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The Priifer transformation /!’ provides an efficient tool for
numerical computation of the e1genva1ues for the radial Schri-
dinger equation (see, e.g., refs. 2-4"4nd references therein).
The method consists in converting the original 2nd order li-
near differential equation into a nonlinear Ist order equation
for a "phase function". The Priifer phase function possesses
a number of peculiar properties which greatly facilitate the
calculation of the eigenvalues. Such a method can also be ex—
tended to coupled systems of radial Schridinger equations 5.6/,

It would be interesting to develop an analogous procedure
also for the system of radial Dirac equations. Suitable tranSj
formatlons of the Dirac sybtem were proposed independently in’
and /7 *. The authors of ref.’? dealt only with the particular
case of an external magnetic monopole field and, corresponding-
ly, the properties of the relevant phase function were discus-
sed in a rather ad hoc manner. The class of external potentials
considered for the numerical calculations in 4’ is rather wide,
but the properties of the phase function were not discussed
there in detail,

The purpose of this note is to show that the phase function
employed in ref. o possesses properties very similar to those
encountered earlier in the well-studied case of the radial
Schriodinger equation ‘23/, This is somewhat surprising, as now
we are dealing with a lst order linear system and a connection
with the standard Priifer transformation is far from obvious.

Let us begin with the formulation of the problem and some ba-
sic definitions. The system of radial Dirac equations can be
written as (cf, ')

u;—%ul=l’(x.f)u2 .

(@D
u£+§— p=Q(x,€)u, .
with
P(x,e)=-2m-e+v(x), Q(x,e)=¢-v(x), ¢Z)

*Let us remark that the transformation proposed for the Ist
order linear differential systems by Atkinson (see’®’ . pp.328-

329) cannot be used for our purposes. ———————
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where m is the particle mass, e=E-m (E being the relativis—
tic total energy), k=*(i+1/2) , i=1/2, 3/2,..., and v(x)

is a potential, XC(0,=). Throughout this paper we use dimen-
sionless quantities. We shall assume for simplicity that v(x)
is bounded near the origin (the "regular potentials" of ref.’?’)
although the relevant results could certainly be recovered also

for potentials involving, e.g., the Coulomb singularity for x- 0,

Furthermore, we shall suppose that

lim x%v(x)=0, (3)

X -2 oc

The eigenvalue condition for the parameter ¢ reads
u1.2 (0o£)=0- (43)
z(ww‘)=00 (Qb)

In what follows we restrict ourselves to eC(—m.O).’I‘he crucial
object in the subsequent discussion will be the '"phase func~

tion" /s deflned by means of a generalized Priifer transformation
(ef. ' )

tgz= 2 (5)
Ny

A trivial ambiguity of such a definition due to the periodicity
of tgz can of course be removed by fixing the value of z(0,¢).
From (1) and (5) one obtains the following nonlinear differen-
tial equation for z:

2, 2k

z’= Q cos z—Tsmzcosz—Psingz. « (6)

There is unique solution of eq.(6) corresponding to the regular
solution (satisfying (4a)) of the original system (1). The ap-
propriate initial conditions which determine this relevant so-
lution fix the values of z(0,¢) and z’(0,¢); for example, for
k>0 one has

2=, B D e ) (7)
2k+ 1

% B
For more details, see ref.’4/,

Let us now investigate the properties of the phase function
z. First, we shall discuss the monotonicity of the z(x,e¢)
with respect to ¢ for a fixed value of x To this end, it is
useful to invoke the method of Atkinson /3/,In the spirit of 78/,
the definition (5) may be recast as

2

trz = tR(A/2); exp(id)=w=(u, +iuy)(u, —iug) ™", (8)

(Note that the relation (8) makes sense, as the u,, u; cannot
vanish simultaneously for x> 0;this follows immediately from
a theorem on uniqueness of solutions of the system (1)). Then,
without any reference to (l), the following identity holds
(cf. the relation (10.2 24) in’5y:

aw

602 a“l )

w* —21(u +u 5N (u — -y (9)
e de = de
Using equations (1) it is easy to obtain
3 du, duy, 2 2
(u - U, Y=, +1u5, . (10)
ax 1 3¢ 5 de 1 2

Integrating eq.(10) and observing that for regular solutions
u, , u, one has

xlim[J (u,(x, ”3:“ (x,e)- u2(x.¢)%ul(X.c)]=0. (an

we arrive at the relation

1'9u2 du,

SF e udyar, (12)

Equation (9) may be then rewritten as
A (13)
de

18,2 2
g M (uy + ug)dt.
Obviously, @ >0 for any x> 0;substituting w=exp(id)into

(13) and taking into account (8),one immediately gets the fol-
lowing important property of the 2:

with = 2(u? +ul

Pl: 2(x,e) is an increasing function of ¢ for a fixed x>0,

A closer look at the equation (6) reveals that in a region of
sufficiently large X. the function Z is also endowed with spe-
cific monotonicity properties with respect to the variable x,

at special points where either sinz or cosz vanishes. Indeed,

let ¢ be arbitrary but fixed. Let us choose xp such that
v(x)-m<0  for x>xp and xq(c) such that ¢-v(x)<0 for x> xg(e);,
obviously, Xp and xg(e¢) exist, owing to (3). If we set

i(c):max(xp.xq(f)). (14)
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it is clear (see (2)) that for x>X(¢) both P(x,¢)<0 and
Q(x,6)<0. Now, if x3>X(e¢) is such that z(xg,¢)=nm for an
integer n, then eq. (6) implies 2z"(xg.€)<0,i.e., z(x,¢) is de-
creasing at X=Xg. Similarly, if for some X;>X(¢) one has
z(xy,€e)=nw+n/2, then z(X,¢) is increasing at x=3Xx; . This
property of the z may be conveniently reformulated in the fol-
lowing way:

P2: Let X4 >3X(e),where X(e) is given by (14). If z(x%g.€)lies
between nw-7/2 and nm for an integer n, then the
trajectory z(x.,e) for x> xy remains trapped within the
strip nr-n/2<z<nm.

Next we shall discuss the limits of the phase function z(x,e)
for x-»o.For the rapidly decreasing potentials (3) it is not
difficult to establish the asymptotic behaviour of the solu-
tions of the system (1): For € being an eigenvalue, the re-
gular solution of eq.(l) behaves for x-e like

u (x,0)= A ¥ (1+0(1),  u,(x.)=Be (1+0(1). (15)
where

_ 1/2 1/2
A_(Bmoled )V cLdd@n-tan?, (16)
B jel

while for ¢ which is not an eigenvalue, one has for X-o

uy (x,6)=Ce ¥ (1+0(1)), uy(x.,e)=De“*(1+0(1), (17)
with

C__(m-ledd 172 (18)
D el

From the defimition (5) and from (15) through (18) one readily
gets the relevant limits for the z:

P3: ¢ 1is an eigenvalue for the original system (1) if and
only if

lel 1/2

. (19)

1i e)= S
:*m“ t22(X,e)=( o Te]

e 1is not an eigenvalue if and only if

lim tzz(x.c)=—(——£‘v——)l/2. (20)

-5 00 2m~|(‘
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Thus, with minor modifications, the properties of the phase
function corresponding to the transformation (5) are analogous
to those encountered in the case of radial Schrédinger equation
(cf.ref. ’?/ ). Wow we could formulate and prove a rigorous theo-—
rem on the eigenvalues pertaining’to the system (1) in close
analogy with the precediqg papers "3/ (cf. Theorem 3.1 in ref.’?/
and Theorem 1 and 2 in 3/ ). Instead of doing this, we shall
rather emphasize some practical aspects of actual numerical
computation of the eigenvalues:

I. The presence of an eigenvalue is revealed as a disconti-
nuity of the function z(e,e)= lim z(x.,¢) with a step equal to

X - o0
7 (see the properties Pl and P3).

2. In practice, one may usually only integrate eq.(6) numeri-
cally up to a "sufficiently distant" point %_ (in a sense speci-
fied below). Then changing ¢ by a very small amount yields
a steep change of z(x_.,¢) (approximately by =~ ) in the vici-
nity of an eigenvalue.

3. More precisely, if we want to determine the eigenvalues
of ¢ lying in an interval (-m,e ..}, € . <0, we estimate first
the i(smax) according to (14). Further, the limits (19) and
(20) indicate that for a given ¢ within the considered range,
a sufficiently distant point X _=x (e¢) satisfies the "trap-
ping condition" n7-n/2<z(x_.eJ<n7 for some integer 0 (see
the property P2). The numerical integration of eq.(6) should be
therefore carried out up to the values of x satisfying the
above criteria.

4, Integrating numerically eq.(6), one may scan the whole
range ¢C(-m,e__ ) choosing an appropriate step Ae for chan-
) a . .
ging €. We look }or the neighbouring values €, ¢, =€, +Ae
such that

nn—n/2<z(x“.(!)<nrr.

(21)

(n+1)n—n/2<z(x”.¢2)<(n+l)n.

for some integer n. The fulfillment of (21) means that the in-
terval (e,,¢,) comprises just one eigenvalue. If A¢ happeus
to be inconveniently large, i.e., such that (21) cannot be
achieved for some value of ¢ (indicating that there are seve-
ral eigenvalues within (¢, e+ A¢)), it may be reduced, e.g., by
successive halving, until (21) is attained for any "suspect" ¢.



5. Once the eigenvalues are localized according to (21), the
above-mentioned "halving procedure" may be applied systematical-
ly to refine the bounds on each eigenvalue in order to achieve
the required accuracy (cf. also ref./g/).

As an illustration of our method, we shall now present some
results of an explicit numerical computation of the eigenvalues
for the potential

-X

v(x)==5e"%, x>0, (22)

Table 1
In the Table we give a set of

the asymptotic values z(x_,¢)
(x . =20)in the vicinity of the
e z(xw,e) lowest eigenvalue €(®) corres-
ponding to the potential (22).

The values of z(x_ ,e) are ob-
=2,10000 =0.79774 tained by integrating eq.(6)

-1,85000 -0,73522 for k = 1, using the initial

conditions (7). Comparing the

data in the Table with the con-
-1.75625 =0.71167 ditions (21) one may observe

-1.73672 -0.70675 that @ g approximately lo-

calized within the interval
(-1.7367, -1.7357) (the required
-1.73574 2.43509 accuracy was 0.001). It is seen
that an average slope of the
-1.73281 2.43583 curve corresponding to z(x_,¢)
changes drastically (by four or-
-1,72500 - 2.43780 ders) near the eigenvalue. In
a similar way, one obtains for
-1.60000 2.46950 k = | two excited states with
the eigenvalues ¢ () and (2
“localized within the intervals
(-0.5834, -0.5824) and (-0.0750, —0.0742)/rg5p. Further examples
of numerical results can be found in ref.’%’,
-
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