con­
Q~evolution of the pion wave function. A solution 
be used for computing amplitudes of any exclusive pro-

ceases including pions, 

Then, based on solution ( 1 0) we calculated the total J..s. -cor­
rection to the amplitude of process ~* (-- Jr0 in the next-to~ 
leading approximation and numerically analysed the role of evolution 
Js -corrections for various types of the wave functions. It is 

shown that the J..5 -corrections are important when one of the pho­
tons is nearly real. 

II 



A numerical estimation is also made for the contribution of 
e;olution Js -corrections to the pion electromagnetic form factor 
X ~~r and it is found to be small. 

APPENDIX 

Here structures V(r,~ ,N) of the 2-loop kernel v2 are present­
ed, and expressions are derived for nondiagonal matrix elements VN 
and 'V, _in the { ~J basis. So, 

Yrt= 4t { 8(Y>x)[- I 1 
F + ~ - ( ~ F-~ )Pn(~)-(F-f)eh§ ~(~-~)+ 

(F+ :.Y)~n~~)}- 2~ f~x(H~hx-2ihx)-H(X 1 .'J)t 
(A1) 

H()(,~) = e(x>9) [ 2{ f- F)Li2. (~- ~)- ~ Ff11x ~h~ + (r-F) fn)] + (A2) 

2 f L~ l~) [ ecx >:9)- e l~>xl] - 2 F Li2. ()()I etx.,.g)- 8{><>~)1 + 

8(~>'lC)2f fk_y e..x. 
We used the notation: t = 11 + x- X. :J- Si ; X 

F=Flx'J)=l(1+-~-)- F= F(x y). L.; (x)=-~ i_tt tntFI:) , ~ y- )t ' ' J 2. 0 

is the Spense function. Symbol " + " in exps •. (A1) and (3) signifies 
, I ' "1 r . ("/. . . rl.., I . I 

VtX .. j)+ = v lX,_~:I)- L'\)-,XJ J VlZ,::J)OIZ 

., 0 

and the fact that in QCD ~ VCX,Y)dx = 0 because of the axial-cur­
rent conservation. The sum of the remaining st;ructures may be repre­
sented in the form (see/6/): 

2 "'1 <\- VN + 2_CA cf v, = €, ~ \fc .. nL=O + ull) + H ' (AJ) 
A+ll 

where"Yt'l)= t8ty~x)2CF(g) (i+'!ji-x); VloH=V1 ; the derivlltive 
with respect to index ~ will be denoted by dot: i~ V('J)Iv-o = V lo) • 
Prom direct calculations it follows that the functfons ~ and ~ 
in (A1) ~d (A)) are diagonal and consequently, do not form the ele­
ments Jh . Let us determine matrix elements for the first term 

in (A)). Since eigenfuctions of the equati~n for eigenvalues with 

kernel vl~)+ are given by the functions ~n =~X)H\IC3;2+'1()(-:X) (~0=~) 
we have the equation ~ 11 

~ ~ v 
Vl~)+ ® t = - ~ IL 11 .,_ T.,_ (A4) 

12 

and differentiation of this equation with respect to 'IJ at ~ = 0 
yields: . . . 

vlOJ+ ®~ .. =- ql1-+ Y{o)-t) ® ~~ + t., ~11. (A5) 
. 

On the other hand, the derivative ~~ can be expanded into a series 

over ~tc: ( I( is of the parity of h. ) : 

J. =L Qh"tl( 
·~ ~)...-. 

, a. = _ 2 (h+~Hn+2)(2.k.+3) 
I'IK h-:>1( (k.~~)tK+2)ll<.-h.\(l<.+h+3) 

(A6) 

whose coeffiients a~l<. can easily be found with the use of formu­
lae (A6) and (A7) of ref./171. Inserting (A6) into (A5) and using 

A4) we arrive at nondiagonal matrix elements for (AJ) in the form 

~ • - g l4\ l.{) 
o ~ l~"'' - o ( ~I( - X"' ) a"'" (A7) 

In a completely analogous way one may determini the matrix ele­
ments for arbitrary products of powers of vlj and 'i, . 1'he nondiago­
nal part of the evolution kernel in the scalar model ~('l (see the 
discussion after formula (9)) is just represe~ed by a sum of such 
products/7 I. Therefore, the calculation of d n. within that model 
mav also be accomolished analvticallv. 

APPENDIX 2. 
~ 1 

Coeffic!.ients dn, calculated at j'l 0 = 1 GeV2 , 
Ao.D> = 0.1 GeV and ]'It ... 125 aev2 

~ 0 2 4 6 8 10 

2. -0.2& 

Lj 0.042 -0.19 

6 0.032. -0.26 -i 

& 0.0.2.1 - 0.0&1 -0.4 -1 

40 o.02.i -0.03 -O.i9 -OAl -Q.'l6 

42. 0.0-16 -0.001 -0.094 -0.25" -o.s -0.94 

4" 0.042 0.002 -o.os -0.15 -0.19 '-0.~ 

4G 0.04 o.ot\> -0.025 -0.09 -o.u -0.~'2. 

~& 0.009 O.OO'f -0.00& -o.os - O.i2. -O.'U 
--
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APPENDIX 3. Contributions of separate diagrams to the ~oefficient 
function ci (x,LJ) 

Diagramm C~ (X, W) ci (x.~) (W=1) 
\ 
\ 0.1 l 

rr
)'P fn[~.J C0 (7,W)®~(l,X) 

1

Lftt[2Q.'l.]&x+ fnx_ @) }+ \ f X X 2X 

~ 
(( J l I 

- J1+w[z-lJ'{<zr,)C)+ x-x 
1 + xP 0 

)(- )1 

1 <!ross 

' ' 
B tp 

/ -..-,, X p 

r 
/~ 

/ + 
c! r-oss 

' c tp 
,..."" ~ XP 

c!ro$~ 

ftt(~~] C0 l~.w) ® Ya t~,x)+ f11 f ~f] ( ~ + ~ )+ x-x 
r t f'l xi 

- C0 (J,w)®Vg (.l,x)+ + 
( , (~\x) t~~~)ru-31-~}+~x 

+ ( d:z Vg(z,x)+ + x ....... x \2xx + L 2x~ x 
1
0 

1 + w [ .l- :Z J 

+~uc)-+ x~x 

~? 

-2 fnll:i 2 J C
0
{'l,w)®G('l-x) 

~It 

fll ~ Q~) CO (l,W)® b(:Z-)C) 
}'R 

4 

( dz d'tl-J() !h(HW[l-z]) + 
) i+W[~-1.1 -
o x~x 

- C0tr,W)® b(z-x) 

o. r ::>Q'l..l , 
1.n l }"~ J Xi" 

~11·L 2f) ~ Y'rt 2xx 

+ 

i ( t,txj- 1) + x~ x 
2x 

The notation is here as follows: Va.
1

(z,x)=(t6l(X>l)2f)fh{~+ 
+ W[~-~J) 

Vc' (z,x)+ = \( teCX>2)2f) fh(~+W(l'-lJ)} 
x--e + 

A=- i (ftt.(~+W)+~k(4-W))+.! t .e..i~-t..))_ 6.(Hw)+fn0+~i-XI)IL 
HW[~-1) 2w\ X X 'J 
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KaAaHQesa E.ll.,MHxaHnos C.B.,PaAIDmKHH A.B. E2-8S-763 

llonHhle as -nonpaBKH K npoQeccaM y*y*-+ 17° H y*11 -+" 
B nepTyp6aTHBHOH KXn 

MeTOAOM, OCHOBaHHhiM Ha nony~HCneHHOM pemeHHH ypaBHeHHH 
3BOniDQHH, UOCTpoeHa 3BOniDQHH no Q 2 BOnHOBOH ~YHKUHH llHOHa 
~(X,~) H HCCneAOBaHhl ee CBOHCTBa. C HCUOnb30BaHHeM 3THX pac~e­
Tt>B nposeAeH ~HanH3 nonHhiX a 8 -nonpasoK B cneA~eM 3a nHAH­
PYIDDniM npH6nHJKeHHH K aMllnHTYAaM llpOQeCCOB y*y*-+11° H y*l7-+ 17 • 
YcTaHosneHo, ~To 3BOniDQHOHHble a 8 -nonpasKH c~eCTBeHHbl AnH nep­
soro npoQecca /KOrAa OAHH H3 ~TOHOB - peanbHbiH/ H He3Ha~HTenb­
Hhl AnH BTOpOrO. llony~eHHhle pe3ynbTaTbl MOryT 6b1Tb HCUOnb30BaHbJ 
npH Bbi~HCneHHH aMnHTY,ll; niD6biX 3KCKniD3HBHbiX npOQeCCOB, BKniD~a10-

JmiX llHOHhl. 

Pa6oTa BblnOnHeHa B na6opaTOPHH TeopeTH~eCKOH ~3HKH O¥mH. 

npenpHHT 06~eAHHeHHOrO HHCTHTYTa H~epHWX HCcneAOBaHHA. ~y6Ha 1985 

Kadantseva E.P., Mikhailov S.V.,Radyushkin A.V. E2-85-763 

Total a 8 -Corrections to Processes y*y*-+11° and y*17-+f1 
in a Perturbative QCD 

A seminumerical method, with~ the 2-loop approximation 
of QCD, is applied to construct Q -evolution of the pion wave 
function ~(x,Q 2 ) and to study its properties. On the basis of 
these calculations total a 8 -corrections to the amplitudes of 
processes y*y*-+ 17° and y*11 -+ 17 are analysed in the next-to­
leading approximation. The evolution as -corrections are 
shown to be essential for the first process (when one of the 
photons is real) and unimportant for the second process. The 
methods developed can be applied to calculate amplitudes of any 
exclusive processes involving pions. 

The investigation has been performed at the Laboratory 
of Theoretical Physics JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1985 


