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An open problem is often more important than e solved one as far
as it represents a challenge. This is why lists of open problems ere
popular, not only the big ones which tend to cover an extensive fieldt)
but also the smaller ones collected more or less occasionelly while
following some other purpoee. The present papertt) offers a short
list of problems relsted to the author ‘s recent monograph/z/ on open
quantum systems and Feynman path integrals. It does not pretend to
cover the scope of this book, rather it selects five different regions

within it looking for unanswered questions they can contain.

1. Continusl observation of an unstable system

First of all, we mention how such a situation is described by means

of the 1limit of a sequence of successive measurements. Consider a sys-
tem whose undisturbed evolution is governed by Ut =e'th and sssume
that it suffers s sequence of yes-no experiments st the times 0= <
<SH< Lk = t , each of them being characterized by a projection

Eu on the stete space & of the system. This scheme applies parti-
cularly to non-decuy measurements if the system under consideration

is formed by an unstuble system together with ites decey producte and
the subspace Euﬁ' refers to the unstable system alone. For the used
partition 6 = {Zj} of [0,t] , we denote

d = . -7 , d(6) = max d, . (1.1)
k k+1 k Ockgn—1 k

If one takes only the positive outcomee of the measurement into
sccount, then the evolution is

%) Beside the clessical problem liets like that one of Hilbert, let
ue mention the recent paper by Simon/1/,

4%) This paper summerizes & telk given on the symposium "Theory of
elementary psrticles and modern methods of mathematical physics"
held in AlZovice, Czechoslovakia, in June 1985.
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U(t,03E ,8) ¢ = E e E,...B e B, (1.2)

80 it seems natural to associate the limit

U(t,o;Eu) i = sB-lim U(t.o;su,c-r) (1.3)
4(6) >0
with the system on which the non-decay messurement is performed perpe-
tually. In that case, however, one is confronted with the fuct which

is known as the "Zeno paradox" (cf.kef.2, Sec.2.4, and Hefls.3-5)

Theorem : Suppose that U(t,O;Eu) exlats for &ll t >0 , and H 1is
self-adjoint and semibounded. kloreover, let sn sntiunltary 6 exist
such that GEua" =E, and auto"‘ =U_, for ell teR . Then there is
a projection Pg Eu und a semibounded e.m. operntor A= PAP such that
U(t,0;E,) = e TAtp (1.4)

holds for all t# 0 . Furthermore, Ren P =EJYIIETH3 , und the opera-
tor PAP 1is associated with the quadratic form q @ qlp) =
= "(H+y)1/2P]2-rﬂ¢M2 , where f is some number > - inf o(H) .

Existence of the operators (1,3) is assumed here, ©o we have the fol-
lowing technical

Problem 1a ! Pind the conditions under which the cperstors U(t,O;Eu)
exist.

Notice that a sufficient condition can be found easily when the limit
is taken over a special class of regular partitions (Ref.2, Propoeiti-

. n
on 2.4.,2) : i;i%g (EuUt/nEu) exists if RanE C D(H) . Does

U(t,O;Eu) exist then too ? Furthermore, ie this condition necessary
at the same time (we conjecture that it is mot) or what is the necessa-
ry condition ?

The above theorem shows that in the cases of physical interest,
the states evolving under U(.,O;Eu) stay confined within Eu;?, and
therefore seemingly the perpetual observation prevents decay. Fortuna-
tely, thare is no puradox here, because the limit (1.3) lacks an opere-
tional meaning (for a detailed argument, see Sec.2.4 of Ref.Z2). In
fact, we can distinguish two typical situatione. In the first one,
the "continual™ observation means really a (denee, but finite) sequen-
ce of individuel measuring acts, where we are able to register (at
least, in principle) the outcome of each of them. As an example, con-
sider monitoring the particle tracke in a bubble chamber. In that case,

evolution is described by the operators (1.2) and model calculations
show that under realistic assumptions, it is difficult even to come
close to the "Zeno's limit" (cf.Ref.2, Sec.2.3).

On the other hend, there are situations which can be cheracteri-
zed as a "true" continuel observation ! ascerteining of an instant
when & chosen particle would decay, measuring of the arrival time 6
or a perpetual position monitoring. In such cases, a consistent descri-
ption should include anslysis of the guantum system consisting of the
unsteble system itself together with an appropriate pert of the measu-
ring apparatus‘). The task of finding en exact solution (say, for a
gingle free neutron interacting with the many-body system of the coun-
ter medium) is, however, too difficult. Hence we hsve

Problem 2 : Find a (sufficiently rigorous end realistic) model of
continual observation in which an unstable systiem interacts with a

guentum measuring apparatus.

/1 "
, but hie model was too
simple assuming a two-level system as the measuring appsratus ; fur-

A etep in this direction wes made by Kreus

thermore, it relied mostly on numericel examples. Nevertheless, it
suggested existence of the "watchdog effect", namely that for strong
enough coupling between the system and the apparatus, the decay was
egain suppressed. Hence solving Problem 2 one should find the condi-
tions under which this effect appears(we conjecture : H semibounded
and the coupling cons*tant g —»& plus possibly some technical assum-
ptions) and explain why it does not appear under reslistic physical
conditions. The role pleyed by the number of degrees of freedom of

the measuring appuretus should be zlso clerified.

2. Models of decay processes

Let us stert with the simplest model of a non-relativistic two-partic-
le decay. We use the standard kinematical veriables :

m.m

¥ TeBoE — -
reletive motion @ X = X=Xy m = mm s

- - 2
- DX, tmyX,
center-of-mess motion : X = ———= |, M=m, +nm

m, + o, 1 2

The state Hilbert epace is of the form

%) We avoid in this way the more fundamental question sbout the mecha-
nism of reduction of the wave function.



X=a0 e FHexrd (2.18)
where Z;= L2(B3) ;3 for simplicity, we write its elements as

T2 %(i)
Y HELE = (?‘2‘1-’?’ . (2.1b)

The subspace of J referring to the unsteble particle is %& § =
={¥: = 0} . Next one hes to choose Hemiltonian of the model. We
assume

Hg = Ho +gVv (2.28)

where the free part Ho and the interaction part V are of the form

1
E ~ = Ay 0
Hy = 2N X | 1 , (2.2b)
2 - 20 8% ~ 2a

3 > -

5 %y v(I) Y (L
VoV, ) = l[’ - ¥o
v(E) Y (D)

H (2.2¢)

their matrix form refers to (2.1b). Here E 1is a positive number inter-
preted as an internal energy of the unstable particle, and VE’L2(R3).
By Ax.“Ax we mean the self-adjoint extensions of the corresponding
Leplacians.

Hotice thet the mass M 1in the first row of HO cannot be repla-
ced by some M  different from M , 8ince the decay would be then for-
bidden by Bargmann superselection rule/a’g/.
write down the projective representation of the Gulilei group connec-

It becomes clear once we
ted with our system,

(U(v,3,9, P, 7,1) = exp{- 38 (t-) + d. (F-D) § x

(2.3)

1

YR (-3 -Ft+V0), B, 1) .

Now we are going to present a concise discuesion of the moﬁalt\ :

Proposition : Ho and HP are self-adjoint on U(HU)— D(H_) .

Next we separuate the center-of-mess motion., We write ('?}':Jy‘lxﬂiﬂ@c#:) '

%) The arguments are essentiazlly the ssme s in the Friedrichs model
(Ref.2, Sec.3.2) ; more detaile will be published elsewhere.

i 1 i 1 .
then H = -554y@1 + I®H, " , where H ® =H ™ +gV with
E 0
et - ( 1 ) : (2.42)
0 B, o
2m = x
(v
v v(“ - (U9 . (2.4b)
¥ v

Hence the evolution operator U =y UIEl , where the center-of-mass
17 @Y%

p8rt represents a free motion. For the relative part, we pass to the
p-representation :

Eroposition : HEEI is by mezns of I&)F3 uniterily equivalent to
the operator
E e(v,.) ¢ y
2 y 25
g? 2

where V= Fjv ;y for simplicity, we denote (2.5) zagain as (2.2a).

Since E>O due to the assumption, the unperturbed Hamiltonian hes

a simple eigenvalue embedded in the non-simple UE(HO): [0,00) .

Recall that behaviour of the reduced propagstor Vt : = EuUt[‘Zh is

determined by the reduced resolvent Ru(z,H ) =

= Eu(H -z)'1r'hh ; 1t is dominated by &n exponential term if Ru(..Hg)

hes a second-sheet pole close to the real gxis (cf.Ref.2, Sec.3.1).
W¥ith this in mind, we cen solve the model. We adopt the following

two assumptions @

(e) v depends on |P| only,

(b) |3(.)]2 can be continued anelytically ucross R,

The firet one is the consequence of Galileen inverisnce, the other

means more explicitly that there is en analytical function which coin-

cides with I?r(.)l2 on R, (for simplicity, we use the same symbol

for the both). Since the interaction fulfils

byed
EVE, =0 , A (2.6)

where E$= I- Eu » the reduced resolvent ceén be obtained algebraically;
it acts as a multiplication by

("] 2~ 2 -1
ru(z.Hs) S (:z +E 44132 J‘ E—JXLE%L- dp) (2.7a)
0 %~ 7m



"for Imz>0 . The analytical continuation of ru("Hg) to the lower
complex halfplane, Imz< 0 , is

o 244 2
ril(z,Hg) = (-z-+E4~4%gz j‘ E—lliﬁél— dp - BinRZIG(JZEZ)szZNZ)
0 %~ 7m

(2.7b)

4

The pole condition for (2.7b) is solved by means of the implicit-func-
tion theorem

Theorem ¢ In & neighhourhood of g=0 , there is an analytiéal func-
tion 2z such that ril(.,Hg) hae 8 simple pole at zp(g): Ap(g)_
—1Jp(g . It holds

0 2a 2
4 (g) = E+ eng?P [ EEM{;%’— dp + o(g®) , (2.88)
0 T ?m

3,(8)

n

82%ng?|3(JZmE) 12/2mE + oet) . (2.8b)

We remark that the model under consideration is essentially identical
with the lowest sector of the "GalilLee model"/9’10/
further, one should prove the following assertions :

Developing it

(1) the leading term in (2.8b) is given by Fermi rule, i.e., the
y 2 d 0
decay width equals [(g) =25p(g) = 218" 3y (Vy«u,EAPC(HO)V%) - .
(1i) the scattering smplitude in the system (H’Hg) has

a pole at Zp i

(1ii) there is a (guadratic) spectral concentration as g—-»0 ,

(i¥) finally, one has to justify the pole approximation, i.e., to
estimate the remainder terms similarly as Demuth 1/ did it for
the Friedrichs model.

There are various straightforward generalizations of the model, e.g.,

- inclusion of spin

- non-vanishing final-state interaction

- the three-particle decay,

etc., but we are not going to discuss them here. It is more important
for our present purpose to stress that the mice features of the model
stem primarily from the Priedrichs condition (2.6) which makes it al-
gebraically soluble.

Problem 3 : PFind slternetive techniques for solving the embedded-
eigenvalue problem.

We remerk thet two other techniques are known at present but neither

of themw is entirely satisfactory. The dilation-analytic method has

been highly successful in solving problewms as, e.g., He —autoionization,
but ite spplicability is restricted to Schrddinger operators with

(¥E=V6/  on the other ha;d,/there is the facto-
17

well-behaved potentials
rization technique whose idea goes back to Kato It wes used suc-
cessfully by Howlend, Basumglrtel and others - see Sec.3.3 of Ref.2
for references. Its applicability is hindercd, howevei, by the fact
that one should check independence cn the chosen factorization, and
this task is usually difficult.

Beside the Galilean-invariant Lee model mentioned above/9’10'18/,
some other decay models have been worked out. Let us mention two of
them ¢ & system coupled to & fermion reservoir with persistent vacuum
(cf.Ref.19), and & harmonic oscillator coupled to s massless scalar
fieldfzo/. there are also various models of guantum-mechanicael tunne-
ling decays/21_24/ 3 they rely on the perturbation theory of isolated
eigenvelues which dissolve in the continuous spectrum once the pertur-
bation is switched on‘)

The common feature of all the models mentioned ebove is that they

are non-relativistic. Hence we have

Problem 4 : Construct a relativistic decay model.

Let us stress that we are looking for & dynemicel model. A kinematical
description of relativistic decsys can be obtained on the basis of sym-
metry considerastions - cf.Ref.2, Sec.3.5 end slso Refs,?28,29.

3, Disgipative quantum mechanics

Phenomenological non-selfadjoint Hamiltoniens sre widely used in some
branches of nuclear physics, solid-stute physics,etc. ; often it is
the only wuy Lo reduce reasonably the complexity of the problem under
study. A rigorous analysis, however, is ususlly lsacking.

In this section, we shall be concerned with (contionuous contrac-
tive) semigroup evolutions Vtz e_th . The operator H referring to
such en evolution is called pseudo-Hamiltonian. This notion was intro-
duced in Ref.30 and discussed extensively in Chep.4 of Ref.2. There
are two main groups of problems here : .

%) Such & situstion is fomilisr from the Sterk effect. The use of thie
perturbative method is not, however, restiricted to the decay models;
in the recent series of papers by Gesztesy et al.(e.g., Refs.25-27),
it ie employed to derive the firet-order relstivistic corrections to
Pauli Hamiltonian.



(i) development of the non-selfadjoint quantum mechanics,

(i1) justificztion of the pseudo-Hamiltonian method.

Let us start with the first of them. A densely defined H 1is dissipa-
tive 1if Im(‘V/,IHﬁ)s-O for all 'v)LeD(H) . Furthermore, H 1is maximal
dissipative if i1t has no proper dissipative extensions ; it is essen-
tially maximal dissipative if H is m.d. In this way, one obtains a
straightforward generalization of the standard quantum-mechanical

scheme :

symmetric operator « igve dissipative operator
self-adjoint operator e meximal dissipative
e.s.a. operator 5 s e.m.d. operator

Stone theorem Phillips theorem/31/ :t 1iH
generates a continuous contrac-

tive semigroup iff H is m.d.

the bagic self-sdjoin“ness a dissipative H is e.m.d.

criterion iff Ran(H-i) = &
von Neumann extension theory s the theo;y of dissipative ex-
tensions 32/(important diffe-

rence : every dissipative ope-
rator has a m.d.extension ! )

Kato-Rellich theorem the perturbative theorem by
Nelson 335 " Gustafson/34 and

chernot’ 3%,

etc. (for more details, see Sec.4.2 of Ref.2). Many results can be
also derived for Schr8dinger pseudo-Hamiltoniens. By this notion, we
mean a Schrédinger operstor H= - 3 A+u on Lz(ﬁd) with & complex
Borel potential which is supposed to be regular with possible exception
of a Lebesgue-zero set, fulfilling the dissipativity condition

Im u(x)<0 s8.e. in Bd , and such that H 1s densely defined. As a
generalization to the known self-adjointness criteria for Schr8dinger
operators, various conditions can be derived umder which such H is

e.m.d., for example

(a) H is J-selfsdjoint, i.e., H‘:-—’éa +3
(b) uelP+I° , where p=2 for d<3 eand p)g2 for d4 >3 ,
(c) d=3N @and u 1is a sum of two-body potentisls from L2+ e

d

(a) u€L2 (R™) and infess{Re u(x):xeﬁd_}>—oo

loc

(for more details, see Sec.4.3 of Ref.2). Moreover, H is even maxi-
mal dissipative if (b) or (c) holds.
8

Problem 5 ¢ Extend the generalization described sabove, in psrticular,
by adapting other known "self-adjoint" methods.

The formulation of thies problem is, of course, rather vegue, and a
brief comment is needed. There are at least three directions in which
the dissipative quantum mechanics can be developed :

(i) criteria of maximel dissipativity,

(ii) spectrel properties of pseudo-Hemiltonians. The problem is sub-
stantially complicated by the possible existence of spectral singula-
rities, 2nd a solid information is available in some simple cases only,
notably for pseudo-Hamiltonians with smooth potentiels on a halfline

/37/)

(cf.Ref.36). The operators without the singularities (or spectral
are easier to describe, but the known sufficient conditions under
which & given operator is spectral are very restrictive. Various con-
crete suggestions can be formulated ; just to give &n exsmple, we
mention the possibility of proving Lidskii theorem (kef.2, Th.4.3.15)
for d>1 ,

(11i) non-unitary scattering theory/17’38_42/ Z

there are generaliza-
tions to the methods of Cook, Kato-Birman, Enss,etc., but generally

our knowledge in this field is far from satisfactory.

The second group of problems is not less importent and contains
a lot of open questions. In fact, the pseudo-Hamiltonian description
of an open system represents a generalization to the pole approxima-
tion (see Sec.4.1 of Ref.2 for a detasiled discussion) ; even this
approximetion is justified satisfactorily in few simple decay models.
It suggests that the estimation procedures for concrete systems, par-
ticularly those in which the pseudo-Hamiltonian acts on an infinite-
dimensional space, are presumably difficult. As an example, let us
mention the estimation connected with justification of the op-
tical approximation in neutron scattering on nuclei - cf.Refs.40,43
and Ref.2, Sec.4.4 . Though we do not try to pick up any particuler
problem here, we would like to stress the demand for searches in this
direction : it is one of those places in physics where a relatively
successful phenomenology lacks a sufficiently rigorous footlng for
a long time.

4. Peynman path integrals

Our next problem could read "construct & theory of Peynman path integ-
ral", but certainly such & formulation is worth of nothing. Hence we



try to be more specific. First of all, we restrict our attention to
the quantum-mechanical systems in a flat configuration space and to
the configuration-space path integrals, leaving @ good meny interes-—
ting problems out of the scope. For a system described by a Schr¥din-
ger (pseudo-)Hamiltonian H =- 515 +u in Lz(ﬂd) , the task is to
Ea)
prove Feynmen-Cameron-Ito formula
i
=y = S(f+x)
(e ) (x) = [ o Yo +x) Dy =
'l

0

- (4.1)
f _%f u(g(r)+x) dzr

0
Joe ¥y 0) +x) D@ (g
0
with the rhs defined in a suituble wey. Here s=H/m , end for conve-
nience we set K=1 in the followlng. The gymbol fb means a space
of trajectories ending at x=0 . 1t cun be chosen in various ways,
€.g-,
Banach space X = Co[I*iR"] with Upl: = mex_ [g(@)[ »
regt

t 1/2 -
Hilbert space & = ACO[Jt;ﬁd] with HX” T = (f ‘i(T)‘2dT) .
0

or some other psth space, where I [0,t] .

We are going to sketch now u few me&in ways in which the rhs of
the FCI-formula (4.1) cuan be defined. This survey is naturally very
brief ; for 8 more complete discussion, bibliography and notation see
Chap.5 of Ref.2

d/44/ ! the algebra F(¥) of "integrable fun-
ctions™ consists of all f : % > C which are Fourier images of a com-
plex Borel measure My On ¥ . For fef&) , we set

: -3 e
gf £(40) Dd;(f) $ é;tz dus(p) (4.2)

(ii) polygonal-path upproximations/45’46/: for & partition @& = i?s :
0=’Z‘0<T1< ...<Tn=t} of Jt , we define ?he expression
n-—
1. 2¢-1
n-1 e 2: I - 16
ls(f;U) t =[] (27[18::%)_(1/2 f e2a =0 fj+'| J’J I x
J=0

(1) Fresnelian-type metho

Rnd

(4.3a)
f(gu) dfO"'dI%-1 ,

where ig is & polygonal path with epices 13:51(?3) . Since (4.3a)
has the natural interpretetion as a path integral over all such poly-
gonal paths, one can define

10

o
f( Do_( I = 1lim I.(£36) . (4.3b)
:4; 3‘) ¢5 (f) Tefinicl;é s )
partiti
The index « specifies the used integral over Rnd and the limit.
We use, e.g.,

as "cylindrical" for Lebesgue integral,
for a suitable improper integral,

for the oscillatory integrel,

for the regular 1limit, 2, =Jjt/n , n >e ,
for the uniform limit, d(6) — 0 , etc.

E M O = 6

(1ii) product formulae/“'”’/: for f(p)= exp{-—i } ug (T)+x) d’r}'ylf(O)ﬂ).
one can use Lie-Trotter formula or its modifioatf%ns to define the rhs
of (4.1),

/48,49/,

the real axis from below, e.g.,

(iv) limiting F-integral we takea complex 8 which approaches

[ 24y Do (g) 11 fucfuw () (4.4)
T T = m 5 ’ .
x & R 20+ 4 e-ie ¢

(v) Itd definition (Gaussian regularized P—integral/so/) we set

L yue2
e s igy1/2 [ 28 M1
;f, 20 Dy p) 5 = Agm [sencr- )] é[e T qug () )

where the 1limit is taken along the directed set of all correlation
operators of the Gaussian measures This theory is worked out
up to now for d=1 only. Also, one wéuld invite to have a more uni-
form limit,

(vi) analytical F-intezral/33’49’51_53/:

the FP-integral fa F(p) D¢, ()
is defined as analytical continuation of the function

AP J(Fa) @ = é‘P(A']/zf) dw(r) , where w is the Wiener measure

on X, to the foint A=-i/8 .

Remsrk : Poseible definitions of the F-integral are in no case exhau-
sted by the above short liet, and new possibilities continue to appear.
/54-56/ t1et the
does not apply to Dirac opera-
tors, at least in some cases, and he has been able to construct the

In the recent seriee of papers, Ichinose has shown

well-known no-go theorem of Cameron/48/

corresponding path measure explicitly. The non-relstiviastic 1limit of
this theory offers therefore one more possibility to comstruct the
sought peth integrsl.

Theorem : The F-integrals 4“}4) D¢n(r) , 8>0 , for & =, ul, luc,
g ,a coincide on the algebra® F(¥) .

11



The statement concerning & =& requires a comment, since this defini-
tion employs a different path space. There is, however, & Banach algeb-
ra of functions F : X =€ which is isomorphic to F(¥) by F~f :=
= Pty - for more details see Ref.53 .

Froblem 6a : Is there & wider class of functions on which a major
part of the F-integral definitione coincide ?

This is importsnt because the integrsnds of (4.1) corresponding to
many physically interesting potentials, such @s that of harmonic oscil-
lstor, are not contained in JF()

Froblem 6b : Construct calculus for the F-integral.

This again requires a comment. The "Butemun manuscript" for Feynman
integrals is very short : we cén integrate, in most cases formally,
the functions fo—yeQ(f) , where q ie a quadratic form. In some ca-
ses, we ure gsble to perform substitutions, in particular

translations ¥ = it

regular isometric transformutions r —rR§

"Cameron-Martin" treneformations Jl—v(1+K){ with K of the trace class
(cf.Ref.2, Secs.5.2,5.4). liorecver, though the dominsted-convergence

theorem is not velid for F-integral (Ref.2, Exzmple 5.2.10), analogous
assertione have been proven recently under somewhat more restrictive

/51-59/

plete calculus rules must be elaborzted before Feynmen path integrals

assumptions It is clear, however, that much powerful and com-

could be regarded @s more thsn the present-dey very useful but mostly
heuristic tool.

5. The "Feynman paths"

In the lest secticn, we return briefly to the repested meassurements
considered in Sec.2 . Now, however, we replace the fixed projection
Eu by @ projection-vulued @apparztus function E(.) . Then we define

-iHé -iH&

U(t,0E,0) 1 = E(t) e 'Be, e "z ).
—11-150
---E(T\) e E(0)
and
U(t,03E) : = s-1im U(t,0;E,s) . (5.1)
d@)»0
12

Aheronov and Vardi/GO/ suggested such s procedure as realization of

a single "“Feynmen peth". This is only partly true, however, because
the limit (5.1) again has no orerational meaning. Nevertheless, it re-
presents an interesting methematical object related to the F-integral.
Let us illustrzte it on the following simple exemple (see Ref.5, and
Ref.2, Sec.6.3)

Theorem ¢ Let E(L) be one-dimensional corresponding to vt 2 yt(x):

= V(I—J‘(L)) ejx'”(h) with ’,Léy(fﬁd) and T continuously differen-
tiable. Le@ H be maximal dissipative, t+~>Hy% continuous ,
D(H) C YRY) , then

14 Lir)dr
U(t,0;E)p= e O Yor gy (5.28)
d il ‘
Lty = ﬁ%% QIR (8) - (1) - 15;-é§1 Q (D)E (8) (5.2b)

where Qk(t) ,Pk(t) ,£(t) are mean values of Qk ,Pk , H with respect
to Vt y respectively.

In particuler, if H= —%A +u and j'k::tk , then we get

L =1 3 pwouny -1 P apa? - 4 3 a0 (t), (5.3)
= - - - 3 - 3 »
2k K = I LS = T

where U(t)= (yt,uy%) . Since the last term is path-independent and
the third one is negligible in a quasiclassical situation, we recover
the Feynman'a weight factor, even for dissipative systems which may
have no classical counterpart.

It makes therefore sense to expect thet for & sulitable E , the
operators U(t,0;E) can (if they exist) replace the non-existent
Feynman measure. Thus we come to our last

Problem 1b : Find U(t,03E) , 1f =1°(R%) and E() projects on

LE(Mr) , 0€7T¢ t , where X is 4 moving space region In Rd 5

o
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