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1. Introductiomn

Matrix elements of hard meson processes in the lowest twist are
represented by convolutions of a hard parton amplitude, coefficient
function, with wave functions characterizing meson properties in
hard processes, Coefficient functions are calculated in perturbation
theory as series in powers of Jj (y) + In particular, cne-loop co-
efficient functions (by which the calculation of subsequent orders
starts) were earlier calculated for some proce%ses like the pion
form factor [ X-> T /42/ gng process x x—" 7" /3/,  the wave func-
tions are determined by physics at long distances and carnot be cal-
culated by a perturbative QCD. However, perturbation thecry may pre-
dict their evolution with (lz (the kernel of the evolution equation
is also a series in powers of - 43 (ﬂB) + Therefore, recent two-~
loop calculations of the evolution kernel for a nonsinglet pion wave
function (performed in a light~like gauge/4’5/ and in Feynman gauge
allow us to complete the analysis of exclusive processes including
pions in the next-to-leading approximation of QCD, To this end, bas-
ed on the calculations and we shell construct (sect. 2) a solu-
tion to the evolution equation for the pion wave functior and analy-
se this solution. Note that in the case of QCD unlike a nore simple
scalar model, see/7/ the evolution law for the pion wave function
can be obtained only numerically. (The Table of coefficient determin-

ing the evolution is given in Appendix 2).The obtained solution may be

uged for calculating amplitudes of any exclusive processes including
pions. .

A concluding stage is the compilation of contributions from co-~
efficient functions and from a two-loop evolution of the pion wave
functions to the total i‘ - correction., In sect., 3 we calculate
end enalyse the total o -correction to the process i - JTO
in sect. 4 we evaluate evolution corrections to the pion electromag-
netic form factor x x> X |, Bagic results are summarized in the
Conclusion.

2o g

‘wnmm BLCTRYT
AepENE Becrbroningd
BUBMMGTE

6/,



2. Evolution of the Nonsinglet Wave Punction of a Pion in the Two-

o,
In a one-loop approximation V—’ z‘%(‘m V( the solution to

Loop Approximastion eq . (2) is well known/g/: since the variables are separable, the
/8/ problem reduces to finding eigenfunctions \{-’ for the equation with
The pion wave function may be determined by its moments kernel 4 . These are Gegenbauer (G.p.) polynomials with the weight
A . y y ygy |, 1.e.¢+ vy ¢ “(y ) (YY  is the weight with which the
T { W Gegenbauer poly‘nomials of index 3/2 are orthogonal). In what follo
; XQ(X)r‘)X (,X = T Na+d (0\dk§h(h)\)u\p>’ 1) & . . 4(2\14'3) 'g
w 2 we shgll also need conjugated Gegenbauer polynomials " TR CIU-S)
and l’: ® +m= mh « The so}uglon to eq.(2) then :I.ls a"Series
where f, is a light-like vector (h* = 0) introduced to pick out over functions W (ﬁee' e'g" : ~ngg,
a symmetric traceless part of the local operator 0 c“’ x k) :D u, ? ) Z‘B () ex g Jc .i ({) (X) Zg( J-g(}‘o 0
])v is a covarél.ant derivative; | P>, a one-pion state wiqih (";}‘ f‘o F ’ f'° 5(}‘ "o (4)
momentum D ,M y the renormalization parameter of composite opera- MI"C) ’

The coeffici’snts(\g (r\o represent Gegenbauer moments of SP 0 .

5

tors (or in other words, 4/)4 determines the boundary between "long"
5(’ ®“‘-‘ x are coefficients of 75  in the anome.lous di-

and "short" distances’'? 8/) -(J_ = 133 MeV and zeroth moment ofq’(x,ro) g(J“c 0 ds @ /12/
equals unity. Qualitatively, P(x, rl ) represents the probability mension °f the n operator: xh= Lmdh + %) Kh go is
amplitude of transition of the pion into two massless collinear qu-~ the first expansion coefficient of F -funétion,

arks with momentum fractions X P and (1=X )P— Xe %) (in the in- Let us proceed to construct a 2-loop solution of eq.(2). The
finite-momentum frame), The change of CP( X f" ) versus Jl1 is desc-~ total evolution kernel in the 2-loop approximation can be represen-
ribed by the evolution equati‘on/ '9/ ted by a sum of two terms, a part of the k((eﬁ'x;el diegonal in the ba-~
rld @ (x, rz\ _ g V(X»938> q>(s, "-)cly = V@CP 518{‘{}} V and a nondiegonsal part, \/ . We shall write a
df"z' 0 . i (2) pa.rtlal solution (P (corresponding to the Kh(y:) coefficient) in
Doy M’:\ — @ ix) that form for which the contribution from the kernel diagonal part
vy M. Jo

will be taken into account exactly:

(M)
Here \/ = :Ls_(f) \/(X y) + (-i(r) V (x,9) is the evolution ker- ¢ - CXF{ fdt J’ ,,L(J())} CP\N“D)(X }“ ) -
nel for the pion wave function in QCD in the two-loop appro- h &1(”

o)

ximation’ 4~/ :

(D)
and the function ¢ to the ((ds) order is determined by the

2
V = 2 d N{ VN+ + de CA VC+ + C,.- VF+ . (3 nondiagonal part h\/(u?) In (5) we made use of the result for mat-

The functions, V(N 6,F)+ for group factors in (3) are written out in rix elements \/ in the Gegenbauer basis

Appendix 1, formulae ' (AI-A3). (As usual, C‘ % ’ dA = 3, and q: ®V® _ X .
Nf is the number of flavours of light quarks). The function ‘j)o(x) n L]L n (6)
defines the form of the pion wave function in a low-energy region.

. 10/
Note that the result for function VF has recently been veri- Substituting (5) into (2) and incorporating (6) gives the evolution
fied by a direct numerical calculation, in Feynman gauge, of its mat- equation for (P( :
rix elements in the basis of Gegenbauer polynomials, and the agree- h
t h tablished with th 1ts found i £ /4-6/ 2 } (N® (N ()
ment has been establishe e results found in refs. . (ra,l+ﬁ(&)*_v )QCPh=O3V ___V+xh' (1)
(ND) (ND)
ereafter we shall use the notation X =4-X, V= 4{-VY. Ir V =0 , then, obviously, q>h = lf“h (. The nondiegonal part con-




() |
tributes to Cph in the O(A;\ order, Therefore, an approximate so-
i .
lution for ¢meill be looked as the series/”/:
n

(W) = KX
P = h + és;(}‘) .<Z=o d, () } 0

(8)

K
with unknown coefficients c’h - Requiring radiation corrections to
be absen; e;.-t the normelization point ]“a gives the initial condi-
tion c{hq«o\ = 0. Inserting (8) into (7) $nd using the initial con-

dition we arrive at the expression for H
W h
‘ () ] (Q‘KK + X:))/ec
" 0 1 d 9a
-y L0
(ND) 0)

~
\/Z(kh) = +k oV, © h (5®)
Expression (9) for coefficients u‘: was first derived 1n/11/.
However, the authors have used a two-loop kernel reproduced from
first principles like "residual conformal symmetry on the light co-
ne" ’ acceptked & priori., As a result, they obtained Vg (and
consequently, dh ) that contradict direct calculations/4'6'1o/. It

ia interentine +a mata +hot muah ne ;e o o L2 imea oA o -
Sy TTTT TTTTIY vl e app4VMVAL 4D YOWAW LUL VY poall

3 /7o,
model EP“) /1,10/, in which it provides uniquely structure of the
evolution-kernel nondiagonal part. The structure thus obtained for

the evolution kernel allgws n to be computed entirely analytically

(see Appendix 1). K .

. The elements dh are only nonzero for K and N of the same
parity and K>Nn ., This is a consequence of the general properties
of matrix th : the first results £ro_m a "geometiric" symmetry of
the evolution kernel, V (X,9) = V(X.,El\ » &nd the second from a
triangular shape of the renormalization matrix (aee/s/). Allowing

for this remark and substituting (8) into (5) we get the following
solution to the evolution equation:

QU= T ALY R, 00p 10
{p® ;
P (x,p*) = exP{—'f dt xh[l(b]}(l}l(xn% Zth«z) \}L(x)). (10b)
ﬁ(m h k>w

A practical value of a solution of that sort is defined by that how
rapid is the convergence of the series in (8) (see paragraph 2 at
th% end of the section) and how accurate are the calculv;bons of
4

. Expressions for anomalous dimensionalities ) xhcan be
foténd, e.8e, in 2/. The calculation of elements 2(kn) determining

cannot be accomplished in a complete analytic form because of
a nighly complicated structure of VF . However, the matrix elements
for 2 CF N; \]N- + 2 dFCA \]G can be computed &nalytically by formu-
la (A7) of Appendix 1:

(N 0] ¢
26 (N + CAVG)(KM = g"(xk ~8,) %

where am( are given by (A6). The matrix elements of VF+ were found
by numerical integration., The properties of solution (10) thus es-
tablished can be formulated in terms of partial wave functions h
with even N , which corresponds to the symmetry of the pion wave
function. So, we write in the form

_ 4, (W
P = Fon + 3 R’ (v

where q>4(h\ represents all corrections from the 2-loop k{:rnel, and
sumparize the results of calculations (here and below ‘“c = 4@e Vz,-
A = 0.1 GeV).
“T@Acd )

1. For h> 2 and }‘ =< 125 GeV corrections from the nondiago-
nal part V are about by an order smaller than those from the dia-
gonal part accumulated in the exponential factor. In other words,
the Vz kernel appears "quasidiagonal™ in the Gegenbauer basis
(corrections at h = 0, i,e. for the asymptotic function, are also
very small and are considered below).

2. Corrections &fi higher harmonics to A are mainly determined
by the first term h a2 in the sum over K (10b), Subsequent
coefficients decrease rapidly with growing K , and it suffices to
take only a few first terms into account (see Appendix 2).

(]
3., The total contribution of 2-loop corrections, f‘; q:hn) ’

increases as h increeses. At h = 6 this contribution is as much
2

8s 6% for X = 0.5 and W« 125 GeVZ.
So, for a popular choice yo = 6 XX , corresponding to“t)e
asymptotic wave function in LIA, correctikonszycome only from \[2 :
LW > d, (-0 )
2 - - X=X .
‘PAS(X,[«)=6X>({4+ 4% W32 ° X (12)



Calculations show that these corrections are less than 0.4% (at
X . =0.5) up to pt= 6105 GoV2,

Another exemple of the low-ener i
- gy pion wave functi -
ed in ref./13/: ion was propos

In this ca i i
Fris 25e a gelatlve contribution of the 2-loop correction at
}4 -d'l 5 GeVS amounts to apbout 2% at maxima of the function, By
using tab i i :
o 81 12& ula;ed in Appendix 2 the evolution can be calculated
f" = 125 GeV®) for any wave functions that at r(oz 1 GeV? can
be represented by a sum of the Gegenbauer polynomials i*l with h=s 10
h

We have also solved equation (12) by & direct computed algebra
for. h = 0,2,4. However, this way of calculations is very time-con-
suming and makes sense only as a test for the solution proposed here.

T?e results of integration are consistent with solution (9) (10)’and
with conclusions 1,2,. ’

* ¥ 0
3. The Total Correction to th o=
o the x ¥ J___amplitude _

g

In this section we shall calculate the total d  _nowmention 32
the amplitude | of the process ’ i

* *
X(tl‘\«g- X((irz) — M(P)- spinless pseudoscalar nonsinglet (in
flavour) meson .
to the next-to-logarithmic order; here it is convenient to express
the amplitude | in terms of the iransition form factor F
puag -

T4 & K&
4 QZA S?)t £2V Fn[

where = 1(¢ - H = ;- h i
" )QO‘ 2(‘[4 q‘dﬁ’f P=19q+ 1, 3 C(,A is large and positive;
; "f’ 5 &4 an )y 8are polarizations of colliding photons, The
orm factor 'F" in the lowest twist can be represented by an integ-
ral convolution of the coefficient function C?(')(, w) determined
from a hard parton subprocess with the wave function q>(X, QQ') /9,3/
k4
the bc.)urda.'ry between lonﬁ andtshort distances being defined by the
quantity /|Q' , 1.0, J* = Q (see sect.1)/1/:

Fup = N C,we P (x, @Y, (14)

0 2 2
where W= —“TPG S", the coefficient N for n equals §W(€u — Ed)
and €, ere cherges of quark flavours.

The perameter W) characterizes the degree of asymmetry of col-
. i 2
1iding photons. In & symmetric case (at Q4= “')_ ) W = 0; when one
of the photons is real, w = 1.

In our approximation formula (14) becomes

—1 . i .
Ny = Rl ds £ ) = (G %Q(x,w))@(‘%(x,d\%; @ e &)).(15)

where q>° \X)Q") is a solution of the evolution egquation (4) in LLA,
end the Born term Py (X,w) of the pseudoscalar coefficient func-

tion equals/B'

¢, (X W)= —— 4 X X

1+ W[¥-¥]
So, to establish the d -correction to the form factor - F4 , it
is neceasary to know C: (X,w') , the coefficient function of the
proceas in order 0(0(_,) , and <P4 , process-independent correc-

tion due to evolution of the pion wave function. (The latter was

analysed in detail in sect. 2).
. /37
The coefficient function (_‘4 was rirst caiculavea 1n rel.

both for scalar and pseudoscalar cases. However, when calculating in
a dimensional regularization there appeers a difficulty caused by
uncertainty of commutation properties of j; in a space of dimensio-
nality D q& 4. This uncertainty was removed in paper 14/ where (z
was calculated in the limiting case W = 1 and contribution of se-
parate diagrams were given. We have reproduced the result for C1
in the FTE gcheme of dimensional regularization, and contributions
of separate diagrems (Feynman gauge) are tabulated in Appendix 3.
Our finael result coincides with (; found in 3/, and the limiting
case W = 1 for each diegram geparately ie in agreement with the
results of ref.

In the Table for C: of Appendix 3 the scales for collinear-}\
and ultraviolet~ }12 regularizations are taken different, It is seen
that for the contriputions of diagrams a and § the parts pro-
portional to fM[Q/}f'] are given, respectively, by dO@Va and

(.40 @ V‘+ , where



are parts of the one-loop evolution kernel V‘O\= Vq“‘ V, 3 V1 = V‘o\.\. 10225 *8 Pig, 1.
(see Appendix 1, formula (A3)). This result, in fact, emerges from Figures on curves indicat; the Tumber h of a
the factorlzatlon theorem for the coefficient of collinear dlvgrgen- 0187 6 ﬂiz‘t;a&u Jea))-cozi-:e;giggéd ggtviyugtaf'oi*
ce of d /2,8 14/. To simplify further analys:.a, we set )‘ rk ‘ t ()»—1 gince the whole curve is very
. much pressed to point W =1,
The total correction to the form factor __ Fﬂh)( ‘ I
4x \
‘ 4
Fomy (W) = G 0,0)@ Py (6,8 + € (x,0)8 By, (x, Q%) (16) | o o
. 4
will be treated, as before, with the use of partial wave functions
(11). The calculation by formula (16) has been made numerically. The
quantities lT; F“m(w) as functions of W  are plotted in Fig. 1.
In Table 1 contributiona of different corrections to ‘% Fﬂh) are 2
given for W = 1,
The calculations performed allow the following conclusions abo- 0 Pig, 2.
ut the magnitude of ‘Ls -correction and about the contributions of 02 tw The Born term and o —ﬁogri%tignkto 112he form
- ve
various sources to the correction (in what follows @ = 125 GeV2): f‘zgzgi‘oﬁoag?? Chernya bitnltsky plon wa
1. A relative contribution of O(s ~corrections grows with h hd
(see Table 1) reaching at h = 8 27% (for L= 1) of the Born-term
contribution.
| 057
2, As is seen from Fig.1, F“M(W\ as a function of W with
increasing h gets concentrated near W = 1. It is really not dif- -0135 0
ficult to establish that C, QCPW\ ~ W' and C @ q>0(h)
Therefore, the hlgher-harmom.c corrections are most importe.nt when Fo
one of the photons in the proceas is near to real.
3. A dominating contribution to F;(h) ((l)) ats h = 0 comes from
the convolution (see Table I) as P,evolves weakly.For sub=-
) Ge Pocor ) ‘°’ v’ Table 1. (W=1, Q=125 GeV?)
sequent harmonics h = 2,4,6,8 the corrections from coefficient
function (.I4 are comparable with those from the pion wave functioncﬂ, h 0 2 4 6 § 0267
Thus, the latter are to be taken into account for a correct estimate ¥
of the amplitudes of processes with a real photon, F‘;(h)(ﬂ {3 1.28 | 1.05 0.947 10.83

It is to be noted that authors of refs./3/ and/14/ are misteken
agsuming a complete abaence of the evolution of CPAS (see (12)) in
the 2-loop approximation, In this case E is determined only by
the coefficient function; but this holds valid only when the combina-

e ( [-0.135|0.035 10429 10487 10925

tion gg V (¥,y¥) is symmetric under the change X<«>Y . However, 4;
2\ _
both particular computations/4’5’10/ and a general analysis of the i 4y dqeqml\ ~0.432/0.024 0.403 0.454 0.43¢
properties of Vx,y)/6/ testify that this is not so.
Realistic pion wave functions are extracted from the analysis of va r—00°30044 0.026 0.03310.037
experiment by QCD sum rules, In Pig.2 plotted are the total correc- 0| )




tion :; E ("")d_z. with the use of function CPO()G_E.(H)/B/ (the. lo-
wer part as the correction is negative) and the Born term F;U»)d_z
(the upper part). As is seen, the correction is small: smaller than
4% of the Born term for all W . This is a consequence of a partial
compensation between contributions of ( =-th and subsequent harmo-
nics giving corrections with opposite sign (see Fig. 1, Table 1).
For more wide wave functions the compensation of contribution will

be still more stirong, and hence, the correction will be still smaller
in magnitude, However, for narrow wave functions and functions with

a great amount of higher harmonics the correction may be significant.

4. Total Correction to the Pion Electromagnetic Form Factor

In this section we shall analyse the evolution J! -correciions
to the pion form factor E;[gfj in the lowest twist, The form fac-
tor at sufficiently large transfer momenta Q? is factorized in all

orders and for all logarithms of perturbation theory/1/:

4
Fey=1 Pr@REXN k@)@ Pu,Q") {1+ 0¢( aﬂ}. (1)

51

/. o0 sy . i - -
- vy T ""3 \L(') EN-~] viLe wlly].].‘duuc ui
¥ = )

hard parton subprocess % CLz !—HL‘ C[,l’ » whose second order in JS(Q)
is given by :

@
E(xY;d (@) = E,,(x,y,-AA.(Q))(H f? )5(x,y)). (18)
The coefficient function E; was computed in pioneering works/15/
and ! /. The first correct calculation of Q was made in/1/ in

Peynman gauge. This result hes recently been verified by calculations
in axial and Feynman gauges in paper/z/ in which the dependence of E.l
on the choice of renormalization scheme has also been studied, Thro-
ughout we set scales of ultraviolet M,  and collinear r regulariza-
tiona equal Q , therefore all logarithms of scale ratios are zero,
and E depends on @° only through aQ(Q) (see/1/ and/2/).

For analysing the role of evolu%ion correctlons we made numeri-
cal estimations of the form factor @ Ehh)(Qz) (17) using the parti-
al wave functions q% both taking account of the two loops evolution

of the latter (according to formula (11)) and in the LLA ( CR1"'q%OD)'

The results are presented in Table 2 in terms of the total Jx ~cor-

10

rection 1;(“‘

tion orignating only from the coefficient function E‘_

2 2
Th}) { q me\\Q\
~ = ©L e~ 4
Th Q Fﬁ(h)(d.‘ (19)

to the Born term Tbkn\ and the partial &S ~gcorrecs

N Ty (4 + A‘(Q){

k)

Here 1 2 N

_ 2%d 0 (" . - Fo= .
A= —N-\L\d&'&r ’ NTOW) (POLh)@Eo®q)0(h\ ? tﬂ Xy

¢

As is seen from Table 2, the radiation corrections are rapidly incre-
asing with h , and starting from the fourth harmonics perturbation
theory breaks. Thus, for the pion wave functions dressed with high
harmonics the validity of perturbation theory is extended into the
region of several hundreds (GeV)z; a final result for -T1UQ is slight-
ly influenced by the evolution As -corrections.

2
rable 2. (@ =33 gevd; dyi( Q5 ) = 0.14)

h 0 2 4 6 8
Tow 0.25 0.424 003 | 00%3 | 0.062
:;: -7 nan 4a 2 34 4 21_0 43_‘)

AWy Te& e R H
Taw | 706 18.9 28.4 34.2 45.5

S5 Conclusion

In this paper, we found an approximate solution to the evolu-
tion equation in the 2-loop approximation of QCD and numerically con-
structed the Cf;-evolution of the pion wave function. A solution
like (10) may be used for computing amplitudes of any exclusive pro-
cesgdes including pions.

Then, based on solution (10) we calculated the total *s -cor-
rection to the amplitude of process X* — %' in the next-to-
leading approximation and numerically analysed the role of evolution

*s -corrections for various types of the wave functions. It is
shown that the is -corrections are important when one of the pho-
tons is nearly real.

11



A numerical estimation is also made for the contribution of

evolution J‘s ~corrections to the pion electromagnetic form factor

»
l]’—\T gnd it is found to be small.
APPENDIX 1

Here structures V(F G,N) of the 2-loop kernel \/2 are present-
) ¥
ed, and expressions are derived for nondiagonal matrix elements VN
and Vﬂ in the {+} basis. So,
) ]

V= 1 {9(U>x)[—§71F+ %
(F+ Z"_gVn’(%\] _5% bnx (44 fax—2 bh3) = H (x,Y) }+

X)Pn (&)-(7-F) Yoo § ba(4-3) +

(A1)

Hoow) =0 (x>9) [ 2(F- FY)Li, U-3) = 2 Flix by + (F-FYBY ]+ (a2
2F Li, 1§y [e(x >§)-—G(y>x\] -2 FLazm[ewg)— 8- ] +
0(y>)2F by tux .

We used the notation: £ = ﬂ+ Xaer X, Yeu i ; X

F=Foon =X+ F=F(5,9); Liywr=—| & Bu-d
Q

is the Spense function. Symbol " + " in exps. .(A1) and (3) signifies
LY . . AT ACY L
v(x,y)+ = VX Y)—= cy=xj J VIZ,y)aZ
(V]
and the fact that in QCD | V(x¥)dx = 0 because of the axial-cur-
rent conservation. The sum of the remaining staructures may be repre-
sented in the form (see/E’/):

AN GV + 266V, = oa‘V(v)

where\/‘“_: t’G(’y>x\2C'F< ) ({+ P X\ V(o)-\- \[4 ; the derivative
with respect to index \ will be denoted by dot: v VN) Vug = V(o) .
Prom direct calculations it follows that the functions H and

in (A1) ewd (A3) are diagonal and consequently, do not form the ele-

ments h . Let us determine matrix elements for the first term

in (A3). Since eigenfuctions of the equati n for eigenvalues with
kernel Vm 4 @re given by the functions ;{_, =(X) w C zw ) (“P "]",)

we have the equation
v VoY
Vi, @ ‘*’h == X,‘ ‘{’n (24)

+H0\+ H . (A3)

12

and differentiation of this equation with respect to Y at Q =0
yields:

\'/(O)Jrcoth‘ -(y, + m+)®‘|‘ ‘{' (45)

On the other hand, the derivative l"’h can be expanded into a series
over l{u ( K 41is of the parity of h):

Q, —_ (h+40)(h+2) (2K +3)
h Z Lk‘ e h>K 2(k+4)(K+2)(K—h\(k+h+3) (46)

whose coeffidents ahk can easily be found with the use of formu-
lae (A6) and (A7) of ref./ﬂ/. Inserting (A6) into (A5) and using
A4) we arrive at nondiagonal matrix elements for (A3) in the form

AV g ( 5:’- X?yam . (A7)

A (Kin\

In a completely analogous wey one may determing the matrix ele-
ments for arbitrary products of powers of V4 and \/4 . 3The nondiago~
nal part of the evolution kernel in the scalar model SQG (see the
discussion after formula (9)) is just represen\zed by a sum of such
products 7 « Therefore, the calculation of within that model
mav also be accomplished analvticallv.

k 2
APPENDIX 2. Coeffi¢ients d, Calculated at [l = 1 GeV?,
Agey = 0.1 GeV ana  p* = 125 Gev?

K \ 0 2 | 4 3 8 10

2 ~0.23

4 0.012 —0.149

6 0.032  —0.26 -1

g 0.022 -008 -04 -4

fo 0.0 -0.03 -0.19 -043 -046

2 0.016 —0.007 —0.094 -0.25 -05 —-0.94
L 0.042 0.002 -0.08 -0.45 -028 -0.54
46 0.04 0.006 -0.025 ~-0.09 -048  -0.32]
48 0.009 0.007 - 0.008 -0.05 — 042 - 0.4

13
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APPENDIX 3. Contributions of separate Aiagrams to the doefficient
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KapaunueBa E.Il. ,Muxainnos C.B.,Pamomxun A.B. E2-85-763

lMonunie @g -nonpaBKH K npouneccaM y*y*»n° wu y*mow
B neprtypbartuBHoil KX]I

MeTomoM, OCHOBAHHBIM Ha MOAYYUCI/IEHHOM DelleHHMH YpaBHEHUA
SBOJIOLMK, NOcTPoeHa sBoiouusa no Q2 ponHOoBOM dyHKNMM TMHOHA
®(x,Q%) ¥ HccnenoBaHm ee cBoiicTBAa., C MCNONB30BAHHEM 3THX pacue-—
TOB NpOBeJieH aHAalM3 MOJIHKX @y —MONpAaBOK B CJIeflywmeM 3a JuaH-—
DPYOIHM INPHOJIMXEHHH K aMIUIHTyanaMm IpouneccoB Y*Y**ﬂp uytossn.
YcraHOBIIeHO, UTO 3BOJIOLHOHHBIE a@g —TIONPABKH CYMECTBEHHH [JIs nep-—
BOro mnpouecca /korja OfHH U3 GOTOHOB — peanbHuii/ M He3HAUHTENb-
Hbl gnss Broporo. llonydeHHele pe3ynbTaThli MOryT OhTh HMCIIONb30BaHLI
NPH BbLIYHCJIEHHH aMIHTYj, JIoOblX 3KCKJKW3HBHHX NpPOLECCOB, BKJNOYao—
IMX NHOHHI,

Pa6ora Bbinosinena B JlaBopaTopun TeopeTHuyecKoi ¢m3uku OKAU.

NMipenpyuT OGHeSMHEHHOTO MHCTHTYTA AfNEpHHX uccnenopammfi. Jy6na 1985

E2-85-763

Total ag-Corrections to Processes y*y*+1° and y*maw
in a Perturbative QCD

Kadantseva E.P., Mikhailov S.V.,Radyushkin A.V.

A seminumerical method, withip the 2-loop approx1mat10n
of QCD, is applied to construct Q" -evolution of the pion wave
function ®(x, Q%) and to study its properties. On the basis of
these calculations total ez —corrections to the amplitudes of
processes y*y*-+a° and v*m -7 are analysed in the next-to-
leading approximation. The evolution &g —corrections are
shown to be essential for the first process (when one of the
photons is real) and unimportant for the second process. The
methods developed can be applied to calculate amplitudes of any
exclusive processes involving pions.

The investigation has been performed at the Laboratory
of Theoretical Physics JINR,
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