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In recent years many papers have been devoted to the investiga­
tion of p~se transi~~ons in the gauge-Higgs models (see, for instan­
ce, papers/1•2 •4-121) • .Pirst, the case of a "frozen" mode of the 
Higgs field has been treated/1•21. Later, however, it has been 
found out that the radial fluctuations of the Higgs field affect es­
sential~y the form of phase diagrams which are very important for 
studying the continuum limit of lattice theories/31. The f~rst inves­
tisations of a "defrost" radial mode of the Higgs field have been 
made in pa,pers/4/ devoted to z~ -symmetric model. '!'hen, it has been 
used in various models <2D , U (1), SU (2)}/5-101, SU(3)/1 1/and 
SU(5)/12/ for an adinjnt ~•n~AAAntAtinn' - - ~ 

The present paper is a sequel to a series of papers/5,6/ aimed 
at studying the phase structure of the lattice gauge-Higgs theories 
with different symmetry groups. We consider a ~odel with SU(J) sym­
metry in which the Higgs fields are tre.nsformed; f.Y the fundamental 
representation of SU(3) group and their radial mode is assumed to be 
defrost. Especially interesting this model is for the investigation 
of the dependence of the phase structure of the model with SU(N) 
symmetry on N and elucidation of the spontaneous symmetry break­
ing mechanism in the scalar QCD. We have found that the phase struc­
tures of SU(3) and SU(2) symmetries are similar /G/. In particu-

lar, there are two different phases which are often named "Higgs" 
and "confinement" ones and are divided by the line of the first 
order phase transitions in accordance with the Coleman-Weinberg 
mechanism 1131. 

We choose the action for a gauge field with the symmetry 
group SU(3) interacting with Higgs fields in the fundamental repre­
sentation of the gauge group in the. form 

2 

.. 

$ "'/> L.. 50 -t- ~ .5._. 
a t.. 

(1) 

where 

S
0 

,..{-1;ReTru 0 (2) 

U 
0 

= u, ~j" u"'t Uti and the gauge field 
link LJ :o {i:,j) outgoing from the site ~ 
The second term in (1) has the form 

u, = 4._ is defined on the 
d • 

and ending on the sitej::i+f. 

s = .i. ( ~·4>"4- ...- >-(4"4> )1)+ 4>"4 -~4/~u 4 . D> 
L 4 .., .. .. ' .. " ~ ' ',~:!I' ... -,., 

The Higgs fields <#>;. are defined in each site i. and ¢, is the 
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If ""'1 ~- or "~ o.. the radial fluctuations 
come negligible and we are left with a pure 
a crossover in the order parameter <. 1- o';> 

of the Higgs field be­
SU(3) gauge theory with 
at/> z' 1141. 

). The model was numerically investigated.on the cubic lattice 
with dimensions 34 and 44 and periodic boundary conditions. An 

equilibrium was achieved by the Markovian procedure realized in dif­
ferent ways for the gauge and Higgs fields. For the gauge fields 
the heat bath method with an algorithm similar to that of ref/15/ 
was used. The values of the Higgs field 4> were optimized by the 
Metropolis algorithm/ 161. 1Q-15 updates of the + field values in 
each site and on each link of the lattice were optimized • .Further up­
dates do not make the convergence better in the phase transition re-
gion. 

:z. 
A phase diagram in the plane ( f , .., ) at fixed ~ can be cons-

tructed by two methods: thermal cycles and the method of different 
starts. At each step of th~~'~ ~_;y~]:e the averaging 
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was performed over 1-2 iterations. The typical step of changing the 

parameter was equal to 0.05-0.2. The typical shape of a hysteresis 
loop whJ.ch then may appear is shown in figs. 1a,b and 2a,b. The de-
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Fig. 1. Thermal cycles in m., !1. for 
2 

order parameter <. R) at ...B = o. 2 
and different values of (\. 

pendence of the running average order parameter < tt"'> on the num­

ber of iterations is shown in fig.). At ~ • 0.1, ~ • -0.2 and 

"""" = -5.3 the stable phase is the one corresponding to a lower 
start (fig.Ja) whereas at ,..\ • 0.1, /> • -0.2 and ~a.. -5.4 - to 
an upper start (fig. Jc). At a medium value of ~ 1. ( m 1. • -5.35) 

there are two "long-lived" phases: the one apparqntly being stable 
and the other metastable (fig.Jb). This means that the first order 

phase transition occurs near the point ()\;p~ ..,1. ).::(0.1;- 0.2; 

-5.35). The thermal cycles in p for the order parameter < 1 - O> 
at l= 0,£ and different values of ..,:~. ( ,.,1. • -1; -4; -7) are shown 

in fig.4. At t-t" • -4 the thermal cycle results in a hysteresis cor­

responding to the first order phase transition. 
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Such calculations allow one to construct a total phase diagram 
in the plane (p , ~o."' ) at fixed (value of ) A. • At fixed .A. in the 
plane ( f , ,.,~) there exists a line of first order phase transition 
that breaks from the left at the end point (fig. 5). The analysis 
based on the use of the effective potential method (see below) allows 
one to conclude that second order phase transition occurs at the end 
point. At large enough values of} ( f ~ 10) the hysteresis becomes 
almost unobservable. The reason may be due to the fact that as .f .. "'­
instead of first order phase transition one can observe second order 
phase transition, though this assertion has no sufficient support. 
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Fig.4. Dependence of<1-o>On.fi 
at different values of m.}', At 
tr\.l = -4 the curve crosses the 
line of the first order phase 
transitions in the range of 
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Fig.5. L~nes of the first or­
der phase transitions in the 
plane (ft,m}·) calculated by the 
Monte-Carlo method. For(! = 
= 0.1 and~ = 0.15 the end 
(critical) points shown in 
the figure are found. 

With increasing A and fixed~ the hysteresis loops become 
narrower and narrower until it vanishes at all (see figs.1 and 2). 
This fact as well as the calculations by the method of different 
starts indicates that the line of first order phase transitions is 
shifted to the right-upward with increasing A • Finally, the phase 
structure of SU(J) symmetric gauge-Riggs model with a defrost radial 
mode of the Higgs fields is demonstrated in fig.5. It is seen that 
the phase structure of SU(J) symmetric theory is quite analogous to 
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that of SU(2) model. In particular, the "confinement" and "Higgs" 
phases are divided by the line of first order trans'l.tions. This fact 
has been established for SU(2) and U(1) groups in papers/5, 6/(see al­
so ref./91). Note that the analysis of an analogous model with a 
"frozen" l' radial mode/2/, also shows tha similarity of the phase diag­
rams of SU(J) and SU(2) symmetries but there is the line 
of second order phase transitions. The mechanism of phase transitions 
can be illustrated by using an effective potential of the Coleman-

-Weinberg-type/13/; we shall restrict ourselves only to the case 
~ • 0. The linear and quadratic corrections in 
ed elsewhere. Now we consider the unitary gauge: 

j3 will be treat-

+:=-(O,O,R;.)• 
Then for the partition function (4) we have 

~ Lf=o) -v l 
= ~ 

where 
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From (8} we get the following expression for the effective potential 
in the leading approximation: 

- , -~ ->' 8I (~~ 
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. R 

(9) 

The behaviour of the effective potential (9) allows one to understand 
the nature of the phase transitions observed. A qualitative behaviour 
of Veff (R) for different ~~ and an arbitrary small fixed A is 
demonstrated in fig. 6. It is analogous to the behaviour of ~ff in 

~\;\r l ~ ~ lV< ~~ 
I I I I I 2 R 

Fig.6. A qualitative form of the effective potential at ~ • O, 
).., e .... .,.t and different ~2 

• lliddle diagram corresponds to 
the point of the first order phase transition ( J., 2 

"' ,., ! ) . 
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case of the theory with U(1) and SU(2) symmetry groups/5•61. As it 
is seen from fig. 6 in a certain range of values of "":t- the effecti­
ve potential has two minima: the one corresponding to a stable phase, 
and the other to a metastable one. At some value of bt ~ = ""~the values 
of Veff at both the minima coincide. This means that at ~>. :~., ... ~ and 
a certain value of A there occurs first order phase transition, 
With increasing k minima approach each other and at some value of 

A:::. A c the effective potential cannot possess two minima at any 
value of ,. :t. • The dependence of the point bt

1
., {A) of the phase 

transition on l is exemplified in :fig, 7. The point >.. ~ >..c 

NJ! 

:v 
1L 

L~s 6 A102 2 3 .. 

Fig. 7. De,Jendence of II'V~ on 11 ob­
tained by formula (9) for the ef­
fective potential at ft = 0, The 
cross denotes the point cor­
responding to A =fie::= 0,074; it 
is the end point of the line of 
first order phase transitions. 

.,.,z:. 10/c ( .f> = 0) is the end point of the line of the first order 
phase transitions. It has been shown in our papers/6/ that at this 
point a derivative of the order parameter d£i.'>/J ... :t has a singula­
rity indicating the second order phase transition at the end point, 

It is interesting to trace how close quantitatively are the re• 
sults for the theories with SU(3) and SU(2) groups, as their qualita­
tive similarity has been pointed out above. It is known that a mea­
ningful result in the theory with SU (N) symmetry in the limit /1/-.-

can be obtained by changing A- Aj,v ; J2
- [/ltv' • Now we make 

this change for tv' • 2 and A/ = 3 

>-.Sit(:>}~ .A~\'(:1.) 

:t. 
.S<t (:I.) 

Then we get that A 
0 

~ 

s ... (,)J )....s ... (:>J 
).,. ~ 0 

T 
/5 6/ S<i(lJ 

0.266 • and ~o ~ 0,222 {see fig.7); 
the curves of the dependence h?: 'w,~ £A) for SU{2) and SU(J) groups 
almost coincide in this case. Therefore, we may hope that :for the 
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theories with SU(N) (Ii"?3)symmetry groups a similar picture will be 
observed. 

It is to be noted that unlike our approach based on the effecti­
ve Coleman-Weinberg potential/131, the mean field method provides the 
line of the second order phase transitions between the "confinement." 

• • and Higgs phases for U(1) and SU(2) models with a defrost radial mo-
de/101. Apparently, this is due to an inaccurate consideration of 
fluctuations of the gauge degrees of freedom within the lowest appro­
ximations of the average field method. But :formula (9) is obtained by 
an accurate integration of the partition function (at jS = 0) over 
gauge degrees of freedom. 
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rep~T B.TI., MHTpiDWKHH B.K., 3a~opo~HhlH A.M. 
~a3oaaH CTpyKTypa SU(3) CHMMeTpHqHOH 
XHrrc-KaiTHOpOBOqHOH TeOpHH Ha pemeTKe 

E2-85-738 

Hccne~oaaHa ~a3oBaH cTpyxTypa SU(3)-cHMMeTp~HOH XHrrc­
KanH6poaoqHoH TeOpHH C pa3MOpo~eHHOH pa~anbHOH MOAOH. 
XHrrcoaCKHe nonH paccMOTpeHbi a ~YHAaMeHTanbHOM npeACTaaneHHH 
rpynnw SU(3). IToKa3aHo, qTo ~a3oaaH CTpyxTypa SU(3)-cHMMeT­
pHqHOH TeOpHH KaqecTBeHHO COBn~aeT C ~a30BOH CTPYKTYPOH 
SU(2)-cHMMeTpHqHOH Mo~enH. 

Pa6oTa BbiiiOnHeHa B naoopaTOPHH TeopeT~eCKOH ~H3HKH OIUIH. 

flpenpHHT O&be~HeHHOro HHCTHTYTa R~epHWX HCCn~oBaHHA. ny6Ha 1985 
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Phase structure is investigated of SU(3) symmetric 
gauge-Higgs theory with a defrost radial mode. The Higgs 
fields are considered in the fundamental representation of 
SU(3) group. It is shown that the phase structures of SU(3) 
and SU(2) symmetric models coincide qualitatively. 
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