
18 Kon . 

COD6 11l eHII 
0611eAIHe HHo ro 

IH CTM TYTa 
RAepH bl l 

Iccl eAolaHI. 

AY6 Ha 

E2-85-6H:~ 

P. Exner 

OPEN 

ANI) 

SOME 

PeAaKTOP :3. B • IfBB WKl'B 11'1 • Hu:eT P. n. ¢>OM1IIIOfr . 

nOA"IotC3MO B ne"aT b 25.09.85. 

~OPMaT 60~90/16. O~ce THaA neUaT b . Y".- Iot 'A.nHcTol 1, 19 . 


rlotpa.. 510 . 3aKa3 36766. 


H3A3TenbCKIotH OTAen 05~eAHHeHHoro IotHCTIotTYT3 AAepHW~ HccneAoaaHHH. 
Ay6Ha MoCKOBCKOH 06naCTH. 

QUANTUM SYST EM S 

FEYNMAN INTEGRALS: 

PROBLEMS 

1985 


http:25.09.85


© Obl!ABlleHllLOf HHCTKTYT R,AepmDt lfCcneADB.umH Jlyt5aa, 1985 

An open probl em is often more important than a solved one as far 

as it represents a challenee. ~his is why lists of open problems are 

popula r, not only the big ones which tend to cover an extensive field~) 
but also the smaller ones collected more or less occasionally while 

following some other purpo s e. The present paper··) offers a short 

list of problems rel~ted to the author ·s =ecent monogr~ph/2/ on open 

quantum systems and FeJ~an path inte grals. It d oe s not pretend to 

cover the scope of this book, rather it selects five different regions 

within it looki ng for unanswered questionc they can contain. 

1. 	 Continual observation of an unstable system 

First of all, we mention how such a situation is described by mesns 

of the limit of a sequence of successive mea s urements. Consider a sys­
-iHttem 	whose undioturbed evolution is governed by U = e and assume

t 
t hat it suffers s sequence of yes-no experiments at the times 0= ~O< 

<t',< ... <-zn=t , each of them being characterized by a proje c tion 

Eu on the st6te space ~ of the s y stem. This sch eme applies psrti ­

cularly to non-dec~y measurements if the system und er consideration 

is formed by an unst~ble s ystem together with its decay products and 

the subspace Eu;f refers t.o the unstable ays tem al one. For the used 

parti tion (j = {Zj l of [O ,tJ , we den o te 

dl!: = 7:k+ I - "tk 
d( tJ) max cfk 	 ( 1. 1 ) 

O ~k'n-I 

I f one takes only the posi tive outc omes of the measur emen t into 

account, the n the evolution i s 

.) 	Beside t h e c l ass i c al problem l ists l i ke t ha t one of Hilbert, let 
us ment i on the recent pape r by S1mon/I /. 

ta l 	 Thi s pa p e r summ~rlz e s a t a l k given on the s y mposi um "Theory of 
elementary par t i cles and modern methods of mathematical phye ics" 
held in Al ~ ovlc e, Cze choslova ki a, in J wn~ 1985. 



-iHJ-iHJ"n_1 
U(t,O;Eu'O") Eu e Eu Eu e 0 Eu ( 1 • 2) 

so it seems n8tural to associate the limit 

O(t,OjE) s-lim U(t ,OjE , ~) (1 . 3) 
u d(6") ....O u 

with the system on which the non- de ca y meo s ur e ment I B performed perpe­

tually. In t ha t case, howev e r, one is c onfr ont e d wlth ~he ruc t which 

is known as the "Zeno para d ox" ( c f .Ft e f.2, Sec. 2 .4, Bnd H ufll .~ -5) 

Theorem: Suppose that U(t ,O;E ) exie tn fo r til l t, > 0 , tl nd H is 
u 

self-adjoint and semibounded. More over, l" t IJ n l, n ti ul'll tb r y 9 exist 
-1 ,,- 1 ' 

such that 61Eu61 = Eu and BUt " = U_ t fo r u ll t ili. at • The n there is 

a projection P~ Eu und a aemi b ounded B . 6 . o pe r ato" A PA P such that 

e- iAt pU(t,OjE ) ( 1. 4)
u 

holds for all t f 0 . Furthermore, Ran P = Eu.:t'flQ(Il ) , o nd the opera­

tor PAP is associated wi th the quadr8tic form q : II ( ~) = 
1/2 2 2 . = I/(H+j) ~r -rff<pl/ , where t lS some n umber ~ - Lnf a(H) 

Existence of the operators (1.)) is assumed h e r e, so we have the fOl­

lowing technical 

Problem la Find the conditions under which the operatora U(t,OjE )u 
exist. 

Notice that a suffic ien t condition can ?e found eas i ly when the limit 

is taken over a spec iel clasa of regular partitions (Re f .2, Propoeiti­
n 

on 2 . 4 . 2) s-lim (E Ut i E) exiats if Ran E C D(H) . Does 
n~oo u n u u 

U(t,OjE ) exist theu too? Furthermore, is this condition n ec essary
u 

at the same time (we conjecture that it is not) or what is the neces~ 

ry condition? 

The sbove theorem shows that in the casee of physical interest, 

the states evolving under U(., OJ Eu) stay confined wi thin Eu.of, and 

therefore seemingly the perpetual observation prevents decay. Fortuna­

tely, ~ is no ptiradox here, because the limit (1.3) lacka an opera ­

tional meaning (for a detailed argument, see Sec.2 .4 of Re f .2 ) . I n 

fact, we can diatillbuish two typical situations. In the first one, 

the "continual" obser Tation oeane really a (dense , but f i n ite ) sequen­

ce of individual measuring acte, where we are able to r egi ster (at 

least, in principle) the outcome of each of them. As an example, con­

eider monitoring the particle tracks in a bubble chamber. In that case, 
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evolution i s described by the operators (1.2) and model calculations 

show that under realistic assumptions, it is difficult even to come 

close to the "Zeno's limit" (cf.Ref.2, Sec.2.3). 

On the other hsnd, there a re s ituations which can be cha r a cteri­

zed as a "true" continual observe tion : asce rtaining of an i ns t ant 

when a chosen particle would decay, me3suring of the arrival time/6/ 

or a perpetual position monitoring. In s uc h cases, a consistent descrl­

ption should include analysis of the quantum system consisting of the 

uns ta ble system itself together with an ap propriate part of the measu­

ring ap par atus*). The task of findi ng a n exact solution (say, for a 

si ng l e f r e e n e u t r on interscting with the many-body s ys tem of the co un­

t er med ium) is, however, too difficult. Hence we have 

Problem 2 Find a ( s uffi cien t ly rieor o u6 end rea list i C) model of 

c ont inual observa tion in which an unstable sys tem interacts wi th a 

q ua ntum measuri ng a ppa ratus. 

A s tep in this di r e ction ~ a s mad e by Kra us/7/ , but h iB model wa s too 

simple assuming a two-l e v e l system as the mea suring apPBratuB j f ur­

thermore, it relied mostly on numerical exsmples. Ne vertheless, it 

suggested existence of the "wstchdoe effect", namely that for strong 

en ough coupling between the system and the apparatus, the decay wa s 

a ga in suppressed. Hence solving Problem 2 one shO Ul d find the condi­

tion s under wh ich this effect appears (we con j e c t ure : H semibound e d 

a n d the coupling conll<;ant g ~ oo plus poslJ i b ly some tecr.nical assum­

p t ions ) and e~pla in why it does not appear und e r r ea listic phys i ca l 

condit i one . The role pla y ed by the number of degrees of fre edom of 

t he measuring a p pa ra tus should be a lso cla rified. 

2. ~odels of de c a y proc e ssea 

Let UB atart wi t h the simples t model of a non- re l at i visti c t wo-parti c­

le decay. We use t he s t andard k i nema t ical variables 

-. ..
relatiTe motion x m=~x 2 - ~ I _ m "m

1 
.... miX +m.... 2 
I = 1 2~2center- of- maes motion 111 JIllm m + m21 

~ 
2 

The state Hi l bert e paee is of the form 

*1 We av o1d i n t h ia way the more funda menta l q ues t ion abou t the mecha­
niam of re duct i on of the wave func ti on . 

3 



)( = r, @ (~®~) 	 (2. la) 

where .:f; =L2 (1R 3 ) ; for e i mplici ty, 'I.e write its c l eme nts as 

... ( ¥\( x» )1': 1(X , it) = h d , x) 	 ( 2. 1 b ) 

The subspace of 11 referring to the lUlsteble po rticl e is .n'u 
= £¥': ¥2 = 0 1 . Nex t one hilS t o hoose Hamiltonian of the mo de l . We 

assUJDC 

Hg = HO + f,V 	 ( 2 . 2a ) 

where the fre e pa r t Hnd t he intera c t ion part V are of the formHO 

0( E - 2~.X
HO = (2 .2b)

I I )0 - 2Mtl.X - 2mAx 

V ( v¥')( •x.,;O = ( " d 'y v tYl ~'i>(i.Y~ 	 ( 2.2c ) 
v(i ) ~ ( X ) 

their matrix form r efe r B t o (2.1 b). Here E is a p os i tive nUJDber inter­

pre ted as an interna l energy of t h e uns t ab le par tic l e, and vEO L 2 (R 3 ) 

By tl. .x ' tl. we mea n the self-adjoint e x tensions of t he corr e sp ondi ngx 
Le placians. 

llotice t hat the ma ss Iol in the f i r st r ow of HO canno t be rep l a­

ced by some III different from III , s i nce the decay would be then f or­

bi dden by Bargmann sup ereelection rul e!8,9!. It becomes c l ear once we 

write down t he projective repr esentation o f t he Galil e i group c onne c ­

ted with our system , 

I i -.2 ... ...., l
( U(b,a,v,R)1 )(i,x,t ) up t - 2 Mv (t-b) + ilIv . (X-e) j )( 

( 2. 3) 
~" -1 ~ .,. ...... - 1_)r(R (.1. -8 - yt+vb ) , R x,t 

Now we are going to presen t a c oncise discussion of the model·) 

Proposition : HO an'! Hg are self-u d joint on D(HO'::: D(Hgl • 

Next ",e eep&rtlte the cen teT-of-lIltlee Illation. 'lfE write :tr::~®tC$.:r,). 

t) 	The argumen ts are esaenti~lly the 8ame be in the Friedricbs model 
( Ref . 2, 8ec . 3 . 2 ) i more dotal1e will be p u blished ele8where. 

.. 


1 reI rel reI .
then H - 2i c. X ® I + I ® Hg ,where He :: Ho + gV W1 th 

rel EO )
H ( 1 	 (2.4a) 
o 0 - 2m A :x 

(2.4b)V: v(;) =c:':») 
cm rel

Hence the evolution operato r U = U ® U , ....h er e the center-of-masst t t 
part r e pre sents a free motion. For t h e relztive port, we pa s s to the 

p-representati on : 

Proposition: H~el is by me~ns of 1EllF3 unitarily equivlOlent to 

the operator 

E g(V,.» )
2 (2.5)

( g v .P:.
2m 

where v'= P 3v for simplicity, we denote (2.5 ) a ga in as (2.2a). 

Since E> 0 due to the assUJDpti on , the unperturbed Hamiltonian has 

a simple eigenva lue eI:lbedded in the nOT,-simple trc(Ho) = [0,.:0) 

Recall that behavi our of the reduced propagator Vt : = EuUt~ df u ie 

determin ed by the reduced resolvent R (z,H ) : = 
-1 u g= E (H -z) ~;,- j it is dominated by a n exponentia l term if R (. ,H )u g u u g 

has a second-sheet pole close to the real axis (cf.Ref.2, Sec.} .1 ). 

With this in mind, we can solve the model. We adopt the following 

t. wo assumptions 

(a) ~ depends on liil only, 

( b ) 1;( . )1 2 
ca n be continued analytically acrOBS R+ 

The first on e is the consequence of Gulilean inveriance, the other 

means more ex p licitly that t~ue is an analy tical func t i on whi ch coin­
2

cides wi t h Ive. )1 on ~+ ( f or si mplicity, ~e use the s ame sy mbol 

fo r th e b o th ) . Sin ce the interaction fulfils 

El VEL 0 
U U 	

( 2. 6) 

L
whe re Eu = I - Eu ' the reduced resolvent ca n be obtaine d al g e braical l y; 

it acts as a mult i p lication by 

"" 21 " )-1,2 
ru(z, Hg ) = ( -2; +E + 4;tg2 J p :(~ dp 	 (2.7a) 

o z 2m 

5 



for 	 1m z>O . The analyticell continuati on of ru(.,R ) to the lower g 
complex halfplane, 1m z < 0 , is 

- 1 
00 2 ,. (2 

rIl(z,H) = -Z +E+41rg 2 J P Iv(p~ dp - 8i7r mg 2 Iv(.j2iiiZ )/ 2 J2mZ 
u g ( ~ 	

) 
o 	 z - 2m (2. 7 b) 

The pole condition for (2.7b) is s olved by means of the implicit-func ­

tion theor e m : 

Theorem : In a neiglllJo urhood of g = 0 , there is an analytical func­

tion z such that rIl( ., R ) has a simple pole at z ( g)=.A( g ) ­
II g p P 

- i J'p(g f It holds 

002 ... 2 
E + 8'tg2 J> f p Iv (p~ 1 dp + 0 (g4) 	 (2.8&)~(g) 

o E 	- ~ 

J (g) 8.7r2mi lv(J2mE) (2J2mE' + 0( g4 ) 	 (2.8b)
p 

We 	 remark that the model und er consideration is es s e n tially identical 
~ 1 ~ with the lowe s t sector of the "GaliLee model-/' . Developing it 

further, one should prove the following assertions 

( i ) 	 the leading term in (2.8b) is given by Fermi rule, i.e., the 

de cay width equals r(g) =2d (g) = 21Tg2 d~ (V1f'u 'E~Pc(HO)V¥'u)I"'=E ' p 

(11 ) 	 the scattering amplitude in the system (R,R) ha.!' 
g 


a pole at zp 


(iii ) 	 there is a ( quadratic) s pectral concentration as g~O, 

(iT) 	 finally, one has to jus tify the pole approximation, i.e., to 

estimate the rema i nde r terms similarly as Demut~1 1/ did it for 

the Friedrichs model. 

There 	are varioua straightforward generalizations of the model, e.g., 

- inclusion of spin 

- non-vani s hing f i na l-state interact ion 

- the thr ee-particl e de cay, 

etc., but we are not g oing to discuss them here. It ia more important 

for our present purpose to stress that the n ic e featurea of the model 

stem primarily from the Priedrichs condition (2.6) whi ch makea it al ­

gebraically solUble . 

frobles 3: Pind alternative techniques f or solving the embedded­

eigenvalue problem. 

6 

We remark that two other te chniques are known a t present but neither 

of them i s entirely satisfac tory. The dileltion-analytic method has 

be en highly successful i n solving· probleInG as , e.f,., He - autoi oniza tion, 

but its applicabilit~ i s restri c ted to Schr6dinger operators with 
16well-behaved p ot entials / 12- /. On the other ho nd, there is the facto ­

17rization t echnique whose idea goes ba c k to Kato/ /. It WDS us ed suc­

cessfully by 1!0Yllpnd , Baumgllrtel and others - see Sec.).) of Ref.2 

for refer ences. Its a pplicability is hinder"d, howeve , · , by the felct 

tha t one sho uld chec k ind ep e ndence cn the chose n f ac toriza t ion, and 

this ta s k is usu(>l ly diffi c ult. 

Beside the Galilean-invariant Lee model mentioned ab ove/ 9 ,10,18/ , 

s ome other decay ood els have been worked out. Let us mention two of 

them: a sy s tem coupled to a f e rmion reservoir with persistent vacuum 

( cf .Re f . 19) , and a harmonic oscillator co upled to a massless s ca lar 

field / 2 0/ . J.'here are 8180 v a r i ous model s of quantwr.-mechanical tunne­

ling decay s /2 1- 24 / ; they rely on the perturbation theory of isola ted 

eige nva lues Yihi ch dissolve in the continuous spectr~ once the pertur­

bation is switched on*). 

The cOlIlJllon f ea ture of all the models mentioned above is that they 

are non-relati v istic. Hen c e we hav e 

Problem 4 Con s truct a relativi st ic de cay mo d el. 

Let us stress tha~ we are looking for a dyna mical model. A kinematical 

description of relativi s tic decays c an be obtained on the basis of sym­

metry considerations - c f.Ref.2, Se c.3 .5 8nd also Refs.28,29. 

3. 	 Dissipative quantum mechani c s 

Phenomenological non-selfadjoint Hamiltonians bre widely used in Bome 

branc hes of nucl e ar physics, oolid-stute physics, etc . ; often it is 

the only w~J to reduce reasonably th e complexity of the problem under 

study. A rig orous analysia, however, is usually lacking. 

In this section, we s hal l be concern~d with (con tionuous contrac­
-iHtti ve) 	 s emigroup evolutions V = e . The opera tor H referring tot 

such an e v o lution ia called pseudo- Hamiltonian. Th is noti on was intro­

duced in Ref. 30 and (iiscuss ecl extensi vely in Chap.4 of Ref.2. There 

are two main grou ps of problems here: . 

t ) 	 Such 8 s it ua ti on 1 6 fbmil lBr fr om t h e S tork e ffect . The use of thie 
pertur ba tl v e me t h od is no t, however , r e s t r i cted t o the decay mode le ; 
in the rec ent s e r i es of pa pe rs by Ge sztesy et a l . ( e.g. , Refs.25-27 ) , 
it i ~ employ e d to de r ive the fi rs t-orde r relati v ist ic correc tions to 
Paul i Hamilt on i an. 

7 



(i) development of the non-self!>j: oint 	quantUlll mechanic8, 

(ti) justificat.ion of the PGeudo-J-iamiltonian method. 

Let us start with the first of them. ~ densely de f ined H is dissipa­

tive if 1m (1/',IlY') ~ 0 for all 1f€D ( H) . ~'urthermore, H i s maximal 

di s sipative if it h as no prop e r dissip!>tive extensions it is essen­

tially ma ximal dissipative if H is m.d. In this way, one obtains a 

straightforward generalization of the standard quantum-mechanical 

scheme : 

symmetric operator 	 dissipative operator 

self-adjoint operator 	 maximal dissip~tive 

e.s.a. oper~tor 	 e.m.d. operator 

Stone theorem 	 Phil} ips theoreu/31 / iH 

gpner~tes a continuous contrac­

t~ ve semigroup iff H is m. d. 

the baoic self-Bdjoiil~nes s a dis s ipative H is e.rn.d. 

criterion iff Ran(H-i) = ;Y 

von Neumann extension theory 	 the theo~ of dissipative ex­

tensions 32/ (important diffe­

rence : every dis~ipative ope­

rator has a m.d.extension!) 

Kato-kellich theorem 	 the perturbative theorem by 

Nelson/33/ Gustafson/34/ and 

Chernoff/35;; 

etc. (for more details, see 5ec. 4 . 2 of Ref.2). Many results can be 

also derived for Schrbdinger pseudo-Hamiltonians. By this notion, we 

mean a Schrbdinger oper!>tor H = - ~ /),. ... u on L2( lRd) with a complex 

Borel potentiEol which is e u pposed to be regular wi th possible exception 

of a Lebesgue-zero eet , f u l f i l ling the dissipativity condition 

I. u(x) ~O a .e. i n IRd , and such thst H "is densely defined. As a 

generalization to th~ known self-adjointness criteria for Schrbdinger 

operators, various conditions can be derived und er which such H is 

e.m.d., for example 

• 1 ­
(a) 	 H is J-selfadjoint, i.e. , H =-"2A"'U 

Loo d(b) u E LP ... , where p=2 for d ~ 3 and for d > 3 ,P >"2 

(c) 	 d"' 3N and u is a sum of two-body potentials from L2 ... LtC 

d(d) u € Lioc (lR ) and infel:ls fRe u(x) : 	 x€R
d J>-<>(I 

(f~r more details, see Sec.4.3 of Ref.2). Moreover, H is even maxi­

mal dissipatiTe if (b) or (c) holds. 

8 

Probl em 5: Extend the generalization described above, in particular, 

by adapting other known "self-adjoint" methods. 

The formulation of this problem is, of course, rather vague, and a 

brief c omment is n e ed ed. Th e r e are at lef<st three directions in which 

the dissipative quant um mechanics can be developed : 

(i) cri teria of ma x i ma I diss). pa tivi ty, 

(ii) spectrel proper ties of pseudo-Hamiltonians . The problem is sub­

stantially compl i ca t ed by the possible existence of spectral singula­

rities, and a solid infor~ation is avai18ble in some simple cases only, 

notably for pseudo-Hamiltonians with smooth potentials on a halfline 

(cf. Ref. 36). The operators without the singularities (or spectral/37/ ) 

are ea s i er to describe, but the known sufficient conditions und er 

which a given opera tor is spectral are very restrictive. Various con­

crete suggestions can be formulated; just to give an example, we 

mention the possibility of proving Lidskii theorem (hef .2, Th . 4 .3. 1)) 

for d;> 1 , 

(iii) non-unitary scattering theory/ 17,38-42/ : there are generaliza­

tions to the methods of Cook, Kato-Birman, EDss, etc., but generally 

our knowledge in this field is far from satisfactory. 

The second group of problems is not less important and contains 

a lot of open questions. In f!>ct, the pseudo-Hamiltonian description 

of an open system represents a generalization to the pole approxima­

tion (see Sec.4.1 of Ref.2 for a detailed discussion) ; even this 

approximation is justified satisfactorily in few simple decay models. 

It suggests that the estimation procedures for concrete systems, par­

ticularly those in which the pseudo-Hamiltonian acta on an infinite­

dimensional space, are presumably difficult. As an example, let us 

mention the estimation connected with justification of the op­

tical approximation in neutron scattering on nuclei - cf.Refs.40,43 

and Ref.2, Sec.4.4 . Though we do not try to pick up a ny particular 

problem here, we would like' to stress the demand for sea r ches in thiB 

direction: it is one of those places in phyaics where a relatively 

successful phenomenology lacks a sufficiently rigorous f o o t ing for 

a long time. 

4. Peynman path integrals 

Our next problem could read "construct B theory of Peynman path integ­

ral", but certainly such a formulation is worth of nothing . Hence we 

(} 



try to be more s pecific. First of all, ~e restrict our attention to 

the quantum-mechanical sy s tem~ in a flat confi g uration space and to 

the c onfiguration-space path integra ls, leaving ~ ~ood ma ny interes­

ting problems out 0: the scop e. For a s y stem des c ribed by a Schr~din­

ger (pseudo-)Hamiltonian H= - 1 A +u in L2 (JRd) , the task is to 

prove Feyoman-Cameron-Ito formula 

i- S (y+ x)

(e- iHt¥') (x) f sf. 'V' (J' ( O) +x) Dr 


"0 

(4. I ) 

i / u (r (r)+x) dT1e n O '¥'(f(O)+x)D¢s(t) 
ro 

with the rhs defined in a sui t!l b le wa y. Here s = fi /m , and for conve ­

nience we set fi = I in the following . The symbol rO means a space 

of trajectories ending at x = 0 . It Cb n be cho s en in various ways, 

e.g. , 

nanach space x = Co[J \ lI
d

] \OI i th IIf I : max I f( t') / ' 
~E'Jt 

t )1 / 2 
Hilbert spa c e /1(= ACO[JtjRclJ with ".1' 11 : = ( {lj(T)/2 d7:" • 

or s ome other path s pace, wI-.ere Jt = [O,t] 

We are going to sketch now " few main ways in which the rhs of 

the FCI-formula (4.1) c un be defined. This survey is naturally very 

brief j for 8 more complete discussion, bibliography and notation see 

Chap.5 of Ref.2 . 

(1) Fresnelisn- t ype method/ 44/ : the aleebra 7(.l() of "integrable fun­

ctions" cons i s ts of !J 11 f::I( ... C whi c h are Fouri er images of a com­

plex Borel mea sure '*f on :Jr. For f ~ T(/!() , we set 

f 	 i6 J .2
$r f(f) D¢s (f ) : = { e -2"! dtf(f) 	 (4.2) 

. /45 46/(ii) polygonal-path ~pproxlm8tions ' : for B partition (J 

0=2"0<7"1 < · ··< 7:"n= t J of Jt , we define the expression 
£T j 

in-I 2 _I 
n-l J e 2s jld-o /fj + 1-fj / J j XIs (fjCY) n (2:11 is tf )-d/ 2 

j=O l lind 


(4. 3a) 

f(tU) dio·· .dYn_l 

where ftl" is!J polygonal psth with !Jpices fj=f(T
j

) . Since (4.3a) 

has the natural interpretation as s psth integrsl over all such poly­

gonal paths, one can define 

10 

£'" f (41 ) D¢. (4') : = lim Is ( f; 6") 	 (4. 3b )
o s 0 ref~n1n~ 

partltiO!'lli 
nd

The index ~ specifies the used integral over JR and the limit. 

We use, e.g., 

c as "cylindrical" for Lebesgue integral, 

i for a suitabl e improper integral, 

0 for the oscilla~ory integral, 

r f or the r egu l ar limi t, 'Z"j = j tin t n -+- '" 

u for the uniform limit, .f(e-) ~ 0 , et c . 

(iii) produc t formul a elJ 3 , 47/: for f( 1') = eXP[-i} u<j(r) +x ) d'Z"} o/'<[ (O)+X ) , 

one can use Lie-Trotte r formula or its modifiostPons to d e f i ne the rhe 

of (4. I ), 

(iv) li:oiting F_integral/48 ,49/ : we talct a complex s which approacheB 

the real a ~ is from below, e . g. , 

l uc uc 
f (f ) D¢ (I') : = lim f f( t) D~ -:i.e (d') (4 .4 )

Jr B £-.0+ /If B 

(v) Ito definition (GauBsian regUlarized F_integral/ 50/) 	: we Bet 

g 	 J:...II u2 
2s£ f(f) D¢s(t) : = lim [det(I_~S)]1 /2 j e J' f(l) d/'tS" (f) , (4.5) 

where the limit is token along the directed set of all c orrelation 

operators of the Gaussian meaBures ~'f . This theory is worked out 

up to n ow for d = I only. Also, one would invite to have a more uni­

f orm limit, 

(vi) 	analytical F_integral/33 •4 9 ,51-53/ : the F-integral t F(f) DcI>e(t)
Xis defined as analytical continuation of the function 

1...\I4J(FjJ.) : '" J F(..I.- / 2r) dw(f) ,where w is the Wi e n er measure 

on X, to the ~oint ..\ = -i/s . 

Remark: Possible definitions of the F-integra l are in no case exhau­

sted by the above short list, and new pOBsibiliti e s c ontinue to appear. 

In the recent series of papers, Ichinoae haa shown/ 54 - 56/ tha t the 

well-known no-go theorem of camero~48/ doee not apply to Di ra c op era ­

tors, st least in some cae e s , and he has been able to construct the 

corresponding path measure explicitly. The non-rel at i Vi s t i c limit of 

this theory offers therefore one more possibility to c onstruct thl 

so ught path integral. 

Theor•• : The F-integrale {f(l') DtPlI (1') , B > 0 , for C( = f , u.i , luc, 

g , a coincide on the algebra !l(1f) • 
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The statement concerning Q: = a requires a comment, since this defini­


tion employs a different path space. There is, however, a Banach algeb­


ra of functions F: X ---+ C which is isomorphic to 7(.,,) by F '" f : = 


= F ~:J( - for more detal Is see Ref. 53 . 


Problem 6a: Is there a wider class of functions on which a major 


part of the F-integral definitions coinc i de? 


This is important because the int egr a nds of (4.1) corresponding to 


many phy s ically interesting potent i a l s, such as tha t of harmonic osc il ­


lator, are not contained in :T(1() . 


Problem 6b Construct calculus for the F-integrol. 


This again requ i reE: a comment. 'fhe "Ba t ema n melDu6cri pt" for Feynman 


integrals is very short : we ca n integra te, in most casss formally, 


the functio ns r'~ eq (~ ) , where q i s a qua dratic f orm. In some ca­


ses, we Hre able to perform su bstituti ons, in pa r ticular 


translations l' ~ f+Or: 

regular :1some tri c t ra n s form>Jtions f ~Rf 


"Cameron-I~fHtin" tram:form3tions f ---+ ( I +K)t with K of the trace class 

(cf.Ref.2, Secs.5.2,5 .4). Mor eover, though the dominated- c onvergence 
theorem is not va li d for l"- integr al ( Re f.2, Example 5.2.10), analogous 

assertions have been proven recentl y under somewhat more restrictive 
assumptions/57-5~/ . It i s c lear, however, that much powerful and com­

plete calculus J' ules mu!':t bc e l a borated before Feynman path integr al!': 

could be rega r ded as more than t he present-dey very us e ful but mostly 
heuristic tool. 

5. The 	 "r'ey nmEln pa t hs " 

In the 	 lest se c t i en, .e Tut urn brief l y to the repe b ted measureme n ts 

considered in Se c. 2 . Now, h eowev" r , we replace the fixed pr Ojection 

Eu by 	 a projection-v~ l ued app~ra\uu function E( . ) . Then we define 

-iH5 -iH.f 

U( t, O;E , ,," ) B( t ) e n-1 E (r ,) e n-2E (2"' 2 )' •• 


n- n­

-iHo 
... E ( 'l:,) e °E( O) 

and 

U(t,O;E) s - lim U(t,O;E, ~ ) (5.1 ) 
o(~)~O 

12 

Aharonov and Vordi/60/ suggested such a procedure as realization of 

a single " Feynman puth". This is only par tly true, however, because 

the limit (5 . 1 ) aga in har, no or er a tional meani ng . Nevertheless, it re­

p r es ents an interes t ing mathemati ca l object related to the F-integral. 

Let us ill ustra te it on the following simpl e EXample (see Ref.5, and 

Ref.2, Sec.6.}) 

Theorem: Let , E( t ) be one-dimensi ona l corres ponding to ¥~: 't(x)= 
= '!f ( x - ! ( t » e~x. 7t( t ) with 1EY(lRd) and [. :IT continuously differen­

t ia b l e . Le t H be ma xima l dis s i pati v e, tf-'> Hh continuous, 

D(H) c ..'A1Rd ) , then 
i l 

t 
L(T) d'l:" 

U(t, OjE )Y' = e 0 ( 'fo ' !f)1{t (5.2a) 

d 	 d 
L( t) = 	 Z Qk(t)Pk(t) - [ ( t) -id~ 1:... Qk(t)l-'k(t) (5.2b) 

k= 1 k= 1 

where 	 Qlr( t ) , P ( t ) ,[(t ) are mean values of Qk ' ' H v.' i th respect
k 

Pk 
to Yt ' respective l y. 

In particular, if H=-' 21 11 + u and jk = :l"k ' then we get 

d 	 d 2 d d 
L( t ) = ~ L. P ( t)2 -U(t) lz:. (APk)~ - dt L Qk ( t)Pk(t) , ( ';) .3 )k11:=1 	 2 k= 1 t k= ' 

where U(t) = (~t,U~t) . Since the last term is path-independent and 

the thi r d one is negligible in B quasiclas s ica l si tu>J t i on , we recover 

the Feynman 's weight factor, even f or dissipat i ve sy s tem; wb ich fIlll.y 

ha ve n o cls s s ical counterpart. 
I t ma ke s t herefore sens e to expec t tha t for a s ui table E, t h e 

o pera torB U(t ,OjE ) ca n ( i f they ex ist) repl a c e the non- existent 

Feynman measur e. Th us we come to OUT last 

Problem l b : Find U(t ,Oj E) , if Jr =L2 (lld ) and E(?:) p r o jects on 
d

L2 (14~) 	 , O,?:~ t , where M'l" is Il moving s pace r eg i on In R . 

Referenct's 

Simon bo, Fifteen problema in matheJll&ticel physics, in: npersllecti ­

vee in Wathematice~ (R.Remmert, ed .), Birkhnuser Verlag, Baael 

1985 ; pp.423-454. 
? 	 Exner 1. , Open Quanttlm Syateme and Feynmen Integrals, D.Reidel 


Publ. Co, Dordrecht 196 


13 



5 

10 

15 

20 

25 

30 

35 

3 Friedmann Ch.N., Ann.Phys., 1976, v.98, pp.87-97. 

4 Misra B., Sudarshsn E. C.G. , J.Math . Phys., 1977 , v.18, pp.756-763. 

Exner P., Lett . Math.Phys., 1982 , v. 6, pp.215-220. 
6 Allcock G.R., Ann .Phys ., 1969, v. 53, pp.253-348. 
7 Kraus K., Found.Phys., 1981, v .l1, pp. 547-576. 
8 Bargmann V. , A~~ . of Ma th., 1954 , v. 59, pp.I-46. 
9 Levy-Leblond J.M ., Galilei group and Galilean invari ance, i n: 

"Group Theory and Its Applications" (E. M. Loebl,ed ), vol.II, Aca­
demic Press, New Yor k l Y71 ; pp.221-299. 
Levy-Leblond J. M., Commun .Math.l'hys., 1967, v.4, pp.157- 166. 

11 Demuth M. , Ma th .Noc hr., 1976, v. 7" pp.65-72. 
12 Agtiilar J., Combes J .Jol. , Commun.Math. l'hya., 197 1, v.2 2, pp.269-279. 
I, Simon B., Ann. of Ma th. , 1973, v.97 , pp. 242-272. 
14 Babbit B. , Balslev E. , J.Math .J.nol.Appl., 1976, v. 54, pp .3 16-'49. 

Herbst I. W., Commun Ma t h.Fhya., 1979, v. 64, pp.279-298. 
16 Graffi S., Grecchi V. , CommuD.Ma t h.Phys., 1981, v.79, pp.9 1- 110. 
17 Kato T. , Ma t h.Ann., 1966 , v. 162 , pp .258-279. 
18 Schrader R. , Commun.Ma th . Phys ., 1970, v.I O, pp.155-1 78. 
19 Davies ~ . B., Eckma nn J.-P., Helv.Phys.Acta, 1975, v. 48 , pp.731-742. 

Arai A., J .Ywth .Fhy &, 1981, v.22, pp. 2539-2552. 
21 Howland J .S., Trana .Am.Ma t h.Soc. , 1971, v.162, pp.14 1- 156. 
22 Emch G.G., Sinha K. B., J. Ma th.Phya ., 1979, v. 20, pp.1 336-1340. 
23 Ashbaugh ].;. S., Morre l l E.M., Commun.Math.Phya., 1982, v. 83, 

pp.151-170. 

24 Aahbaugh K.S., Sundberg C., Tran s.Am .Math. Soc ., 1984, v. 28 1, 
pp. 34 7- 360 . 

Ges~ t esy F., Gr oase H., ~'ha l ler B., Phys . Lett.B, 1982, •. 11 6, 
pp. 155-1 57. 

26 Ge8z t eay F., Grosse H., Tha ller B. , Ann. lns t . H. Po incar e , 1984 , 
v.40, pp.159-174. 

27 Geaz t esy F. , Groas e H., Tha l ler B., Adv.hppl. ~ath., 1985, v.6, 
pp . 159-176. 

28 Exner r., Phya . Rev.D, 1983, v. 28 , pp.262 1-2627 . 

29 Dittrich J ., Exner P., PhyB.Rev.D. , 1985, vo1.32, p.1170-1176. 

Blank J., Exner r., liavlil!ek M. , Czech.J. Phy s .B , 1979, v. 29, 
pp. 1325- 134 1 • 

31 Phillips R.S. , Trans .Am.Ma t h.Soc., 1959, v.90, pp. 193-254. 
32 Crandal l ~.G ., ~hi llips R.S., J . Funct.Anal. , 1968, v. 2, pp.14 7-176. 
33 Ne lson E., J.Ma th.Phya., 1964 , v.5, pp.332-343. 
34 Gus tafs on K. , Bul l.Am.Math.Soc., 1966 , v.72, pp .324- 328 . 

Chernoff P.R., Pr oc . Am.Ma th.Soc., 1972, v. 33, pp.72-74. 

}4. 

36 Liance V.X., Non-selfadjoint aecond- order differential operator 
on the s emi uxis , appendix to Naimark M.A., Linear DiffeTcntial 
Operators, 2nd edition, Nauka, Moscow 1969 (in Russian ) . 

' 7 Dunford N. , Schwa rtz J.T., Linear Operators , III.Spec tTul Opera­
tors, Int crsc ience Publ., New York 191 1. 

38 Golds t ein Ch., Ar ch.Rat.Mech.Anal., 1970, v.37, pp.2 6e - ? 
1971 , v.42 , pp.,RO-402. 

39 Ma rtin r h. , N. Cira .B, 1975, v.30, pp.217-238. 
40 Davies E.B. , Ann.Inst.H.¥oincare A, 1978, v.39, pp . 395-41 
41 Simon B. , !)ub~ 14a th.J., 1:179, V.46, pp.1I9-168. 

42 Davies E.B., Commun.Math.Phys., 1980, v.71, pp.2~9-~09. 

43 Exner P., m ehla 1., J.Matb.Phys" 1983, v.24, pp.154 2- 1547. 
44 Albeverio S.I. , H~egh-Krohn R.J., Mathemati ca l Theory of Fey nman 

Path Integrals, Lecture Notes in Physics, v ol.523, Springer Ver­
lag , Berlin 1976. 

45 Truman A., J .Ma th.Phys., 1976, v.17, pp,1852-1862,. 

46 Exner P., KOlerov G.I., Int.J.Theor.Phys ., 1982, v.21, pp .397-417. 
47 Faria W.G., J.Funct.Anal., 1967, v.l, pp.9 )-1 07. 
48 Cameron h.H., J.llath. ' and Phya., 1960, v.39, pp.126-1 40 . 

49 Johnson G.W., Skoug D.L., J.Funct.Anal., 1973, v. 12, pp.129-152. 
50 Ito K., Generalized uniform complex m~asures witb thei r applicati­

on to the Feynman integral, in "Proc . Fifth Berkeley Symp. on 
Math. Statistic~ and Probability", vol.2/ 1, Univ.of Cu l lfornia 
Press 1967 ; pp.I45-161. 

51 Cameron R.H., J d'Anal.Math., 1962-63, v.l0, pp .287-3 6 1. 

52 Cameron It.H., Storvick D.A., J.Math.Me ch., 1968 , v.1 8, pp . 517-552. 
53 Johnson G.W., J.Msth .Phya ., 1982, v. 23, pp.2090-2096. 
54 Ichinose T., Proc.Japan Acad., 1982, v.58, pp.290-293 . 
55 Ichinose T., Duke Math.J., 1984 , v.51, pp.I-36. 

56 Icbinose T., Tamura H., J.llath.PhYII., 1984, v.25, pp. 1810-1 8 19. 
57 Tr UJllan A., J.l4ath.Phys., 1978, v.19, pp.1742-1750 ; 1979 , v.20, 

pp.1832-1833. 

58 Johnson G. W. " J.Math.Phys., 1984, v. 25, pp. 1323-1J26. 
59 Lapidus I4. L., Int.Eq.Oper.Th., 1985, v.8 , pp. 36-62. 

60 Aha r onov Y., Vardi M., PhY B. Rev .D , 1980 , v.21, pp.23,S- ? 34 0. 

It.oGJ.vol.l by Publ1Dh.1ng D.p~tmont 

on 30ptomLor 20 , 1985. 

u 



SUBJECT CATEGORIES 
OF THE JINR PUBLICATIONS 

Index Subjeet 

1. High energy experiMental physics 
2. High energy theoretical physics 
3. low energy experimental physics 
4. low energy theoretical physics 
5. Mathematics 
6. Nuclear spectroscopy and radio~hemistry 
7. Heavy ion physics 
8. Cryogenics 
9 •. Acce 1 era tors 

10. Automatization of data processing 
11. Computing mathematics and technique 
12. Chemistry 
13. Experimental techniques and methods 
14. Solid state physics . liquids 
15. Experimental physics of nuclear reactions 

at low energies 
16. Health physics. Shieldings 
17. Theory of condenced matter 
18. Applied researches 
19 . Biophysics 

lit 

3KCHep IJ . EZ-85- 683 
0TK pb!Tbie KBaHTOBbie CHCTeMbl H HHTerpaJibl <!>eiiHMaHa: 
HeCKOJlbKO npo6JieM 

flpep;JIOJKeHO HeCKOJlbKO OTKpb!TblX n po6Jie~1 113 06JiaCTH MaTeMa­
TH'le CKOH cPH311KH . 0HH OTHOCHTCH K OTKpb!TbiM KBaHTOBbiM CHCTeMaM 
H QJeHHMaH OBCKHM KOHTHHyaJibHbiM HHTer paJiaM; HeKOTOpbie H3 HHX 
npeHMy~eCTBeHHO TeXHHqeCKHe, B TO BpeMH KaK p;pyrHe HMeWT 
BaJKHOe QJH3HqecKoe 3HaqeHHe . 

Pa6oTa BbiTIOJIHeHa B Jla6opaTopHH TeopeTHqecKoli cPH3HKH 0115II1. 

Coo6~~teHHe 015'bep;HHeHHOI'O HHCTHTyTa I!,D;epHbiX HCcnep;o oaHHJ:i . Jlyi5Ha 19 85 

Exner P. EZ-85-683 
Open Quantum Systems and Feynman Integrals: 
Some Problems 

A few open prob l ems o f mathematical physics are pre ­
sented . They conce rn open quantum systems and Feynman ~ath 
integrals; some o f them are techni cal, while others are o f 
conceptual impor tance. 

The invest igation has been perf ormed at the La boratory 
of Theoretical Physics, JINR. 
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