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The Prtifer transformation I I I provides an efficient tool for 
numerical computation of the eigenvalues for the radial Schro
dinger equation (see, e.g., refs. '2-4 'and references therein). 
The method consists in converting the original 2nd order li
near differential equation into a nonlinear 1st order equation 
for a "phase function". The Priifer phase function possesses 
a number of pecul iar properties which greatly facil itate t he 
calculation of the eigenvalues. Such a method can also be ex
tended to coupled systems of radial Schrodinger equations / 6.6 . 

It would be inter esting to develop an analogous procedure 
also for the system of radial Dirac equations. Suitable trans
formations of the Dirac system were proposed independently in:4 

! 

and 171'" • The aUlhors of ref . : 71 dealt only with the particular 
case of an external magnetic monopole field and, corresponding
ly, the properties of tbe relevant phase function were di scus
sed in a rather ad hoc manner. The class of external potentials 
considered for the numerical ca lculations in / 4 / is rather wide, 
but the properties of the phase function were not discussed 
there in detail. 

The purpose of this note is t o show that the phase function 
/ 4employed in ref . / possesses properties very similar to those 

encountered earlier in the well-studied case of the radial 
Sc:hrodinger equation .l2.S/. This is somewhat surprising, as now 
we are dealing with a 1st order linear system and a connection 
with the standard Pr iifer transformation is far from obvious. 

Let us begin with the formulation of the problem and some ba
sic definitions. The system of radial Dirac equa t ions can be 
written as (cf. 4 ' ) 

ui-: u 1 =P(x.c)u 2 • 
(I) 

u~ + ! u2 = Q (x • .) u1 • 

with 

P ( I • e) = - 2m - ( + v ( x) • Q (x.d=(- v(x). (2) 

. .
Let us remark that the transformat10n proposed for the 1st 

order linear differential systems by Atkinson (see / &I,pp . 328
329) cannot be used for our purposes...
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where m is the particle mass, E= E - m (E being the relativis
tic total energy ), k=±(I+ 1/2). J = 1/2, 3/2 , •••• and vex) 
is a potential, %'(O.~). Throughout this paper we use dimen
sionless quantities. We shall assume for simplicity th'at vex) 
i s bounded near the origin (the "regular potentials" of ref. / 4 / ) 

although the relevant results could certainly be recovered also 
for potentials involving. e.g., the Coul omb singularity f or x ~O, 
Furthermore, we shall suppose that 

lim x 2 V ( x) = 0 • (3) 
x ... 00 

The eigenvalue cond i tion for the parameter f reads 

u1,2 (0 . E) = 0 , (4a) 

U 1.2 ( 00 •d = 0 • (4b) 

In wha t fol l ows we res t r i ct ourselves to f ' ( - m.O)jhe c r ucial 
ob jec t in t he s ubsequent d iscuss i on will be the "phase f unc 
tion" de f ined by means of a genera l ized PrUfer t ransformation 
(c f . 14 / ) 

U2 
tg z=-. (5) 

ut 

A t r ivia l ambi guity of s uch a de f i ni t ion due to t he periodici t y 
of t~ z can of cour se be removed by f i xing t he val ue of Z(O,f ) . 
From (I) and (5) one ob t ains t he fol l owi ng nonlinear dif fe r en
t ial equa t i on for z: 

z' = Q C{)S 2 z - ~ sin z cos z - P sin!! z • ( 6) 
x 

There is unique so lution of eq. (6) correspondi ng to the r egular 
solu t ion (sati s f ying (4a» of the ori ginal system (I) . The ap
propr iate initial conditions which determine t his re l evant so
l ution fix the values of zeO. f) and z'(O.d; for example , fo r 
k > 0 one ha s 

z (O.d = O. z'(O. d= Q(O.d (7) 
2k + 1 

For more details, see ref. 14 • 

Let us now investigate the properties of the phase func t ion 
z. First , we shall discuss the monotonicity ot the Z(X.f) 
with respect to f for a fixed value of x. To thi5 end, it is 
useful t o invoke the method of Atkinson 15/. In the spirit of / 6 / 

the definition (5) may be recast as 

tgz = tlt(¢/2); exp(i¢) = W;(u +1u2 )(u -1u )-1 . (8)1 1 2 

(Note tha t the relat ioo (8) makes sense , as the u 1 , cannotu2 
vani sh simultaneously for x> O;this fo l lows immediately from 
a theorem on uniqueness of so lutions of the system (I». Then, 
wi thou t aoy reference t o (I), the following identity holds 
(cf. the re l ation (10.2 . 24) in 15 / ); 

aW 2 2 - 1 aU2 d III 
w· ~- =2i (U 1 + U2) ( u 1 ~- - lI<) ~) • (9 )

dE ' d( - al 

Using equations (I) it is easy to obtain 

d aU2 aUt 2 2 
- - (u I --~ - ~-) =Ut + U 2 • ( 10) U2dX at .. at 

Int egrating eq .(IO) and observing that fo r regular solu tions 
u, , u2 one ha s 

[ ,a ,a] 0 ( It )lim ul(x.E)-- \I2(x .d - u2( x.d ~ ut(x.d = • 

X ~O 1f CH 


we arrive at the re l ation 

aU2 aU 1 :1 2 2 
- - - -- = ( ( U1 + u 2 ) dt. (12)U1 U2al at 0 

Equation (9) may be then r ewri t ten as 

aw , 
~ = l(LIW (13)
a( 

:I 

with lLI=2 (u~ + u~ ) - 1 r (u ~ +u~)dt. 
Obvi ous l y, w > 0 l or any x > O;subs t i t u t i ng w- eXP(i¢)into 

(13) and t aki ng i nt o account (8 ),one immediate l y ge t s the fol 

lowing i mportant property of t he z : 


PI; Z(X.l ) is an increasing function of f for a f ixed x > O. 

A closer look at the equa t i on (6) reveal s that i n a region of 

sufficiently large x. t he f unct i on z i s a l so endowed with s pe 

c i f ic monotonicity properties with respe c t t o t he variable x. 

a t special points where e ither sinz or coszvanishes. Indeed, 

let t be arbitrary bu t f ixed. Le t us choose xp such tha t 

v( x) - m< 0 for x > xp and Xg(t} such t ha t l - vex) < 0 f or x > xg( E) : , 

obviously, xp and Xg( l) exist, owing to (3). If we set 


x(E) = max ( xp ' Xg(l) • (14 ) 
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it is clear (see (2» that for x>i(t) both P(x.c)<O and 
Q(x.d< O. Now, if 10> x(d i s such that z(X O.€) = D77 for an 
integer n . t hen eq. (6) implies z'(x o .d <O .i.e., z(x, d is de
creasing at x=x o ' Simila rly, if f or some x 1 > x( c) one has 
z(x1.d=n17+17/2, then z(x,tl is increasing at x = x1 • This 
property of the z may be conveniently r e f ormulated ill the fol
l owing way: 

P2: 	 Let Xo > x(d, wher e iC E) is given by ( 14). If z(xo.c)lies 
be t ween n 17 - 17 12 and n77 for an integer n. then t he 
trajec tory z(x. f) fo r x> Xo remai ns trapped wi t hin t he 
stri p o 77 - 77 / 2<z <o 77. 

Next we shall discuss the limi ts of the phas e fun c tion z(x, ( ) 
f or x -+ 00 .For the r ap i dly decreas i ng poten t i a l s (3) it is not 
dif ficult to establi sh the a symp to tic behaviour of the solu
tions of the s ystem (I ) : For ( be ing an e igenvalue, the re
gu l ar solut i on of eq .(I) behaves for x ... 00 like 

-/(1-KX »lil( x,d = Ae (1+ 0(1 • u ~ x ,( ) = Be ( 1 + 0 ( 1» • (15 )
2 

where 

~ = ( 	 2m -I (I 112 112 
) (\ II (2m - 1 ( 1 » 	 (I6)

B 1 (I 
K = 

while for ( which is not an ei genvalue, one has for x ... .., 

Ce 
KX	 KXli l (x,d = (1 + o( 1 » , ( x. d = De (1 + 0 ( 1». 	 ( 17)U 2 

with 

Q = _ ( 2m .:... 1c 1 ) 112 (18) 
o 1fl 

From the defi Ji tion (5) a nd from (IS) t hrough (I S) one readily 
gets the re levant limits for the z: 

P3 : i s an e i genvalue for the ori ginal system ( I ) i f and 
only if 

1 (I 	 _) 112 • lim 	 (1 9)tg z ( x" ) = ( 2m _ 1 ( 1 
x ... 00 

Thus, wi th minor modifica tions, the propert ies of the phase 
f unction corresponding to the transformation (5) are analogous 
to those encountered in the case of radial Schrodinger equa t ion 
(cf. ref. / 21 ). Now we could f onnulate and prove a ri gor ou s theo
r em on the e igenvalues pertaining to t he system (I) in close 

in re L / 2 anal ogy with t he precedi n, paper s 12,3 1 (cL Theorem 3. I 
and Theorem 1 and 2 in 13 ). I nstead of doing this, ..ie shall 
ra t her emphasize s ome pract ical aspects of actua l numerica l 
computation of the eigenvalues: 

1. The presence of an eigenva lue is r evealed a s a discont i 
nui t y of the f unc tion z ( ~.() = lim z(x.c) with a s tep equal to 

x~~ 

" (see the propert ies PI and P3) . 

2 . In pr ac t i c e , one may usua l l y onl y integrat e eq.(6) numer i 
cally up t o a "suff i ciently d i s t an t " poi n t x"" (in a s ens e speci 
f i ed below). Then changing ( by a very sma l l amount yie lds 
a steep cha nge of z ( x ,d (approximately by rr) i n the v ici 
ni ty of an eigenvalue~ 

3. More precisely, if we want to determine the eigenvalues 
of ( lying in an interval (-m'(max)' (max < O. we estimate first 
the x«(max) according to (14). Further, the limits (19) and 
(20) indicate that for a given ( within the considered range, 
a sufficiently distant point x '" x (d satisfies the "trap
ping condition" n77-77 /2 < z(x~ . ( j< n"oofor some integer n (see 
t he property P2). The numerical integratioI. of eq. (6) should be 
therefo r e carried out up to the values of x satisfying the 
above cri tet-ia. 

4. Integrating numerically eq.(6), one may scan the whole 
range (I;; ( -m, fa. ) choosing an appropriate step /j,( for chan
ging f. ,.,re loo~ lor thE' neighbouring values (l' £2 = (1 + /j,( 
such that 

D 77 -	 17 /2 < z (x 00 • (1 ) < n 17 • 

( 21 ) 
(n + 1 ) rr - 77 12 < z ( x 00 • (2 ) < ( n + 1 ) rr , 

for 	some integer D. The f ulfillment of ( 2 1) means t ha t the in~ 	 terval «( L'(2) comprises j ust one eigenva lue. I f /j,( happens 
to be i nconveni ent l y large, i.e., s uch t ha t (21) c annot be 
ach i eved f or s ome value of ( (indicating tha t t here are seve
ra l 	 e i genvalues within ( f. f + At)) . i t may be reduced, e ,g., by

( is not an eigenvalue if and only if success i ve halving, until (2 1) is attained for any "suspect" (. 

lim 	 tg z (X,()= _ ( __1(_1__ ) 1/ 2. (20) 
x ... "" 	 2m - 1 (I 
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5. Once the eigenvalues are localized ac cording to (21). t he 
above-ment ioned "halving procedur e" may be applied systemat ica l 
ly to re f i ne t he bounds on each eigenval ue i n order to achi eve 
t he required accuracy (cf . a l s o re f . / 8/ ). 

As an illus t ra t ion of our method, we shal l now present some 
r es ul t s of an explicit numerical comput ation of the eigenvalues 
f or the potential 

v ( x) = - 5 e . x > 0 • (22)- )I 

Tah l e 1 
In the Table we give a set of 
the asymptotic values z (x .. ' f) 
( x"" = 20) i n the vi c i nity of the 

e z(xoo,e) 	 lowes t eigenvalue (0) corres
ponding to the potent i al (22). 
The values of v.( x .() are ob-2.10000 -0.79774 tained by int egrati ng eq.(6) 
for k = I, us ing t he i nit i al-1.85000 -0.73522 
conditions (7). Comparing the 
data i n the Tab l e with t he con-1. 75625 -0.71167 di ti ons (21) one may obse rve 
that (0) is approxima t e l y lo -1.73672 -0.70675 calized with in the interval 
(-1.7367. - 1.7357) ( t he requ i red-1.73574 2.43509 accuracy was 0. 001). It i s seen 
tha t an avera ge s lope of the

-1.73281- 2.43583 curve cor re sponding to z (x oo. t ) 
changes drastica lly (by f our or

-1.72500 2.43780 ders) near t he ei genvalue . In 
a similar way, one obtains for

-1.60000 2.46950 k = 1 two excited states with 
the eigenva l ues l ( 1) and l (2) 

' loca l ized wi t hin t he i ntervals 
(-0 . 5834, -0 . 5824) and ( - 0.0750, -0.0742) resp. Furthe r examples 
of numerical resul t s can be found i n re f . ! 4/ . 
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B 06lteAHHeHHOM HHC THTyTe AAePHbiX HCCneAOBaHHH Hal.lan 
BbiXOAHTb c6opHHK "Hpam~<ue coo6UjeHu.R OH.HH". B HeM 
6YAYT noMe~aTbCA - cTaTbH, COAeP*a~He OpHrHHanbHble Hayi.IHble, 
Hayi.IHO-TeXHHI.IeCKHe," MeTOAHI.IeCKHe H npHKnaAHble pe3ynbTaTbl, 
Tpe6y10114He Cpoi.IHOH ny6nHKal.lHH, 6YAYI.IH l.laCTbiO 11C~eHHH 
OHRH", cTaTbH, aoweAWHe e c6opHHK, HMeiOT, KaK H APYrHe 
H3AaHHA OHRH, cTaTyc ~HI.lHanbHbiX ny6nHKal.lHM . 

C6opHHK "KpaTKHe coo6114eHHA OHR H' 1 6yAeT BbiXOAHTb 
perynApHo. 

The Joint Institute for Nuclear Research begins publi
shing a collection of papers entitled JINR Rapid Communi
cations which is a section of the JINR Communications 
and is intended for the accelerated publication of impor
tant results on the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 
Experimental techniques and methods: 
Accelerators . 
Cryogenics. 
Computing mathematics and methods. 
Solid state physics. Liquids. 
Theory of condensed matter. 
Applied researches. 

Being a part of the J INR Communications, the articles 
of new collection like all other publ ications of 
the Joint Institute for Nuclear Research have the status 
of official publications. 

JINR Rapid Communications will be issued regularly. 

Ynerna ~ . • rop*eHWH ~. E2-85-695 
06o6~eHHOe npeo6pa30Ba HHe npQ~epa 
H npo6neHa co6CTBeHHWX 3Ha~eHHH AnR paAHanbHWX ypaBHeHHH aHpaKa 

PacCHaTpHBaeTCR 06~eHHOe npeo6pa30BaHHe npo~epa B CBR3H C npo6ne
HOH co6cTBeHHWX 3Ha~eHHH 3HeprHH AnR CHCTeHw paAHanbHWX ypaaHeHHH AHpaKa. 
AnR npOCTOTW HW OrpaHH~HBaeHCR noTeH~HanaMH perynRpHWHH B Ha~ane KOOPAHHaT 
H 6WCTPO naAa~HMH Ha 6eCKOHe~HOCTH. noKa3aHO , ~TO COOTBeTCTBy~aR ~a-
30BaR ~YHK~HR o6naAaeT CBOHCTBaMH, aHanorH~HWMH TeH, KOTOpwe HHe~T HeCTO 
B cny~ae paAHanbHOro ypaBHeHHR llipeAHHrepa . Co6cTBeHHwe 3Ha~eHHR coanaAaDT 
C TO~KaMH pa3pwBa ~30BOH ~yHK~HH no OTHOWeHHD K nepeHeHHOH 3HeprHH Ha 
npOCTpaHCTBeHHOM 6eCKOHe~HOCTH . npaKTH~eCKH MO*HO onpeAenHTb noBeAeHHe 
~30BOM ~YHK~HH B aCHMnTOTH~eCKOH o6naCTH npH nOHowH ~HcneHHOM HHTerpaqHH 
HenMHeMHOrO AH~peH~HanbHOrO yp~BHeHHR nepaoro nopRAKa H Ha6~AaTb pe3KHe 
M3MeHeHHA COOTBeTCTB~ero peweHHR B OKpeCTHOCTH Co6CTBeHHOrO 3Ha~eHHR. 
npMBeAeH npMMep ~HCneHHOrO pac~eTa Co6CTBeHHWX 3Ha~eHHH B paMKaX yKa3aH
HoM cxeMW. 

Pa6oTa awnonHeHa B na6opaTopHH TeopeTH~ecKOH ~H3HKM OH~~. 

Cooe.eaHe O&be~KeHKOro HKCTHTyT8 ~epKYX KCCReAOB8HHA, Qy6Ha 1985 

6Jehla 1., ~ofej s t J . E2-85-695 
Generalized Prufe r Transformation 
and the Eigenval ue Problem for Radial Dirac Equations 

A qeneral ized Prufer transformation is introduced in connection with 
the eigenvalue problem for a system of radial Dirac equations. For simpli
c i ty we restr ict ourselves to potentials bounded near the origin and 
decreasinq rap idly in the infin i ty . It is shown that the corresponding 
phase function possesses properties closely similar to those enco~ntered 
earlier in the case of the radial Schrodinger equation. The eigenvalues 
manifest themselves as points of discontinuity with respect to an enerqy 
variable of the phase function taken in the spatial infinity. In practice , 
one may determine the behaviour of the phase function in an asymptotic 
region by means of numerical integration of a nonlinear 1st order d l ffe- · 
rential equat ion and observe abrupt changes of the corresponding solution 
in the vicinity of an eigenvalue . An example of numerical computation of 
the eigenvalues is briefly discussed. 

The investigation has been performed at the Laboratory of Theoretical 
Phys ics, JINR . 
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