

объвдиненный институт ядерНых исследований дубна

E2-85-597

V. V. Nesterenko

ON TIIE DERIVATION OF TIIE FORMULA FOR TIIE IIAMILTONIAN FUNCTIONAL.

INTEGRAL
IN THEORIES WITII TILE FIRST-
AND SECOND-CLASS CONSTRAINTS

Bubmitted to "TMq"

1. Introduction

The Faddeev well-known paper ${ }^{1 / /}$ laid the foundation of the quantization of the theories with the singular Lagrangians by the functional integration in the phase space. The important application of this approach is the construction of quantum theory of the gauge fields $/ 2,3 /$ and gravitation $/ 4 /$.

In paper ${ }^{/ 1 /}$ the most interesting from the application point of view first-class constraints $/ 5 /$ were considered. For simplicity the gauge conditions were supposed to be in involution between themselves. In addition it was assumed that the conatraints and the gauge conditions do not contain the time explicitly. However, there are field models with the second-class constraints, for example, the massive Yang-Mills field. And for the Lagrangians homogeneous of the firsti-degree in the velocities the gauge conditions must be explicitly time-dependent/6,7/.

In paper $/ 8 /$ at the same assumptions as in $/ 1 /$ the second-class constraints were included into consideration. In paper $/ 7 /$ the Faddeev proof of the formula for the Hamiltonian functional integral was extended to the gauge conditions explicitly time-dependent. In /9/ an attempt which is not completely consistent, to our opinion, was made to consider the gauge conditions explicitly time dependent and noninvolutary between themselves aimultaneously.

The basic peculiarity of the theories with degenerate Lagrangians is the following. The physical dynamice develops not in the whole phase space Γ, but only on its submanifold Γ^{*} defined by the constraints and the gauge corditions. The physical submanifold Γ^{*} of the symplectic manifold and the canonical coordinates can be introduced on it. The same statement is right also for $\bar{\Gamma}=\Gamma \ \Gamma^{*}$, i.e., for the difference of Γ and Γ^{*}. In the case of the firgt-clase conetraints and gauge conditions involutory between themselves, the corresponding canonical coordinates can be specified immediately $/ 1,7 /$. But if there are second-class constraints or the gauge condi-
tions are noninvolutory hetween themselves then the consideration of the paper ${ }^{/ 1 /}$ is not applicable here. In this case one has to use the mathematical theorem (raf. /10/ theorem VII.24) about the canonical form of equations which specify the submanifolds. The Poisson brackets of the left-hand sides of these equations equal one or zero ${ }^{1)}$.

Then one has to prove that the dynamics on the physical submanifold Γ^{*} of the phase space is the Hamiltonian dynamics, i.e., the equations of motion on Γ^{*} are the Hamiltonian equations and the corresponding Hamiltonian must be determined. In papera devoted to the quantization of the systems with the singular Lagrangians via the path integration in the phase space, these facts do not proved but implicitly are supposed beforehand $/ 1,2 /$. And one usually assumes that the effective Hamiltonian generating the dynamice on Γ^{*} is the contraction of the canonical Hamiltonian H on Γ^{*}. The example of the degenerate Lagrangians homogeneous in the velocities shows that in the general case this is not so. The canonical Hamiltonian in such theories equals zero identically.

In the present paper we propose a simple and consistent derivation of the formula for the Hamiltonian functional integral for the theories with the constraints of the most general kind: they may be the firgt- and second-class constraints and they can contain time explicitly. The gauge conditions can be noninvolutory between themselves and cen be explicitly time-dependent as well. In contrast with other papers much attention will be paid to proving the Hamiltonian form of the theory on the physical submanifold of the phase space. It will be shown that Δ^{-1}, where \triangle is the Faddeev-Popov determinant, is just the volume element of the submanifold $\bar{\Gamma}$ expressed in terms of the noncanonical coordinates defined by constrainta and gauge conditions. This simplifies the interpretation of the final formula for the path integral. As far as we know, this property of Δ was not noted in the previous papers devoted to this problem. The final formula for the path integral in the phase apace does not depend on the choice of the gauge conditions. Usually, this property of the Familtonian path integral is demonstrated by infinitesimal changes of the gauge conditions $/ 1,8 /$. Here, this statement will be proved by transition to an absolutely new set of gauge equations.

The material is arranged as follows. In the second section the constraint equations in theories with degenerate Lagrangians are analysed. The third sectinn is devoted to the derivation of the equations of motion in the phase space. In the fourth section the

1) In papar $1 / 11 /$ this theorem has been proved anew without eferences paper
path integral representation for the matrix element of the evolution operator is constructed. In the appendix the derivation of the formula for the volume element of the symplectic manifold in terme of the arbitrary noncanonical coordinates is given.

2. Different forms of constraints

Let us consider the system with a finite number n of degrees of freedom described by a singular Lagrangian $L(q, \dot{q}, t)$

$$
\begin{equation*}
\operatorname{vank}\left\|\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right\|<n, \quad 1 \leqslant i, j \leqslant n \tag{2.1}
\end{equation*}
$$

Here q and q are the generalized coordinates and velocities $q=$ $=\left(q_{1}, \ldots, q_{n}\right), \dot{q}=\left(\dot{q}_{1}, \ldots, \dot{q}_{n}\right), \dot{q}=d q / d t$. For the generality we assume the explicit time dependence in L, therefore the constrainte explicitly time-dependent will be taken into consideration.

We suppose that the complete set of the functionally independent constraints in the theory under consideration is known, i.e. all the primary and secondary constraints are known

$$
\begin{gather*}
\omega_{s}(q, \rho, t)=0, \quad s=1, \ldots, m<n, \tag{2.2}\\
\operatorname{rank}\left|\frac{\partial\left(\omega_{s}\right)}{\partial(q, \rho)}\right| \begin{array}{c}
=m, \\
\omega_{s}=0
\end{array}=m, \tag{2.3}\\
\rho_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, \quad \imath=1, \ldots, n . \tag{2.4}
\end{gather*}
$$

According to (2.3) the equations of constainta (2.2) determine in the $2 n$-dimensional phase space Γ with the coordinates q, p the $2 n-m$-dimensional submentfold M.

The complete set of constraints can be obtained by the known iterative procedure proposed by Dirac. It is based on the requirement of fulfilling all the constraint equations during the evolution. The primary constrainta which are the consequences of the condition (2.1) are given by the specific form of the degenerate Lagranglan.

The corplete set of constraints in the phase space can be obtained in the framework of the Lagrangian formaliam as well $/ 12 /$. Prom the view point of this formalism the secondary constraints are the Lagrangian constraints in the theory (i.e. the Euler equations that do not contain the secondary derivatives with respect to time)
and all the derivatives of the Lagrangian constraints with respect to time up to some fixed degree. In order to pick out the firstclass and second-class constraints in the complete set (2.2), one must make some assumptions on the properties of the skew-symmetric matrix $\left\|\left(\omega_{s}, \omega_{s^{\prime}}\right)\right\|, \quad s, s^{\prime}=1, \ldots, m$, the elements of which are the Poinagon bracketa of the constraints $\omega_{S}(q, p, t), s=1, \ldots, m$

$$
\begin{equation*}
\left(\omega_{s}, \omega_{s^{\prime}}\right)=\sum_{i=1}^{n}\left(\frac{\partial \omega_{s}}{\partial q_{i}} \cdot \frac{\partial \omega_{s}}{\partial \rho_{i}}-\frac{\partial \omega_{s}}{\partial p_{i}} \cdot \frac{\partial \omega_{s}}{\partial q_{i}}\right) \tag{2.5}
\end{equation*}
$$

Iet on the submanifold M we have

$$
\begin{align*}
& \quad \operatorname{ank}\left\|\left(\omega_{s}, \omega_{s^{\prime}}\right)\right\|_{M}=2 m_{2}<m, \tag{2.6}\\
& s, s^{\prime}=1, \ldots, m .
\end{align*}
$$

This means that the matrix $\left\|\left(\omega_{s}, \omega_{s},\right)\right\|$ has on M exactly $m_{1}=m-2 m_{2}$ Inearly independent eigenvectors with zero eigenvalues ${ }^{2)^{2}}$

$$
\begin{equation*}
\xi_{s}^{a}(q, p, t)\left(\omega_{s}, \omega_{s^{\prime}}\right)=0 \tag{2.7}
\end{equation*}
$$

$$
s, s^{\prime}=1, \ldots, m, \quad a=1, \ldots, m_{1} .
$$

We suppose as usual the summation with respect to the repeated endices in the corresponding limits. The requirement of the completeness of the set of constraints (2.2) is written in the following form:/12/

$$
\begin{equation*}
\xi_{s}^{a}\left[\frac{\partial \omega_{s}}{\partial t}+\left(\omega_{s}, H\right)\right]_{M}=0 \tag{2.8}
\end{equation*}
$$

The constraints (2.2) can be numbered in such a way that the matrix $\left\|\left(\omega_{5}, \omega_{S^{\prime}}\right)\right\|$ will have $2 \mathrm{~m}_{2}$ linearly independent last rome and accordingly 2 m linearly independent last columns. Now we go from the initialconstraints set (2.2) to the equivalent set of the conatraints according to the formulas

$$
\left.\rho_{a}(q, p, t)=\xi_{s}^{a}(q, p, t) \omega_{s}(q, p, t), a=1, \ldots, m, 1.9\right)
$$

[^0]\[

$$
\begin{equation*}
\theta_{\alpha}(q, p, t)=\omega_{m_{1}+\alpha}(q, p, t), \quad d=1, \ldots, 2 m_{2} \tag{2.10}
\end{equation*}
$$

\]

As the vectors $\xi_{s}(q, p, t)$ are linearly independent then the equations of the new constraints

$$
\begin{align*}
& \rho_{a}(q, p, t)=0, \quad a=1, \ldots, m_{1} \tag{2.11}\\
& \theta_{\alpha}(q, p, t)=0, \quad \alpha=1, \ldots, 2 m_{2} \tag{2.12}
\end{align*}
$$

determine the same submanifold M as the equations of the initial constraints (2.2).

Taking into account (2.7) and (2.8), one verifies easily the following equalities on the submanifold M :

$$
\begin{aligned}
& \left(\varphi_{a}, \varphi_{B}\right)^{\varphi, \theta} \approx \theta, \quad \frac{\partial \varphi_{a}}{\partial t}+(\varphi, H)^{\varphi} \approx \theta^{\varphi} 0, \quad\left(\varphi_{a}, \theta_{\alpha}\right)^{\varphi, \theta} \approx 0, \text { (2.13) } \\
& \operatorname{rank}\left\|\left(\theta_{\alpha}, \theta_{\beta}\right)\right\| \stackrel{\varphi, \theta}{\approx} 2 m_{2} . \\
& \alpha, b=1, \ldots, m_{1}, \quad \alpha, \beta=1, \ldots, 2 m_{2} . \\
& \text { The sign } \stackrel{\varphi}{\approx} \text { means the weak equality } / 5 / \text {, 1.e. at the outset one has }
\end{aligned}
$$ t.o evaluate the Poisson brackets or to make the differentiation in the left-hand side from this sign and then to put $\varphi=0, \theta=0$. Thus, regrouping of the constraints (2.9) and (2.10) chooses the first-class (2.11) and second-clasa (2.12) constraints which obey on M the conditions $(2.13),(2.14)$.

As is well-known, the firgt-class constraints result in the functional freedom in the equations of motion in the phase-space Γ. In order to remove this freedom one has to impose on the canonical variables q, gauge conditions $/ 1 /$ in addition to the conatraints (2.11) and (2.12)

$$
\begin{equation*}
\gamma_{a}(q, p, t)=0, \quad a=1, \ldots, m_{1} \tag{2.15}
\end{equation*}
$$

These conditions must have the following property:

$$
\begin{equation*}
\operatorname{det}\left\|\left(\chi_{a}, \rho_{f}\right)\right\|_{\substack{\varphi=0, \theta=0 \\ x=0}} \tag{2.16}
\end{equation*}
$$

The gauge conditions (2.15) cut out from M the physical submanifold $l^{7 *}$ of the phase space. The dimension of Γ^{*} is $2\left(n-m_{1}-m_{2}\right)$.

In contrast with papers $1,2,8$ we shall not demand the involution of the gauge conditions (2.15) between themselves. As we consider the most general case of the constrainta (2.2) with the explicit time-dependence, the gauge conditions (2.15) have to be time-dependent too. Moreover, if the canonical Hamiltonian H is identically equal to zero (in this case the Iagrangian $L(q, \dot{q}, t$) is the homogeneous function of the first-degree in the velocities \dot{q}), then, the gauge conditions (2.15) must be explicitly time-dependent $/ 6,7 /$ beyond the dependence of the properties of the first-class constraints (2.11).

In order to explore the equations of motion on the physical submanifold Γ^{*}, it is convenient to replace the set of the constraints (2.11), (2.12) and the gauge conditions (2.15) by the equivalent set of $2\left(m_{1}+m_{2}\right)$ equations in the canonical form. It is achieved by the special canonical transformation to the new canonical variables Q, P

$$
\begin{gather*}
Q_{i}=Q_{i}(q, p, t), \quad P_{i}=P_{i}(q, p, t) \tag{2.17}\\
\left(Q_{i}, Q_{j}\right)=\left(P_{i}, P_{j}\right)=\left(Q_{i}, P_{j}\right)-\delta_{i j}=0 \tag{2.18}
\end{gather*}
$$

in terms of which the physical submanifold $/^{7^{*}}$ is defined by the equations

$$
\begin{align*}
& Q_{i+\infty}(q, p, t)=0, \quad p_{i+\infty}(q, p, t)=0 \tag{2.19}\\
& i=n-m_{1}-m_{2}, \quad x=1, \ldots, m_{1}+m_{2}
\end{align*}
$$

The canonical variables on Γ^{*} are $Q_{6}, P_{6}, 1 \leqslant 6 \leqslant n-m-m_{2}$. We shall not prove here this statement; it can be found in the book $/ 10 /$ theorem VII.24. The specific form of the functions $Q_{i}\left(q_{2}, p, t\right)$, $P_{i}(q, p, t), i=1, \ldots, n$ will not be used. We note only that they are explicitly time-dependent as the constraints (2.11), (2.12) and the gauge conditions (2.15) contain time explicitly.

For the abbreviation we shall mark sometimes the set of constrainte in the canonical form (2.19) by one letter

$$
\begin{array}{r}
Q_{A}(q, p, t)=0, \quad A=1, \ldots, 2\left(m_{1}+m_{2}\right), \\
S_{\mathscr{R}}(q, p, t)=Q_{i+x}(q, p, t), \quad Q_{i} \quad(q, p, t)=P \quad m_{1} \quad\left(q, m_{2}+\mathscr{P}, ~(20),\right. \\
\tau=n-\left(m+m_{2}\right),
\end{array}
$$

The matrix constructed by the Poisson brackets of the constraints $\Omega(q, p, t)$ between themselves is equal to the unit symplectic matrix of the dimension $2\left(m_{1}+m_{2}\right) \times 2\left(m_{1}+m_{2}\right)$

$$
\left.\left\|\left(\Omega_{A}, \Omega_{B}\right)\right\|=\left\|\begin{array}{cc}
0 & I_{m_{1}+m_{2}} \|_{-m_{1}+m_{2}} \\
0
\end{array}\right\|=\right]_{2\left(m+m_{2}\right)}
$$

Here $I_{m_{1}+m_{2}}$ is the unit $\left(m_{1}+m_{2}\right) \times\left(m_{1}+m_{2}\right)$ matrix.

3. Equations of motion in the phase space

We derfive now the equation of motion in the phase space taking into account all the constraints and the gauge conditions written in the canonical form (2.19). The canonical Hamiltonian

$$
\begin{equation*}
H=p_{i} \dot{q}_{2}-L(q, \dot{q}, t) \tag{3.1}
\end{equation*}
$$

does not depend on the velocities q in the case of the degenerate Lagrangians as well. Indeed, differentiating (3.1) and using (2.4) we get

$$
\begin{align*}
& d H(q, \dot{q}, p, t)=d p_{i} \dot{q}_{i}+p_{i} d \dot{q}_{i}- \\
& -\frac{\partial L}{\partial q_{i}} d q_{i}-\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial L}{\partial t} d t= \tag{3.2}\\
& =d p_{i} \dot{q}_{i}-\frac{\partial L}{\partial q_{i}} d q_{i}-\frac{\partial L}{\partial t} d t
\end{align*}
$$

Thus, d / f does not contain the differentials of the velocities $d \dot{q}_{i}$. Therefore,

$$
\begin{equation*}
H=H(q, p, t) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
d H=\frac{\partial H}{\partial q_{i}} d q_{i}+\frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial t} d t \tag{3.4}
\end{equation*}
$$

Let us take into account eqs. (3.2) and (3.4) in the Euler equations

$$
\begin{equation*}
\frac{d \rho_{i}}{d t}=\frac{\partial L}{\partial q_{i}}, \quad i=1, \ldots, n \tag{3.5}
\end{equation*}
$$

This gives the following equality:

$$
\left.\left(\frac{\partial H}{\partial q_{i}}+\dot{p}_{i}\right) d q_{i}+\left(\frac{\partial H}{\partial p_{i}}-\dot{q}_{i}\right) d p_{i}+\left(\frac{\partial H}{\partial t}+\frac{\partial L}{\partial t}\right) d t=0.3 .6\right)
$$

Besides the differentiation of the constraints (2.20) results in the equations

$$
\begin{gather*}
\frac{\partial Q_{A}}{\partial q_{i}} d q_{i}+\frac{\partial Q_{A}}{\partial p_{i}} d p_{i}+\frac{\partial Q_{A}}{\partial t} d t=0 \tag{3.7}\\
A=1, \ldots, 2\left(m_{1}+m_{2}\right)
\end{gather*}
$$

The condition (2.21) enables one to use the Lagrange method of indefinite multipliers. Finally, the dymamics in the phase space ${ }^{3}$) is

$$
\begin{gather*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}+\lambda_{A}(t) \frac{\partial S_{A}}{\partial \rho_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}-\lambda_{A}(t) \frac{\partial \Omega_{A}}{\partial q_{i}}, \\
i=1, \ldots, m_{i} \\
\sum_{A}\left(q, p_{2} t\right)=0, \quad A=1, \ldots, 2\left(m_{1}+m_{2}\right) . \tag{3.9}
\end{gather*}
$$

The Lagrange multipliers $\lambda_{A}(t)$ in the equationa of motion (3.8) are determined by the following conditions:

$$
\begin{gather*}
\frac{d \Omega_{A}}{d t}=\frac{\partial S_{A}}{\partial t}+\left(\Omega_{A}, H\right)+\lambda_{B}(t)\left(\Omega_{A}, \Omega_{B}\right)=O_{B} \tag{3.10}\\
A, B=1, \ldots, 2\left(m_{1}+m_{2}\right)
\end{gather*}
$$

3) In addition to (3.8) equations (3.6) and (3.7) lead to the
relation $\frac{\partial H}{\partial L}+\frac{\partial L}{\partial t}+\lambda(t) \frac{\Omega_{A}}{\partial t}$ relation $\frac{\partial H}{\partial t}+\frac{\partial L}{\partial t}+\lambda_{A}(t) \frac{\partial \Omega_{A}}{\partial t}=0$

As the constraints $Q_{A}(q, p, t)$ have the canonical form (2.20), (2.21)
we obtain

$$
\begin{align*}
& \left.\lambda_{A}(t)=-\right]_{A B} \cdot\left[\frac{\partial Q_{B}}{\partial t}+\left(Q_{B}, H\right)\right]_{2\left(m_{t}+m_{2}\right)}, \quad A, B=1, \ldots, 2\left(m_{1}+m_{2}\right) \tag{3.11}\\
& \bar{J}=]_{1}^{-1}
\end{align*}
$$

After substitution of (3.11) into (3.8) the equations of motion

$$
\begin{align*}
& \left.\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}-\frac{\partial Q_{A}}{\partial \rho_{i}}\right]_{A B}\left[\frac{\partial Q_{B}}{\partial t}+\left(\Omega_{B}, H\right)\right] \\
& \left.\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}+\frac{\partial \Omega_{A}}{\partial Q_{i}}\right]_{A B}\left[\frac{\partial \Omega_{B}}{\partial t}+\left(\Omega_{B}, H\right)\right] \tag{3.12}
\end{align*}
$$

It is obvious that these equations are not the Hamiltonian ones. However, we are interested in the dynamica not in the whole phase apace $\Gamma^{\text {b }}$ but on its physical aubmanifold Γ^{*} defined by the constraint equations (3.9). On $/^{*}$ eqs. (3.12) can be written in the explicitly Hamiltonian form

$$
\begin{array}{lc}
\dot{q}_{i}=\frac{\partial H_{T}}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H_{T}}{\partial q_{i}}, \quad i=1, \ldots, n, \\
& S_{i}\left(q_{i}, p, t\right)=0, A=1, \ldots, 2(m,+m, \tag{3.14}
\end{array}
$$

where

$$
\begin{equation*}
H_{T}(q, p, t)=H-S_{A} \bar{J}_{A B}\left[\frac{\partial \Omega_{B}}{\partial t}+\left(\Omega_{B}, H\right)\right] \tag{3.15}
\end{equation*}
$$

The constraint equations (3.14) are noninvolutory invariant relations $/ 13$ for the Hamiltonian equations of motion (3.13)

$$
\begin{gather*}
\frac{d Q_{A}}{d t}=\frac{\partial \Omega_{A}}{\partial t}+\left(\Omega_{A}, H_{T}\right)=0, \quad q, p \in \Gamma^{*} \tag{3.16}\\
A=1, \ldots, 2\left(m_{1}+m_{2}\right)
\end{gather*}
$$

Using them, one can reduce the number of the equations in the Hamiltonian system (3.13) by $2\left(m_{1}+m_{2}\right)$. For this purpose, the canonical transformation (2.17) should be used. In terms of the new variables Q_{1}, P_{i} the equations (3.13), (3.14) are written in the following form: ${ }^{\text {i }}$

$$
\begin{equation*}
\dot{Q}_{i}=\frac{\partial \mathscr{H}}{\partial P_{i}}, \quad \dot{P}_{i}=-\frac{\partial \mathscr{H}}{\partial Q_{i}}, \quad i=1, \ldots, n \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
Q_{z+x}=0, \quad P_{r+x}=0, \quad r=n-\left(m_{r}+m_{2}\right), \tag{3.18}
\end{equation*}
$$

The new Hamiltonian $\mathscr{H}(G), P, A \leqslant M$

$$
\begin{aligned}
\mathscr{H}(Q, P, t) & =H(Q(Q, p, t), p(Q, p, t), t)+(3.19) \\
& +R(Q, P, t)
\end{aligned}
$$

Here the functions

$$
\begin{gathered}
q_{i}=q_{i}(Q, p, t), \quad p_{i}=p_{i}(Q, p, t), \\
i=1, \ldots, n
\end{gathered}
$$

determine the canonical transformation inverse to (2.17). The addition term $R(Q, P, t)$ in the Hamiltonion is due to the explicit time-dependence of the canonical transformation (2.17). This term is defined by the equations

$$
\frac{\partial R\left(Q, P_{,} t\right)}{\partial P_{i}}=\frac{\partial Q_{i}(q, p, t)}{\partial t}, \frac{\partial R\left(Q, P_{2} t\right)}{\partial Q_{i}}=-\frac{\partial P_{i}(q, p, t)}{\partial t}(3.21)
$$

After differentiation with respect to t the right-hand aldea of (3.21) have to be expressed by (3.20) as the functions of Q, P, t.

The equations of motion (3.17), (3.18) are in fact the Hamiltonian eystem with $2 r=2\left(n-m_{1}-m_{2}\right)$ equations only

$$
\begin{equation*}
\dot{Q}_{\alpha}=\frac{\partial K}{\partial P_{\alpha}}, \quad \dot{D_{\alpha}}=-\frac{\partial K}{\partial=1, \ldots, r}, \tag{3.22}
\end{equation*}
$$

Here

$$
\begin{align*}
& K\left(Q_{\alpha}, P_{\alpha}, t\right)=\left.H(Q, P, t)\right|_{Q_{r+x}}=P_{r+x}=0^{\prime} \tag{3.23}\\
& \alpha=1, \ldots, r, \quad x=1, \ldots, m_{1}+m_{2}
\end{align*}
$$

is the corresponding Hamiltonian. On Γ^{*} the contribution to $K\left(Q_{\alpha}, P_{\alpha}, t\right)$ is given only by the canonical Hamiltonian and $R(Q, P, t)$

$$
\begin{equation*}
K\left(Q_{\alpha}, p_{\alpha}, t\right)=[H(q(Q, P, t), p(Q, P, t), t)+ \tag{3.24}
\end{equation*}
$$

$$
+R(U, P, t)] \mid Q_{r+x}=P_{r+x}=0
$$

According to (3.16) the rest equations in the syetem (3.17) on Γ^{*} give

$$
\begin{align*}
& \dot{Q}_{\tau+x}=0_{2} \quad \dot{D}=0 \tag{3.25}\\
& i=n+x \\
& i=m, m_{2}, \quad x=1, \cdots, m_{1}+m_{2} .
\end{align*}
$$

Thus, (3.18) are the invariant relations for (3.17).
In paper $/ 9 /$ the wrong conclusion was made that $R_{\text {F }}$ vanishes on the submanifold M and consequently equals zero on Γ^{+*} as well. The clear example showing that it is not so is the case of degenerate Lagrangians homogeneous of the first-degree in the velocities $/ 7 /$. Here the canonical Hamiltonian is identically zero and the dynamica on the physical submanifold $/^{*}$ is generated by R only.

4. The construction of the path integral

At the outset we represent in a usual manner ${ }^{14 /}$ the matrix element of the evolution operator for the Hamiltonian syatem (3.22)

$$
\begin{gathered}
\tilde{U}\left(t^{\prime \prime}, t^{\prime}\right)=T \exp \left[-i \int_{t^{\prime}}^{\prime \prime} K\left(Q_{\alpha}, P_{\alpha}, t\right) d t\right], \\
\alpha=1, \ldots, z
\end{gathered}
$$

as the path integral on the physical submanifold Γ^{*} of the phase apace

$$
\begin{aligned}
& I=\left\langle Q_{1}^{\prime \prime}, \ldots, Q_{r}^{\prime \prime}\right| U\left(t^{\prime \prime}, t^{\prime}\right)\left|Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}\right\rangle=\frac{t^{\prime \prime}}{(4.2)}, \\
& =\int \exp \left\{i \int_{t^{\prime}}\left[P_{\alpha} Q_{\alpha}-K\left(Q_{\beta}, P_{\beta}, t\right)\right] d t \prod_{t_{\gamma}} \frac{d Q_{\gamma}(t) d P_{\gamma}(t)}{(2 \pi)^{2}},\right. \\
& \alpha, \beta, \gamma=1, \ldots, r=n-m_{1}-m_{2} .
\end{aligned}
$$

Now, with the aid of the $\widetilde{\delta}-f$ unctions, we extend the functional integration to the whole phase space Γ with the canonical coordinates $Q_{i}, P_{i}, i=1, \ldots, n$

$$
\begin{align*}
& I=\int \operatorname{Px} P\left\{i \int_{t^{\prime}}^{\dot{t}^{\prime \prime}}[\underset{i}{P} \underset{i}{ }-H(Q, \rho, t)-R(Q, P t)] d t\right\} \tag{4=3}\\
& =17 \delta\left(Q_{i+x}^{n-2}\right) \delta(\rho) \prod_{i+x_{i=1}^{n}}^{n} \frac{d(i)_{i}(t) d P(t)}{(2 \sqrt{i})^{2}} .
\end{align*}
$$

Taking into account the δ-functions in (4.3), we have spread the sum $\sum_{i}^{2} P_{\alpha} \quad$ in the exponent in (4.3) to all the variables ${\underset{r}{2}}^{P} \dot{Q}_{i}^{x} x_{i=1}, \alpha, \alpha, N$ and the effective Hamiltonian K has been replaced according to (3.24) by the sum $H+R$.

Now we make the change of the functional integration variables with the aid of the canonical transformation (3.20) which is inverse to (2.17). We shall not discuss here the possibility of this procedure and refer only to the vast literature about this problem /15-17/. After this change, the additional tern R in the canoncal Hamiltonian (4.3) vanishes

$$
\begin{align*}
& I=\int e x p\left\{i \int_{t^{\prime}}^{t}\left[p_{i} \dot{q}_{i}-H(q, p, t)\right] d t\right\} \\
& \left.\left.\prod_{\dot{x}=1}^{n-i} \underset{i+\chi^{2}}{(q}(q, p, t)\right) \tilde{\partial}_{i, p}^{p}(q, p, t)\right) \prod_{i+x}^{n} \frac{d q_{i}(t) d p_{i}(t)}{(2 \vec{v})^{2}} \text {. } \tag{4.4}
\end{align*}
$$

In order to use this formula we have to know the explicit form of the constraints and gauge conditions in the canonical form. Transflion from the initial set of constraints (2.2) and gauge conditions (2.15) to the set of the constraints and the gauge conditions in the canonical form (2.18) is a rather difficult mathematical problem /10/. One must solve the partial differential equations. Therefore, it is very desirable to obtain a formula for the path integral in the phase space in terms of the initial set of constraints (2.2) and gauge conditions (2.19).

Let the initial set of constraints (2.2) and gauge conditions (2.19) can be written after the change q and p by (3.20) in the form

$$
\begin{equation*}
\eta_{A}\left(Q_{i+x}, \stackrel{p}{i+x}, t\right)=0 \tag{4.5}
\end{equation*}
$$

$$
A=1, \ldots, 2 m_{1}+2 m_{2}, \quad \mathscr{}=1, \ldots, n-r,
$$

$$
\eta=n-m_{1}-m_{2}
$$

Canonical variables Q_{α} and $P_{\alpha}, \alpha=1, \ldots, \tau \quad$ on Γ^{*} do not enter obviously in the constraint equations (4.5). As the constraint equations (2.19) and (4.5) determine in the phase space the same submanifold Γ^{*}, then from (2.19) it follows (4.5) and vice versa. The variables $\eta_{A}\left(Q_{q+\infty}, P_{2+\infty}, t\right), A=1, \ldots, 2\left(m_{1}+m_{2}\right)$ are by virtue of (2.3) and (2.16) functionally independent. Therefore, they can $\overline{-}$ be considered as the noncanonical coordinates on the submanifold Γ which is the difference of Γ and $\Gamma^{*}: \bar{\Gamma}=\Gamma \backslash \Gamma^{*}$.

Now we use the following identity:

In order to prove (4.6) one must go in this formula to the integradion over the noncanonical variables η_{A} and use the expression for the volume element of the phase space in terms of the noncanonical variables (see Appendix)

$$
\begin{aligned}
& \begin{array}{c}
\prod_{x=1}^{n-r} d Q_{\eta+x} d P=x=\frac{\partial\left(Q_{i+x}, P_{i+x}\right)}{\partial\left(\eta_{1}, \ldots, \eta_{2\left(m_{1}+m_{2}\right)}^{2\left(m_{1}+m_{2}\right)} \|_{A=1} d \eta_{A}=\right.} \\
=\left(\operatorname{det}\left\|\left(\eta_{A}, \eta_{A}\right)\right\|\right)^{-1 / 22\left(m_{1}+m_{2}\right)} d \eta_{A=1} .
\end{array} \\
& \text { Substituting (4.6) into the integrand in (4.2), we obtain } \\
& I=\int \exp \left\{i \int_{t^{\prime}}^{t_{i}^{\prime \prime}}\left[P_{i} Q_{i}-H(Q, P, t)-R(Q, P, t)\right] d t\right\} . \\
& \prod_{A=1}^{2\left(m_{1}+m_{2}\right)} \delta\left(\eta_{A}\left(Q_{i+x^{\prime}}, P_{i+x}, t\right)\right)\left(\operatorname{det}\left\|\left(\eta_{A^{\prime}}, \eta_{A^{\prime}}\right)\right\|\right)_{i=1}^{1 / 2 n} \frac{d Q_{i}(t) d P_{i}(t)}{(2 \sqrt{1})^{2}} .
\end{aligned}
$$

As it has been notedabove, from (4.5). it follows (2.19). Therefore, we were able to spread again the sum $\sum_{\alpha=1} P_{\alpha} Q_{\alpha}$ the variables $P_{i}, \dot{Q}_{i}, i=1, \ldots, n \quad \alpha=1,{ }^{\alpha}$ and to substitute (3.24) instead of . Using in (4.8) the change of the functional integration variables defined by the canonical transformation (3.20), we obtain the final formula for the path integral

$$
\begin{align*}
& I=\int \sum x^{p} p\left\{i \int_{t^{\prime}}\left[p q_{i}-H(q, p, t) d t\right] \prod_{A=1}^{2(m+m)} \prod_{i}^{2} \delta(n(q, p, t))\right. \\
& \left(\operatorname{det}\left\|\left(\eta_{A}, \eta_{A}\right)_{q, p}\right\|\right)^{1 / 2} n \prod_{i=1} \frac{d q_{i}(t) d p_{t}(t)}{\left(2 \pi_{1}\right)^{2}} \text {. } \tag{4,9}
\end{align*}
$$

The additional term R in the exponent caused by the explicit time dependence of the constraints and the gauge conditions diseppear after the change of the variables (3.20). In (4.8) only the initial complete set of constraints (2.2) and gauge conditions (2.19) enter

$$
\begin{equation*}
\eta_{A}(q, p, t)= \tag{4.10}
\end{equation*}
$$

$$
A=1, \ldots,
$$

Due to the δ-functions in (1.9) it is all the same what set of constraints (2.2) or (2.11), (2.12) is used in constructing the path integral.

Let us have another set of gauge conditions

$$
\begin{gather*}
\bar{x}_{a}(q, p, t)=0, \quad a=1, \ldots, m_{1}, \tag{4.11}\\
\operatorname{det}\left\|\left(\bar{x}_{a}, \varphi_{b}\right)\right\|_{\mid \bar{x}=\varphi=0} \neq 0, \quad a, b=1, \ldots, m_{1}, \tag{4.12}
\end{gather*}
$$

Using (4.9) we can construct the Hamiltonian path integrel in this gauge. The set of constraints (2.11), (2.12) and the nem gauge conditions (4.11) can be replaced due to (4.12) by the equivalent set of equations in the cenonical form. liaking the inverse transition to
eq. (4.8) and integrating over $\bar{\Gamma}$ with the aid of the δ-functions, we will obtain formula (4.2) in which independent canonical variables $Q_{\alpha}, P_{\alpha}, \alpha=1, \ldots, \eta$
coordinates on $/ 7, \bar{Q}, \bar{P}, \alpha=1, \ldots, \tau$. Thus, we have the same coordinates on $7^{*} Q_{\alpha}, P_{\alpha}, \alpha=1, \ldots, 2$. Thus, we have the same formula for I up to the change of the functional variables in the path integral defined by the canonical transformation from $\bar{Q}_{\alpha}, \bar{P}_{\alpha}$ to Q_{α}, P_{α}.

The integration measure in the final formula (4.9) is determined by

$$
\Delta=\left(\operatorname{det}\left\|\left(\eta_{A}, \eta_{A^{\prime}}\right)\right\|\right)^{1 / 2}
$$

According to (4.7) Δ^{-1} is the volume element of the submanifold $\bar{\Gamma}=\Gamma^{7} \backslash \Gamma^{*}$ expressed in terms of the noncanonical coordinates which are defined by the constraints and gauge conditions (4.10).

Append1x

We derive here the expression for the volume element of the phase space in terme of arbitrary noncanonical coordinates. Let Γ be the $2 n$-dimensional phase space with the canonical coordinates $q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}$ and $2 n$ functions $\xi_{\mu}=\xi_{\mu}\left(q_{,}, p\right), \mu=1, \ldots, 2 n$ determine the transition to new variables in $\Gamma \mu$ which are in general case noncanonical. We suppose that the Jacobian of this transformation is different from zero

$$
\begin{equation*}
\operatorname{det} D \neq 0 \tag{A,1}
\end{equation*}
$$

$$
\begin{align*}
& D=\left\|\frac{\partial q_{i}}{\partial \xi_{k}} \quad \frac{\partial q_{i}}{\partial \xi_{s}}\right\| \quad i, k=1, \ldots, n, \\
& \text {, } S=n+1, \ldots, 2 n \text {. } \\
& \text { by } \\
& d \Gamma=\prod_{i=1}^{n} d q_{i} d p_{i}=\operatorname{det} D \cdot 17 d \xi_{\mu=1}^{2 n} . \tag{A.3}
\end{align*}
$$

Let us show that det D can be represented in the form

$$
\begin{equation*}
\operatorname{det} D=\left(\operatorname{det}\left\|\left[\xi_{\mu}, \xi_{\nu}\right]\right\|\right)^{1 / 2} \tag{A.4}
\end{equation*}
$$

where $\left[\xi_{\mu}, \xi_{\nu}\right]$ are the Lagrange brackets

$$
\begin{equation*}
\left[\xi_{\mu}, \xi_{\nu}\right]=\sum_{i=1}^{n}\left(\frac{\partial q_{i}}{\partial \xi_{\mu}} \frac{\partial p_{i}}{\partial \xi_{\nu}}-\frac{\partial p_{i}}{\partial \xi_{\mu}} \frac{\partial q_{i}}{\partial \xi_{\nu}}\right) \tag{A.5}
\end{equation*}
$$

Por this purpose we consider the product of the matrices $D^{\top} J D$, where D^{T} is the transposed matrix D and J is the aymplectic unity matrix

$$
J=\left|\begin{array}{c}
0 \tag{A.6}\\
-I_{n} \\
n
\end{array}\right|,
$$

where I_{n} is the unity $n \times n$ matrix, det $]=1$. The direct calculation gives

$$
\begin{equation*}
D^{\top} J D=\left\|\left[\xi_{\mu}, \xi_{\nu}\right]\right\|, \quad 1 \leqslant \mu, \nu \leqslant 2 n . \tag{A.7}
\end{equation*}
$$

If we evaluate the determinants in the left- and the right-hand sides of this equality, we get (A.4). The Lagrange brackets (A.5) and the Poisson brackets are connected by the formula

$$
\begin{align*}
& \sum_{\mu=1}^{2 n}\left[\xi_{\mu}, \xi_{\nu}\right]\left(\xi_{\mu}, \xi_{\rho}\right)=\delta_{\nu \rho} \tag{A,B}\\
& \text { Hence eq. (A.4) can be represented in the form } \tag{A.9}
\end{align*}
$$

The derivation of eq. (4.4) for the volume element of the symplectic manifold in terms of the noncanonical variables is analogous to great extent to the obtaining of the expression for the volume element of the Riemannian manifold. Let V_{n} be the Riemannian manifold with the coordinates $\eta^{\mu}, 1 \leq \mu \in \varkappa^{n}$ and with the Riemannian atructure (with the metric) $g_{u v}(\eta)$, det $\left\|g_{j \nu}\right\|>0$. We shall consider V_{n} as the submanifold of the flat space of the sufficiently large dimension R^{n+k}. Let $x_{1}^{a}(\eta), \ldots, \gamma_{n}^{a}(\eta), a=1, \ldots, n+A$ be the coordinate tengent vectors to $V_{n} \quad$ at the point η and $N_{1}^{a}(\eta), \ldots, N_{n}^{a}(\eta), a=1, \ldots, n+k \quad n$ be the unit normals to V_{n} at this point. Then, the volume element of V_{n} can be defined as the volume of the parallelepiped constructed $\underset{\rightarrow}{n}$ by the vectors \vec{X}, \ldots $\overrightarrow{x_{n}}, \vec{N}_{1}, \ldots, \vec{N}_{k}$

$$
\begin{equation*}
d V_{n}=\operatorname{det} D \cdot d \eta_{1} \ldots d \eta_{n} \tag{A.10}
\end{equation*}
$$

where the $(n+k) \times(n+k)$ matrix \varnothing has the form

By the simple trangformations we obtain the well-known formula

$$
\begin{gather*}
\left.\operatorname{det} \infty=(\operatorname{det})^{T} \cdot \operatorname{det} D\right)^{1 / 2}= \\
=\left(\operatorname{det}\left(D^{1} \cdot \infty\right)\right)^{1 / 2}=\left(\operatorname{det}\left\|\left(\vec{x}_{\mu} \cdot \vec{x}_{\nu}\right)\right\|\right)^{1 / 2}= \tag{A.12}\\
=\left(\operatorname{det}\left\|g_{u v}\right\|\right)^{1 / 2} .
\end{gather*}
$$

References

1. Faddeev L.D. Teor.Mat. Fiz., 1969, 1, p. 3.
2. Faddeev L.D., Slamov A.A. Gauge Fields, Introduction to Quantum Theory, Benjamin-Cumainge: Reading, 1980.
3. Quantum Theory of Gauge Flelda. Collection of papera. Noscow, "Mr", 1977.
4. Faddeev L.D., Popov V.N. Jspehi fiz. nauk (in Russian), 1973, จ. 111, N 3, p. 427.
5. Dirac P.A.M. Lectures on Quantum Mechanica. Belfer Graduate School of Science. New York, Yeshiva University, 1964.
6. Mukunda N. Physica Scripta, 1980, v. 12, N 6, p. B01-804.
7. Barbashov B.M., Nesterenko V. V., Chervjakov A.M. Teor.Mat. Fiz., 1985, v. 63, N 1, p. 88-96.
8. Senjanovic P. - Ann. Phys., 1976, v. 100, N 1/2, 227-261.
9. Ditasa P. Canonical path integral quantization of gauge ayatems. Freprint TH.4042/84, Geneva: CERN, 1984.
10. Schouten J.A., V.d. Kulk W. Pfaff's problem and ita generalizations. Oxford: Clarendon Prese, 1949.
11. Maskawa T., Nakajima H. - Progr.Theor. Phys., 1976, v. 56, N 4, 1295 - 1309.
12. Shanmugadhasan S. - J. Math. Phys., 1973, v. 14, iv 6, p.677-687.
13. Levi-Civita T. and Amaldi U. Lezioni di Meccanica Razionale, v. II, part 2. Bologna, Nicola Zanichelli, 1927.
14. Popov V.N. Continual Integrals in Quantum Theory of Fields and Statistical Physics (in Russian), M.: Atomizdat, 1976.
15. Prokhorov L.V. Physics of Element. Particles and Atomic Nuclei, 1982, v. 13, N 5, p. 1094-1156.
16. Schulman L.S. Techniques an applications of path integration. New York: John illey and Sons, 1981.
17. Gervals J., Jevicki A. - Nucl. Phys., 1976, v. B110, N 1, p. 93-112.

В Объединенном институте ядерных исследований начал выходить сборник "Кратжие сообиения ОНЯН". В нем будут помещаться статьи, содержащие оригинальные научные, научно-технические, методические и прикладные результаты требующие срочной публикации. Будучи частью "Сообщений оияи', статьи, вошедшие в сборник, имеют, как и другие издания ОИЯИ, статус официальных публикаций.

Сборник "Краткие сообщения Оияи' будет выходить регулярно.

The Joint Institute for Nuclear Research begins publishing a collection of papers entitled JINR Ropid Communications which is a section of the JINR Communications and is intended for the accelerated publication of important results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.
Experimental techniques and methods.
Accelerators.
Cryogenics.
Computing mathematics and methods.
Solid state physics. Liquids.
Theory of condensed matter.
Applied researches.
Being a part of the JINR Communications, the articles of new collection like all other publications of the Joint Institute for Nuclear Research have the status of official publications.

JINR Rapid Communications will be issued regularly.

Received by Fublishing Department
on August 8, 1985.

SUBJECT CATEGORIES

 OF THE JINR PUBLICATIONS| Index |
| :--- |

1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Нестеренко В.В.
E2-85-597
К выводу формулы для гамильтонова функцяоналыного ннтеграла в теориях со связями первого и второго рода

Дан простой последовательний вывод формулы для гамильтоно ва фуниионального интеграла в теориях со связями первого
 Калибровочиые условия могут быть неинволиотивны мехду собой и содержать время явно, в отличие от других работ, бальмое вни мание уделиется доказателиству гамильтоиовости теории на фияическом подмиогообразии [${ }^{*}$ фазового пространстда Г. Показаио, что Δ^{-1}, тде Δ - детермиант аддеева-Попова, есть не что иное, как элемент объема подмиогорбразия $\bar{T}=\mathbb{N}^{\text {в }}$ неханони ческих координатах. Дохазана инвариантиость формулы для гамильтонова функииоальиого интеграла при хонечных преобразованиях калибропочных условий.

Работа выполнена в Лаборатории теоретической фиэихн оияи.
Препринт объедикеииого иисчитута лдеривв всследовамии. Дуьна 1985

Nesterenko V.V. E2-85-597
On the Derivation of the Formula for the Hamiltonian
Functional Integral in Theories with the First-
and Second-Class Constraints
A simple and consistent derivation of the formsla for the Hamiltonian functional integral in theories with the first- and second-class constraints is given. The gauge conditions may be noninvolutary, and the constraints and gauge conditions can be explicitly time-dependent. In contrast to other papers much attention will be paid to prove the Hamiltonian form of dynamics on the plysical submanifold of the phase space. It will be shown that Δ^{-1}, where Δ is the ${ }^{\text {Faddeev-Po- }}$ pov determinant, is just the volume element of the phase space in terms of the noncanonical coordinates. The invariance of the final formula for the functional integral under finite transformations of the gauge conditions will be proved.

The investigation has been performed at the Laboratory
of Theoretical Physics JINR, for Nuclear Research. Dubna 1985

[^0]: 2) The coefficients in the condition of the linear indepen-
 dence of the vectors ξ_{a} have to be considered as the functions
 of 0, dence of the
 of q, p, t.
