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In recent years many papers have been devoted to the investiga-
tion of phase transitions in the gauge-Higga models (see, for instan-
ce, papers/1 2 4-12/) Pirst, the case of a "frozen" mode of the
Higgs field has been treated/1 2/. later, however, it has been
found out that the radial fluctuations of the Higgs field affect es-
sentially the form of phase diagrams which are very important for
studying the continuum limit of lattice theories/3/. The firat inves-
tigations of a "defrost" radial mode of the Higgs field have been
made in papers/4/ devoted to Z, -symmetric model., Then, it has been
used in various models (%, , U (1), 8U (2))/9=1%/  sy(3)/*"Vana
SU(S)/12/ for an adioint rnprannntntinn).

The present paper is a sequel to a series of papers/S'G/ aimed
at studying the phase structure of the lattice gauge-~-Higgs theories
with different symmetry groups. We consider a model with SU(3) sym-
metry in which the Higgs fields are transformed.by the fundamental
representation of SU(3) group'end their radial méde is assumed to be
defrost. Especimlly interesting this model is for the investigation
of the dependence of the phase structure of the model with SU(N)
symmetry on N and elucidation of the spontaneous symmetry bresk-
ing mechanism in the scalar QCD., We have found that the phase struc-
tures of SU(3) and SU(2) symmetries are similar /6 . In particu-
lar, there are two different phases which are often named "Higgs"
and "confinement" ones and are divided by the line of the first
order phase transitions in accordance with the Coleman-Weinberg
mechaniem /13/.

We choose the action for a gauge field with the symmetry
group SU(3) interacting with Higgs fields in the fundamental repre~
sentation‘of the gauge group in the form

S =pZs, +Z S, Sh)
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where
4
Snt‘i" -ReTrua , 2)
U= W e Unp U, and the gauge field u s4,_ 1is defined on the

link L =(£7‘) outgoing from the site <« and ending on the siteJ-ufq
The second term in (1) has the form
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The Higgs fields ¢, are defined in each site ( and ¥ is the
column of three rows. The partition function Z is
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where ou_ 1s the Haar measure on group SU(3) a.ndc/‘#j ﬂ_dpe&dﬁ&
In our paper we calculated the following order parameters
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If m'3eoe or A-»oe the radial fluctuations of the Higgs field be-
come negligible and we are left with a pure SU(3) gauge theory with
a crossover in the order parameter ¢{ -pn> &t /9 26

3. The model was numerically investigated-on the cubic lattice
with dimensions 34 and 44 and periodic boundary conditions. An
equilibrium was achieved by the Markovian procedure realized in dif-
ferent ways for the gauge and Higgs fields. For the gauge fields
the heat bath method with an algorithm similar to that of ref./?5/
wag used. The values of the Higgs field ®  were optimized by the
Metropolis algorithm/16/. 10-15 updates of the ¥ field values in
each site and on each link of the lattice were optimized. Further up-
dates do not make the convergence better in the phase transition re-
glion.

A phese diagram in the plane ( p ,m> ) at fixed X can be cons-
tructed by two methods: thermal cycles and the method of different
gtarta, At each step of thema.J'.x .c‘ycv_l‘g the averaging




,

was performed over 1-2 iterations. The typical step of changing the
parameter was equal to 0,05-0.2. The typical shape of a hysteresis
loop which then may appear is shown in figs. 1a,b and 2a,b., The de-
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pendence of the running average order parameter < p:’> on the num-
ber of iterations is shown in fig.3. At X = 0.1,
n-~ = =5,3 the stable phase is the one corresponding to a lower

gtart (fig.3a) whereas at A = 0.1,
an upper start (fig.3c). At a medium value of m

2

= -0,2 and

s -0,2 and m'= -5.4 - to

( m*s -5.35)

there are two "long-lived" phases: the one appargntly being stable
and the other metastable (fig.3b). This means that the first order

phase transition occurs near the point (X p; m

~5.35). The thermal cycles in

2

)= (0.1;~ 0.2;

for the order parameter < 1 - [I>

at =04 and different values of m> ( m* = =1; -4; =7) are shown
in fig.4. At m = -4 the thermal cycle results in a hysteresis cor-
responding to the first order phase tramsition.
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Such calculations allow one to construct a total phase diagram
in the plane (p m*) at fixed (value of ) A . At fixed A in the
plane (P . m*) there exists a line of first order phase transition
that breaks from the left at the end point (fig. 5). The analysis
based on the use of the effective potential method (see below) allows
one to conclude that second order phase transition occurs at the end
point. At large enough values of )3 (‘f 2 10) the hysteresis becomes
almost unobservable. The reason may be due to the fact that as/S*-
instead of first order phase transition one can observe second order
phase transition, though this assertion has no sufficient support.,

Fig.5. Lines of the first or-
der phase transitions in the
plane (g,m?) calculated by the
Monte~Carlo method. Ford =

= 0.1 and A = 0,15 the end
(critical) points shown in
the figure are found.

Fig.4. Dependence of<:4-n>ond3
at different values of m? At
mi
line of the first order phase
transitions in the range of

px 4.2,

= =4 the curve crosses the

With increasing A and fixed /5 the hysteresis loops become
narrower and narrower until it vanishes at all (see figs.1 and 2).
This fact as well as the calculations by the method of different
starts indicates that the line of first order phase transitions is
shifted to the right-upward with increasing A . Finally, the phase
atructure of SU(3) symmetric gauge-Higgs model with a defrost radial
mode of the Higgs fields is demonstrated in fig.5. It is seen that
the phase structure of SU(3) symmetric theory is quite analogous to

that of SU(2) model. In particular, the "confinement™ and "Higgs"
phagses are divided by the line of first order trangitions. This fact
has been established for SU(2) and U(1) groups in papers/5’6/(see al-
s0 ref./g/). Note that the analysis of an analogous model with a
"frogen" ! radial mode’ “’/ also shows tha similarity of the phase diag-
ramg of SU(3) and SU(2) symmetries but there 1s the line

of second order phase transitions. The mechanism of phase transitions
can be illustrated by using an effective potential of the Coleman-

-Weinberg—type/13/; we shall restrict ourselves only to the case
}5 = 0, The linear and quadratic corrections in will be treat-
ed elsewhere. Now we consider the unitary gauge:

¢ =(0,0,8.).

Then for the partition function (4) we have
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Prom (8) we get the following expression for the effective potential
in the leading approximation:
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The behaviour of the effective potential (9) allows one to understand
the nature of the phase transitions observed. A qualitative behaviour
of V@f (R) for different m* and an arbitrary small fixed A is
demonstrated in fig. 6. It is analogous to the behaviour of V’}} in

LW

Fig.6. A qualitative form of the effective potential at /5 = 0,
A= Cunst  and different m® ., Middle diagram corresponds to
the point of the first order phase transition ( mi = A.: ).
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cage of the theory with U(1) and SU(2) symmetry groups/S'G/. Ag it

is seen from fig.6 in a certain range of values of o“L the effecti-
ve potential has two minima: the one corresponding to a stable phase,
and the other to a metastable one. At some value of in1=rntthe values
of Veff at both the minima coincide. This means that at h‘:.mt_ and
a certain value of )X there occurs first order phase transition.
With increasing X minima approach each other and at some value of
X:.Ac the effective potential cannot possess two minima at any
value of m” . The dependence of the point mﬂ=cA) of the phase
transition on X is exemplified in fig.7. The point A= XC ’

« ‘mzcrr(

P

Fig.7. Dependence ofnbg on A ob-
tained by formula (9) for the ef-
fective potential at S = O, The
cross denotes the point cor-
responding to } = ﬂc= 0.074; it
is the end point of the line of
first order phase transitions.
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hf:.mz ( > = 0) is the end point of the line of the first order
phase transitions. It has been shown in our papers/s/ that at this

point & derivative of the order parmmeter «<@’>/f.® has a singula-
rity indicating the second order phase transition at the end point.

It is interesting to trace how close quantitatively are the re-
sults for the theories with SU(3) and SU(2) groups, as their qualita-
tive similarity has been pointed out above. It is known that a mea-
ningful result in the theory with SU(N) symmetry in the limit A/ - oo

can be obtained by changing A= AW’ ; jz-. gi//\/ . Now we make
this change for A/a 2 and A/ = 3

Sy (2) 3972 Ve
ASH(I{_’ :\:i - }:f- .
2

Su(2) Sy (3
Then we get that A ~‘*) z 0.266/5:%/ ana Az 0.222 (see £ig.7);

the curves of the dependence m ) :wy. (A) for SU(2) end SU(3) groups
almost coincide in this case. Therefore, we may hope that for the

theories with SU(N) (N 3)symmetry groups a similar picture will be
observed.

It is to be noted that unlike our approach based on the effecti~
ve Coleman-Weinberg potential/’3/, the mean field method provides the
line of the second order phase transitions between the "confinement"
and'HiggJ phases for U(1) and SU(2) models with a defrost radial mo-
de/1o/. Apparently, this is due to an inaccurate consideration of
fluctuations of the gauge degrees of freedom within the lowest appro-
ximations of the average field method. But formula (9) is obtained by
an accurate integration of the partition function (at )s = 0) over
gauge degrees of freedom.
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dazosas cTpyxrypa SU(3) cumMerpuuHOit

XU TC—-KanuOpPOBOUHON TEOPHM HA pemeTKe

UccnemoBaHa dasosas crpykrypa SU(3)-cHMMe TpHYHOM XHMrrc-—
Kanu6pOBOYHON TeOpHH C pPa3MOpPOXEeHHOH pagHanbHOM MOOOH.
XHrrcoBckHe noOJiA pacCMOTpeHbl B GyHIaMeHTalbHOM NpeACTAaBJIeHHH
rpynnel SU(3). MMokasaHo, uTo dasoBas crpykrypa SU(3)-cummer-—
PHYHOH# TeOpHHM KadeCTBeHHO coBnapaer ¢ $as30BOH CTPYKTYpoOH
SU(2)~cuMme TDHUHON MOAeJH.

Pa6ora BoinonHeHa B JlaGopaTopuu TeopeTuueckoit dusuku OUAU.

TMpenmpuuT OBbeaMHEHHOro HHCTHTYTA AfEPHMX Hccnemopaumh. JIyGua 1985

Gerdt V.P., Mitrjushkin V.K., Zadorozhny A.M. E2-85-738
Phase-Structure of SU(3) Lattice

Gauge-Higgs Model

Phase structure is investigated of SU(3) symmetric
gauge-Higgs theory with a defrost radial mode. The Higgs
fields are considered in the fundamental representation of
SU(3) group. It is shown that the phase structures of SU(3)
and SU(2) symmetric models coincide qualitatively.

The investigation has.been performed at the Laboratory
of Theoretical Physics, JINR.
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