
23 KO rl. 

OfilJeAMHeHHblM 
MHCTMTYT 
HAepHblX 

MccneAOB3HMA 

AYfiHa 

E2-85-597 

\ \' . ~ I ·" It· rt · lIku 

.. \ Til E BEICI\ <\TIOi\: OF TilE FOlnll l LA 

101e TilE 1I\'lILTOi\:L\N Fl r ~CI'IO ' ,\L 

1\11 .f.IC\L 

1\ ' 1 Ii FOIClE~ WITII TilE FIIC~T­

\ \ It ~I C'U\B-('L '\~~ 4 :0N~T IC A I 'fI'~ 

IIl>jijl ,I: l.e tl t " "ll l'I'" 

PeAaKTOP 3 .B.IIBawK cBH4. /'IaKeT P . n .¢OMllIl o iL 

nOAm.caHO B ne ..aTb 16 . 09 . 85 . 

~op..aT 60x90116 . O$CeTHaA ne .. aTb. Y".-"3A . JU'CTOB 1, 5 . 


T"pa* 5 10 . 3aKa3 367 14 . 


H3AaTenbCK"H OTAen 06~eA"HeHHo ro "HCT"TYTa AAepHW X "ccneAoBaH" ~ . 1985 
ny6Ha MoCKOBCKOH 06naCT" . 



1. Introduc tion 

The Faddeev well-known paper/ 1/ laid the f oundation of the qu­

ant iza tion of the theories with the singular Lagra ngians by the func ­

tions l integrat ion in the phase space. The important application of 
th i s approach is the cons truc t ion of quantum theory of the gauge 
fi elds / 2 , 3/ and , r avitntion/ 4/. 

In paper /1 the most interes ting from the appli cation point 

of view first-class constraint s/ 5/ we re consideren. For simpli c ity 

the ga uge conditions wcre supposed to be in i nvolution between them­

selves. In addition it was assumed that th e constraints and the r,au ­
ge conditions do not contain the time expl i c itly. However, there are 

f i eld models wit h the second-class c ons traints, f or exa~nle, the 

mas sive Yang-Mills field. And for the Lagrangian e homogeneous of the 
f irn t'-de ~ree in the velocities the gauge conditions must be explicitly 
time-dependent / 6 ,?/. 

In paper/8 / At the same as sumptions a s in /1/ the second-c la ss 

c onstraints were included int o cons ide r ati on. In paper/7/ the Fa ddeev 

proof of the fo rmu la for the Hamilt onian functional inte p,ral waa 
ex tended to the gau ge conditions explicitly time-dependent. In /9/ 
s n attempt whic h is not c ompletely consistent, to ou r opinion, was 

made to conside r the gauge cond itions explicitly time dependent and 

noninvolutary between themselvss s i mu ltaneously . 
The basic pecul i ari ty of t he the ori ss wi th degenerate Lagra n­

~j ans is th e following. Th e physical dynamics deve l op: not i n the 

" ho l e phasa spac e r , but only on its s ubmanifold r det'ined by 
the 	constra ints and the gauge conditions. Ths phys i cal submsnifold 
r' l' of th e ~ympl ec tic manifol d a nd the ca nonical coordinates can 

- " . 11
be i ntrod uc ed on it. The same st a temen t is r ight also for r = r ,\r, 
i.e., fo r t he diffe renc e of rand r ,... In th e case of t he firat-class 

~onB t ra ints and eauge conditi ons involut ory between themse l ves, the 

~ o rresponding ca nonic al coordinates can ba specif ied immed i a tely 
/ 1,7/. But i f there are second-class constraints or the gauga cond i ­



tions are noninvolutory hetween thamselves then the consideration of 

the pape!1/ is not applicable here. In thhl case one has to use the 
mathematical theorem ( ref. /10/ theorem VII.24) about the canonical 

form of equations which specify the ~ubmnnifolds. The Poisson brac ­
kets of the left-hand sides of these equa tions equal one or zero 1) . 

Then one has to prove that the dynamics on the physical Bubma­
nifold r ~ of the phase space is t ha Hami ltonian dynamics, i.e., 
tha equations of motion on r~ are the Hamiltonian equations and the 

corresponding Hamiltonian must ba detarmined. In papers devoted to 
the quantization of the systems with the singu lar Lsgrsngians via 
the path integrstion in tha phase space, these facts do not proved 
but implicitly are supposed beforehand/ 1 ,2/. And one usually assumes 

that the effective Hamiltonian generating the dynamics on r II-
is the 

contraction of the canonical Hamiltonian H on r * • The e:l!:ample of 
the degenera te La grangians homogeneous in the veloc i ties shows that 
in the general case this is not so. The canonical Hamiltonian in 

such t heories equals ze ro identically. 
In t he pr esent paper we propose a simple and consistent deriva­

tion of the formula f or the Hamiltonian functional integral for the 
theories with the const r aints of the most general kind: thay may be 
the first- and sacond-c l oaa constraints and thay can contain tima 
explicitly. The gsuge cond t t ion ~ can be noninvolutory between them­
selves and can be explicitly time -dependent aa well. In contrast with 
other papers much attention will be pa id to pr oving the Hamiltonian 
form of the theory on the phyaical aubmanifold of t he phase space.

-1 
It will be shown tbat A ,whare fj is the Faddeev...:.Popov de t e rmi­
nant, is just the volume alement of the submanifold r ex press ed 
in terms of the noncenonicel coordinates defined by constraints and 
gauge conditions. This simplifies the interpretation of the final 
formula for the path integral. As far as we know, this property of 
Ll was not noted in the previous papers devoted to this problem. 
The final formula for tbe path integral in the phase space does not 
depend on the choice of the gsuge conditions. Usua l ly, this property 

of the Hamiltonian path integral is demonstrated by i nf ini tesimal 
chsnges of the gauge conditions/1,8/. Here, this statement will be 

proved by transition to an absolutely new set of gsuge equations. 
The material is arranged as follows. In the se cond section the 

constraint equations in theories with degenerate Lsgrangians are 
analysed. The third sectinn is devoted to the derivation of the 
equations of motion in the phase space. In the fourth section the 

711 /1} In paper this theorem has been proved anew without 
references to /10/. 

2 

path integral representation for the matrix element of the evolution 
operator is constructed. I n the appendix the derivation of the for­
mula for the volume element of the nymplectic manifold in terms of 
the arbitrary noncanonical coordinates is ' gi ven . 

2. Different forms of constraints 

Let us consider the syst em with a finite number ~ of deerees 

of freedom described by a singu lar Lagrangian L (q" 9.,t ) 


IlL14JJIk <.. 7'P, 1 f: 1.' ,j ~ n · ( 2 .1) 

I 
(r'f. a'if 

~ J 
He r e q, and ~ ar~ the .genera~ized .coordinates and velocities 9r = 

= (Cf "'" ev,. ), q,= (q"" .., 9t~), q,.:ciq,ldt . For the generality
1 

we assume the explicit time dependence in L , therefore the const­
raints 	explicitly time-dependent will be taken into consideration. 

We suppose that the complete set of the functionelly indepen­
dent c onstraints in the theory under consideration is kno"n, i.e. 
all the 	primary and secondary cons traint s are known 

W /rr J p, t)= 0, -S -= m,.f >... , <: Jt- J (2.2) 

(2.:3>~a'J1 k 	'I a(ws ) II -:::; m 
!: r3 (q, p) I, w == a 

(2.4)iJ L S 
f.= ~) 1. == I, . . , n-. 

t u q, 
According to (2.3) the eqtations of constaintA ( 2 .2) determine in 
the 2~ -dimensional phase spsce r with the coordinates cy,p
the2n-l7I.-dimensional submenifold 11. 

The complete set of cons traints can be obtained by the known 
iterative procedure proposed by Di rac. It is based on the ~equire­
ment of fulfilling all the constraint equations duri ng the evolu­

ti on. The primsry constraints which ara the conseque nces of the con­
~It ion (2.1) are g iven by the specific form of the degenerate Leg ­
r nnllisn. 

The complete set of constraints in the phase space can be ob­
. /12/t31ned i n the framework of the Lagrangian forma lism as well • 

Prom the view point of this formalism the secondary constraints are 
the Lagrangian const reints in the theory (i.e. the Euler equations 
that do not contain the secondary derivatives with respect to time) 

:3 



and all the derivatives of the Lagrangian constraints with respact 
to time up to some fixed degree. In order to pick out the first ­
class and second-class constraints in the complete set (2.2), one 
must make same aasumptions on the properties of the skew-symmetric 
matrix II(w, W ') II ) 5... 5 ' = {,. " ,m-, the elements of which 

S 
s 

(are the Poinsson brackets of the constraints Ws q"p,t» 5=1, ", m 

~(OV1 d~/ d ws ocos,")
(w uJ)='> -' -- '-- . (2.5)

) 5' L
5 J(jt. JjJl' Of{ d~<{ ' :of 

Let on the Bubmanifold M we have 

(2. 6 )tall) 1/ (~, w.sl )11 \= 2 m,2 Z 
I M 

\S=f, ... ,a. 
This means that the matrix 1/ (~ , ~.) " has on M exactly 

J11 := m - 2 I?t/2 linear l y independent eigenvectora with zero 
t 

e igenva lue s2 ) 

5
() 

(Cf, f' t) ( WI, ' ~I ) .= 0 ;> (2.7)
S 

, f 
5 " 5 = f, ." , m" a =- /, ... ,m,1 • 

We suppose aa usual the summation with respect to the repeated 
end ices in the corresponding l imits. The requirament of the comple­
teneas of the set of constraints (2,2) is written in the following 
form/ 12/ a -OW5 'l_s + (w , /-1) J = 0 

5 af 5 1M (2.8) 

a= f , ... , J?V • 
1

The constraints (2.2) can be numbered in such a way that the matrix 

II (W ' W ' ) ~ Ilill have 21'1t/z linearly independent last rows and 
s s 

accordingly 2~ linearly independent last columns. Now we go from 
2

the initial constraints se t (2 . 2) to the equivslent set of the const­

raints according to the formulas 

(l.=;-f,,, . ,m (2.9)'Po (Cf';~ f) == 5Cl{c/)jJ1 I)~ (Cf,t) I), 
.f' 

S 

ZJ The coefficients in the condition of the linear indepen­

dence of the vectors 5~ have to be considered es the functions 

of ~, p, t . 


4 

@(9,jJ/)= W (Cf,fJ) I), d= f" " ,~m- , (2.10)
C{ m -1"0( ~ 

i 
a 

As t~e vectors 5/' ({t,P, t) are linearly independent then 
the equatl0ns of the new constraints 

(2.11)9 (~,p, 1)=0) a ,=f" " , ~ ,a 
(2.12) 

~ (tfofJ, I) = 0, d = 1 J • • ? 2 mz• 

determine the same submanifold;11 as the equations of the ini ­
tiel constraints (2.2)~ 

Taking into account (2.7) and (2.8), one verifies easily the 
following equalities on the submanifold M: 

'9,t) CP,(J 
( 90 , ?~) ~ 0, o<Pa +(9,H)~90 I~ EJ)~ 0 ( 2.13)of Q ) \.. Gl ) d.. ' 

, .pf) 
(2.14)'?ank II (6)(;(., ~) II ~ 2me. ' 

a, t = I, .." m ~ d.,j:3=f, ... ,2J?t
L 2 

The sign rp~(j means the weak equality /5/, i.e. at the outset one has 

to evaluate the Poisson brackets or t o make the differentiation in 

the left-hand side from this sign and then to put 9==0, Cl=- O. 
Thus, regrouping of the constraint s (2.9) and (2.10) chooses the 
firat-class (2.11) and second-class (2.12) constraints which obey 
on M the conditions (2,13), (2.14). 

As is well-known, the firat-class constraints result in the 
functionsl f-reedom in the equations of motion in the phase-Splice r . 
In order to remove this freedom one has to impose on the canonical 
variables q, p gauge conditions /1/ in addition to the cons't ­
raints (2.11) and (2. 12) 

//9,1,1)=0, {/= f, .. . , m . (2 .15)
1 

TIle se conditions must have the following property: 

(2.16)def ll( fa , rg)})19=O,ri= t,0 . 
;£:0 

5 



The gauge cond it ions (2.15 ) cut out from M the phys ica 1 submani­

fold r* of the phase space. The dimension of r" i s 2 (n-mi-~)' 
In contrast with papers/1 ,2,8/ we shall not demand the involu­

tion of the gauge conditions (2.15) between themselves '. As we consi­

der the most general case of the constraints ( 2 .2 ) with the explicit 

time-dependence, the gauge conditions (2.15) have to be time-depen­

dent too. Moreover, if the canonical Hamiltonian II is identically 

equal to zero (in this case the LagrangianL{~, ~,t) is. the homo­

geneous function of the first-degree in the v elocitie s q,,) , then 

the gauge conditions (2.15) must be explicitly time -dependent/ 6 ,7/ 

beyond the dependence of the propertie R of the firs t -class constra­

ints (2.11). 

In order to explore the equations of mot ion on the physical sub­

manifold r~ it is convenient to r e p l ace the e e t of t h e constraints 

(2.11), (2.12) and the gauge connitions ( 2 . 15 ) by the equivalent 

set of 2(mj T ) equat i ons in the c a n onical f orm. It is achie­mz 
ved by the specia l canoni cal t ra n s f o rma t i on to the new ca noni c a l 

variables Q, P 

(2.17)Q.= () (9,f, f) P = P (rt,?, t), 
t t ~ t 

(2.18)
( 0, Q.) = (P P) = (() 0 P) - ~.. =0, 

t J . . t' J t J 'J 

t.,;=(,.",lV .,'" 


in terms of which the physical submani fold / is definsd by the 

equations 

Q (fj,f,l) = 0 !:J (tf,,?, 1)= 0, (2.1')1+-£ , 2,../ 

'? =12-»t -;n £=fo.",m-rm.
1 21 2' 

The canonical variables on r'" are 06' f~, if 6 ~ .JZ. -~-m2· 
We shall not prove here this etatement; it can be fou nd in the book 

/10/ theorem VII.24. The specific fonn of the f unctions 0. (tj?p, -I), 
f}(tf,P, -I) , t=1, ..,tt "ill not be used. We note only that they are 

explicitly time-dependent as tbe constraints (2.11), (2.12) and the 

gauge conditions (2.15) contain time explicitly. 

Por the abbreviation we shall mark sometimes the set of const ­

raints in the canonical fonn (2.1') by one letter 

6 

Q (q"f, 1)= 0, A == I, .. , , 2 (m -rm ) 
1 2,A (2.20) 

Q(9,P,f)= () (q,p)), Q (~,p I) = P (q"oP,I-)
£' UJt' . m.,..fflt-cJ(' 7.,.£ ' 
z=n- (m, t-m ), £=-{o . ,m .,.Jn . 

2 

f 22
The matrix constructed by the Poisson brackets of the constra­

int s Q Uj,p, f) between themse lves is equal to the unit symplectic 

matrix 
A 
of the dimension 2 ( m t- m ) x.2 (m f- m )

f 2 f 2 

J (2. 21)
o 1mtm 

f 2I(~, °8JII 2(111t-m)
I 2-i mrm o 

< 2. 

lIere J is the unit {m t- m )1. (m? t m ) matrix. 
f 2 2 


f 2 

1l!-rJ72 

3. Equations of motion in the phase space 

'lie derive now the equation of motion in the phese space taking 

into account all the constrsints and the gauge conditions written 

in the canonical form (2.1 9). The canonica l Hamiltonian 

/-I =Pc ~t - L (9, q, ( ) (J.l) 

does not depend on the velocities q in the case of the degene­

r a te Lagrangians as well. Indeed, differentiating (3.1) and using 

(2.4) we get 

r//-I(9,9,f,l) =d~ ~. + f; clrt: 
D.2 ) 

_ dL ~ _ d~ d(j _ dL df 

Jql~' iJCf1 ~. ot 


(/L 
== cit. 4 dl dCf cit . 

t ( Oif t dt 
<

T'1~.I8 , cI/-( does not contain the differentials of the velocities 

q. .. Therefore, 
, 1 

/-/= /i(9,P) t), D. 3) 

7 



[~ /-I = a1-1 dq, ~ ali dfJ. + d,lj d t (J.4 )
r t , d~. ( oR ot 

Let us take into account aqs. ().2) and ().4) in the Euler equations 

dA' = iJL (3.5)i= T, .. " I'V. 
df oq.

I 

This gives the following e quality: 

/ (J1-1 -1- p) rJrt -r (J!-I _4 ) do. + (011+ aL)JI=0)·6 ) 
( rJG, . t t' op.. l ( l' iJf of

r( c 

Besides the differentiation of the constraints ( 2 .20) results in the 
equations 

8QA d BOA .J aQA Ji (J.?)- ~. + -(jO.+ -cu= 0O()" rYp. r[ iJf . )t 
jV~ ~ 

A=f, ... ,2(11t(+m
2 

), 

The condl~ion (2.21) enables one to use the Lagrange method of in­
definite multipliers. Finally, the dynamics in the phase space) is 

. = rJH +A Ct)dQA, D=_ oH_/l (( oQA 
rz' 00., A) iJ ) (J.8)ctt dp , A Oft· 

z ~ ~, 
t.=f,,,,)~) 

(3.9 )

Q ((L 0 t) =0 A = f , ... ) 2 (m +m )A 7,/,) ( 2' 

The Lagrange multipliers).A ( f) in the equations of motion 
().8) are determined by the following conditions: 

dQA ()~
-=- +(Q H)+,A (t)(Q Q )= 0 

(J.10)d f at A ' B A ' B , 

A, B = f, .. . ) 2(1 -t-~ ) , 

--~~----------
3) In addit ion to () .8 ) equat ions (). 6 ) and ().7) lead to the 

relation 8H aL iJQ
7ff+ OF + )./ t) iJt '- A = 0 

that is not the e quation of motion. 

8 

As the cons traints Q (C/t ,p, t) have the canonica l f orm (2.20), (2.21) 

we obtain A 

A '(f) = - J ·laQ 8 -+- (Q '/-ol,
A AB ot B J (3.11) 

- i 

] == J A, B = f" ,,) 2. (111, -r m 2. ) ,
2(m ... m ) ) 

f 2 

After substI tution of () . 11) into (). B) the equations of motion 
are written as f ollows: 

. - aH oQA ] l- 80B / lct ' - og - Of{' AB iJt +lQB,H)_,t (J.1 2 ) 

p= - iJH oQA J l- aQ8 
-1- COB )-/)\ ) -t­

i r39:. J~. A 5 d f- . 
1. t l"=fJ "' ~' A,B=1,,,,2 {m, ~m2)' 

It is obvious that these equations are not the Hami l tonian ones. Ho­
wever, we are interested in the dynamics not in the whole phase spa­
ce r but on its physical submanifold r 1f defined by the const­

""7 ~ 

raint equations ().9). On / eqs. ().12) can be written in the exp­
licitly Hamiltonian f orm 

. OH 
T ?=_dHr , t =- f, ... )/'V) (J.l)

q,t' = rJIt, J t' rJ q." c' 

Qcq"p,f).=o, A= 1, ... ,2(m,+m2 ), (3.14) 
A 

where 

/-( (Cf ,p) t )= H - Q J [dofQ B -r (Q H)] . C3. 15) 
T A AB B' 

The cons traint equations (3.14) are noninvolutory invariant 
relations /1)/ f or the Hamiltonian equations of motion ().1) 

(3.16)dQA 
df 

oQA + (Q H r= 0., rf) P t r 
~ 
IiiJ t l' A' T 

A = i" .. , 2- (m, -r m
2

) . 

9 



Using them, one can reduce the number of the equnt10nn in the Hamil­

tonian system (J.13) by2(m +m )' For th is purpone, the canonicalf Z 
transformation (2.11) should be used. In t erms of t. ho new varfables 

t1 ~P the equations (3.13), (J.14) are writte n In the following
t t 

form: 

oJ[ 
t.::;: f , . . . ) n-~ (J.17)Q= 7 

[ rJP, 
(J.18)Q := 0, p =-0 ? l= n - rffl-t ),t-t-£ rt-£ ( 

'1/ 1~£~?»( -U?1~. 
The new Hamiltonianc:1{ (a ,p) t) is 

Jf(Q~ /~ t ) = 1-1 (~ (~/~ t },f{U, I~ f ), 1)1- (3.1 9 ) 

-t- R ( (J, P, t ) " 
Here the func tions 

( ) .20)9 = () . (Q, P, t J, ;: =I? (0, /? I ) .-1 7'1 
l = f, ... ) n 

determine the canonical transformation inverse to (? 17). '1'11 0 orldi­

tion term R (a,p, t )· in the Hamiltonia n ta due to tho olCplici t 

time-dependence of the canonical transfo rmation ( 2 .17). 'l'hJ [] t erm 
is defined by the equations 

aR(rJ, P, f J . () 0, (ct,?, I) aR({),/~ 1-) iJI I(q, 
--~~----- , ~ 

8 ~ of ao. JI 
. f 

After d ifferentiat ion z,,~ tf~ . ·;~B~~ct to t the right - honrl ,. t<!",o of 

(3.21) have to be expressed by (3 . 20) a a the funct1ono or (~.~ t 
The equations of motion 0.11), 0.18) are in tact tlln Iln mi lto­

nian system with 2·Z=2(Jt-m, -J?7 ) equations on l y 
2 

Q = aX , p =_ oK (1 .22) 
of ­

v< oP 01Q 
0( 0(

d.::- r, ... , .2: 

10 

Here 

K(~, ~J f)=;t(Q, P,!)I == = O ? (J.23) 
Q 'l-r£ ~-t-X 

0(=1, ." , t, £-=-f , ... ,~-r-~ 

is the corresponding Hamiltonian. On r~ the contrlbution to 

Ir(t') p t) is given only by the canonical Hamiltonian and R(O,/-?i) 
~, 0/' 

K(~, ;;,t) = [H(C;{rJ,p, I))f(rJ,P, t J) I) +­ (J.24) 

+ 1< (0, et)J IQ =P . . If­:= 0 
tTdf "l:~ 1 

According to ( 3.1 6 ) the rest equations tn the system (3.11) on I 
give 

Q =() P =0 (J. 25)Z+X ") '{ 0(' , 

Z -Jt-?1l -m £=.f, . .. ) m-t-m 
- f 2 ' f .2 


Thu9, C).18) are the invariant relations for (J.17). 

/91
In paper the wrong conclusion was made that 1<" vanishes on 


the submanifold M and consequently equals zero on /,... as well. 


The clear example showing that it is not eo is the case of de,enerate 

Lagrangians homogeneous of the first-degree in the vslocities 11. 
Here the canonical Hamiltonian is identically zero and the dynamics 

on the physical submanifold /'". is generated by R only. 

4. The construction of the path integra l 

At the outeet we represent in a usual mannerl 141 the matrix 


element of the evolution operator for the Hamiltonian system (3.22) 


(4.1)U (I :11 )= T ex? [- i J
f" 

l\ (~ , I;, I) ellJ ' 
l 

t
 
01= 1 . ... • 'Z .t­

as the path integral on the phYAical eubmanifold /' of the phaae 

apace 


1 = <-~ ~" " . , (J 1/ IU( f 1/ I) I() I ([/ 1 >.::= 
II ~ , f~" ' ) z (4.2) 

= fey? «1[pi; - X (12 ,P, f)Jclf }n d~(fJdj (l) 
t i d rX f3 J3 t,r (27i)'" > 

cI 13 r =f , .. . ,l,=17-m-m,'j" I; ( ,2 " 

11 



now, with the aid of the S -functions, we extend the functiona l 
inte gration to the whole phase space r with the canonicsl coordi­

nates a. ' ) / 'J' ) t ' = (,. ') n­
1 t . 1/ 

1~Je11' (,J[~ci; -N(O,p, f)-R (0,I; fJj dfj (4,. 3) 

fl 

12 -2 IV clU.tI) d p{t) 
. 17 d(0 ) 8(P ) 17 ( l 

£ = f t -t-J( 'l +-.x 1.'= f (2:;; ) .z, 

Taking into account the S' -functions in (4 . 3), we have apread
t- • 

the ~um2: p () in the exponent in (4.3) to all the veriab l es 
pad;, /=:. (.0(..,/1/ and the effective Hamiltonian 1\ has been 

t ' t H Rreplaced according to ( 3.24) by the sum r • 
Now we make the change of the functional integra t ion variables 

with the aid of the canonical transformation (3.20) which is inver­
se to (2.17). ;Ve shall not discuss here the possibility of this 
procedure and refer only to the vast literature about this problem 
715-17/. After this change, the additional term I< in the canoni­

cal Hamiltonian {4.3) vanishes 
t H 

1=Jf?Xp(if[~i{ 
. 

/-((~,p)t}Jdt I' 
t 

J1-t (4.4) 

·/7 S(tl ( f11d 'P { (1\/7 citJ/1)ci';;CI)q/,P,}) ( q,-,A}J . _ '" 
;Jt'=( l+x 1+;1( (=-( (2jj,) 

In order to use this formula we have to know the explicit form of 
the constraints and gauge conditions in the canonical form. Transi­
tion from the initial set of conatraints (2.2) and gauge conditions 
(2.15) to the set of the constraints and the gauge conditions in 
the canonica l form (2.18) is a rathe r difficult mathematical problem 
/101. One must solve the partial differential equations. Therefore, 
it is very desirable to obtain a formula for the path integral in 
the phase space in terms of the initial set of constraints ( 2.2) 
and gauge conditions (2.19). 

Let the initial set of constraints (2.2) and gauge cond itions 
(2.19) can be written after the change ~ and ~ by (3.20) in 
the form 

12 

"t (0 ,P ,t) = 0, 
(4.5)A 1 ...:x 'l-t-J( 

A = f, .. ) ,2 ~ -t- 2. m ' £= f, ... .,?1-'t,z 
Z=JZ-m -o m . ~ 

• 1 2 P rCanonical variables Q and , d= f, .. . ) 'Z-- on do not 
0( 0( 

enter obviously in the constraint equations ( 4.5) • As the constra­
int equations (2.19) and (4.5) determine in the phase space the same 
submanifold r'" ,then from (2.19) it follows (4.5) and vice versa. 

The variables 't (Qz+X' , ~+.;e' f), A= 1, . .. ,2 (mf-t-~)are by virtueA 
of (2.3) and (2.16) functionally independent. Therefore, they can_ 
be considered as the noncanonical coordinates on the submanifold I' 
which is the difference of /r and /7 .,..::=/-" j' \ /~ " . 

Now we use the following identity: 

/= ~J(riel II ('fA' 'fA' )lIt 
2 (m +»1 )!' 1t- z. (4.6) 

17 ~('! (() ,p ,f)) 17 c/rJ d P 
A=r A hX t .....£ £=1 ti-,lf ?+X 

In order to prove (4.6 ) one must go in this formula to the integra­

tion over the noncenonical variables fA an'd use the expression 

for the volume element of the phase space in terms of the noncano­

nical variables (see Appendix) 


n--t j(m,"'~)o(~ ...X" ~+~)17 rio riP 17 d1A (4.7)£={ i.+,Jf t+x 8(1 .,,, .., 1. )A=f 
.t 2.{mrm)

1 2/ / I ( )- !/2 ~Hf un ) 
= l....a e 1/ t~? 1 ,) JI J1 ( E;J'{ . 

A A=( A 
Substituting ( 4. 6 ) into the integrand in (4.2), we obtain 

t'l 

1+.xf (,J[~~ -H(O,P, f)-R(O,P, t)JclN. 
II t 4.8 ) 

J(»t,-t-"'.t) '/2 /t //1) ./ / 

.f! 6(1 (0 ,P , t)){cleill ( ,1 ,)11) n (Jl G(/r)orf.{f~
A ~f A t+,:x h at 1A A t"=1 (E5i) z 
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As it has been note~above, from (4.5).~it !,ollol'ls (2.1 9). Therefore, 

we were able to sP.read again the su~~ I~Qo( in (4 .7 ) to all 
the variables p,a.. t=-f, ... , n and to substitute (3.24 ) i nstead 

I
v t t 

of \ • Using in (4. 8) the change of the functional integrat ion va­
riables defined by the canonical transformat ion ( 3.20 ). we obtain 

the final formula for the path integral 
1'1 :2(111 .,.m ) 

1== j:J~llt · fLI:. i - /-((9/J, I Jcll}j ri [; (J1 (Cf ,pJ)). 
fl l < A=f (A 

. (/2fT, a a(/pIO(h ('t,g) 

(i f/II (I( '~A') 10 n 7, 2 
A q,p t=( (2 Y1 ) 

The additional t erm I? in the exponent caused by t he explicit time 

depende nce of the constraints and the gauge conditions diaappear 
after t he change of the variables (3.20). In (4. 8) only the initial 
complete set of constraints (2.2) and gauge conditions (2.1 9) enter 

IJ (97P, f) = (4.10) 
(A 

=l~(cf,P,f),!;,= I, ,) m:m,~214?2; !;/9,P)),ct= f,.)ntfJ) 
2 (J1f,..-mt ) 

Due to the 8 -fU~~i:~S' 'in (~. 9 ) it is all the same \~hat set of 

constraints (2.2) or (2.11), (2.12) is used in con s tructing the path 

integra 1. 
Let us have another set of gauge conditions 

(4.11)1. (q)~ f)= 0., ((= (, .. ,m, )
ex 

elf! /I (1 '~) II/ _ a!=f, .. ,m.-=I: 0) (4.12) 
Of 0 j=f=o ) f 

Using (4.9) we can construct the Hamiltonian path integral in this 

gauge. The set of constraints (2.11), (2.12) and the new gauge con­

ditions (4.11) can be replaced due to (4.12) by the equivalent set 
of equations in the canonical form. Making the inverse transition to 

14 

eq. (4.8) and integrating over /-r with the aid of the'S -functions, 

we will obtain formula (4.2) in which independent canonical vari­

ables Q > P , d=1,.. ,) ·z:... will be replaced by some new canonical
eX do ,,- ­

coord inates on j1 Q P, eX= 1, .. , .z:... • Thus, we ha ve the same 
01 ' 0< 

formula for 1 up to the change of the functional va r iables in the 

path integral defined by the canonical transformation from 2l > ~ 
to q" ~ . 0< 

The integration measure in the final formula (4. 9) is determined 

by 1/2 

L1 =- (dt' II/ (~ ,'I ) II) ,
A AI . -1 

Accordi ng to ( 4. 7) ~ is the volume element of the submanifold 
-1= r \ r expressed in terms of the noncanonical coordinates 

which are defined by the constraints and gauge conditions (4.10 ). 

Appendix 

We derive here the expression for the voluma element of the 
phase space in terms of arbitrary noncanonical coordinates. Let ~ 
be the 2JZ· -dimensional phase space with the canonical coordinates 

q..1, ...,q,I7'P', .. " p", and 2ft-functions }=}, (q,p), /l=(, . .,24­
determine the traneition to new variables i~r ~ which are in ge­
neral case noncanonical. We suppose that the Jacobian of this trana­

formation ia different from zero 

(A."at'l1> =t 0, 

aCYl iJ~. .i- (A.2)o -(, - f, .. . , J1',Os S.5D= k 
iJpt' s=nr-f, .. ,2n.iJ~ 
aSs" Oth-The volume element Clr ie defined by 

n In 
(A.:3 )d/= ll~ cI;;. c!p! J) . /7 cI} 

(= f /,=f / 
Let us show thst det 1) can be represented i n the form 

f/. 
(A.4)clf I J) = (de III [~ ~ 5y] II) ) 

]5 



where [S )~ oJ] are the Lagrange brackets 

LS ,;'] ~1: C7'1, of, _ j&. Pi·) (A.5) 

J< 1.=f O~ iJ§y rJt. O}¥ ' T 

Par this purpose we consid6r the product of the matrices D J]) 
where ])T is the transposed matrix D and J is the symplectic 
unity matrix o 	I 

? 	 (A.6) _ J = II-in ; 
where J is the unity n x rz, matrix, det J=j. The .direct calcu­

a 
lation gives 

(A.7)D T J D = II [ Sf" $v 111 J 1 6-/' ) V~ Zit. 
If 	"e evaluate the determinants in the left- and the right-hand sides 
of 	this equality, we get (A.4). The Lagrange bracket a (A. 5) and the 
Poisson brackata are connected by the formula 

2n" 
(A.8){[$I,,~~J (~J $f)=byl" 

Hence ~(A.4) can be represented in the form /
- ( 2 

(A.9)rif f ]) = ( elf III (} 1 ~J II) . 
The derivation of eq. (A.4) for the volume element of the 

symplectic manifold in terms of the noncanonical variables is ana­
logous to great extent to the obtaining of the expreasion for the 
volume element of the Riemannian manifold. let V be the Rieman­

/" f2,
nian manifold with the coordinates'l, 1~J4 if J1r and with the Rie­

mannian structure (" ith the metric) 9. ",/7)' oil" t II 9;" ~ 1\ >O. We 
shall consider V as the 8ubmani/ofd of the flat space of the 

f2, Rn. Q, ,q, /
sufficiently large dilnension • Let X '(1 J, .•• ,Jjf(1),er.=- f , .. ,J1 tr. 

f 

be the coordinate tangent vectors to V at the point t and 
N"(I1J, ... ,A::"'(fl)' c:r=f, . .. ,J1+-"( n be the unit normals to V 
1'( ;;C) 	 j£ 

at 	this point. Then, the volume element of V can be defined as 
n -, 

the volume of the para llelepiped constructed by the vect ors X,. _', 
-> 	 f 

1', 	IV ,... ,;IIL. 
IZ f " 

(A.10)d V=elf I ]) .til! ... oil( ) 
" 	 0( n 
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where the {flr J)x (11 r )- ) matrix Ji) has the form 

1.l ,,+~ 

:1'-f J 1 X j 

f 2 /It,t 

£J ~ 11 X'r/ 7/7 X" \I (A.11)

IV f IV 2 Jl! ",.f. 

1 1 f 

IV 1 IV 2 IV 1/+ Ir 
k k k 

By 	 the simple transformations we obtain the well-known formula 

elf f cf) = (rip I£) T. cle I£)) 
f/2. 

= 
(A. 12)V2 	 1/2

(elf! (£)~£J)) =- (cit! II (7,xy )ll) := 

1/2 	 J1' 

=(clt7f~gr~lI) . 
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B 06beA~HeHHoM ~HcT~TYTe RAepH~x ~ccneAOBaH~~ Ha4an 
B~XOA~Tb C60PH~K "f{pamx:ue COo6UJeHU5l OJ1flJ1 ". B HeM 
6YAYT nOMe~aTbcR cTaTb~, cOAep~a~~e op~r~HanbH~e HaY4H~e, 
HaY4HO- TexH~4ecK~e, MeToA~4ecK~e ~ np~KnaAH~e pe3ynbTaT~, 

Tpe6YIO~~e Cp04HO~ ny6n~Kall~~. 6YAY4~ 4aCTbIO "Coo6uleH~~ 
OI1f1W', cTaTb~, BoweAw~e B C60PH~K, ~MeIOT, KaK ~ APyr~e 
~3AaH~R OI1f1I1, cTaTYc o¢~lI~anbH~x ny6n~Kall~~. 

C60PH~K "KpaTK~e coo6~eH~R OI1f1I1" 6YAeT B~xOA~Tb 
perynRpHo. 

The Joint Institute for Nuclear Research begins publi ­
shing a collection of papers entitled JINR Rapid Communi­
cations which is a section of the JINR Communi ca tions 
and is intended for the accelerated publication of impor­
tant results on the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 

Experimental techniques and methods. 

Accelerators. 

Cryogenics. 

Computing mathematics and methods. 

Solid state physics. Liquids. 

Theory of condensed matter. 

Applied researches. 


Being a part of the JINR Communications, the articles 
of new collection like all other pUblications of 
the Joint Institute for Nuclear Research have the status 
of official pub1ications. 

JINR Rapid Communications will be issued regularly. 
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9. Accelerators 

10. Automatization of data processing 
11. Computing mathematics and techni-que 
12. Chemistry 

13. Experimental techniques and methods 
14. Solid state physics. Liquids 

15. Experimental physics of nuclear reactions 
at low energies 

16. Health physics. Shieldings 
17. Theory of condenced matter 
18. Applied researches 
19. Biophysics 

HecTepeHKo B.B. E2-85-597 
K BYBOAY ~OPMYnu Anft raMHnhTOHOBa ~yHK~OHaJJhHoro 
HHTerpana B TeopHftX CO CBH3HMH nep&oro H BTOporo POA& 

AaH npocToH nocneAoBaTenb~ B~BOA ~PMYnu AnH raMHn&ToHo 
Ba ~YHKqHOHaJJbHOro HHTerpana B TeopHHX CO CBH3RNH nep&oro 
H BTOporo POA& /KaK CT~OHap~, TaK H HeCT~OHapHWMH/, 
Kann6posoq~e ycnoBHH MoryT 6~Th HeHHBon»THB~ M~Y co6oH 
H COAepaaTh BpeMR HBHO, B OTnHque OT APYrHX pa6oT, 6on&moe BHH 
MaHHe YAenHeTCH AOKa3aTen&cTBy raMHJJhTOHOBOCTH TeopHH ea 4&13H­
qecxoM OQAMHOroo6pa3HH r* ~a30BOro npoCTpaHCTBa r, lloKa3aH0 0 

qTo 6-1, rAe~- AeTepMHHaHT ~aAAeeaa-llonoaa, eCTb He qTo 
HHOe, KaK 3JJeMeHT 06beMa OOAMHOroo6pa3HH f a r\r* B HeK&HOHH­
qeCKHX KOOPAHHaTax. AoKa3aHa HHBapnaHTHOCTb WOPMYJJY AJIR ra­
MHJJbTOHOBa ~YHKqHOHaJJbHOrO HHTerpana npH KOHeqHWX npeo6pa3o&a­
HHHX KanH6poaoqHWX ycnOBHH, 

Pa6oTa B~nOJJHeHa B na6opaTOPHH TeopeTHqecKOH 4IH3HKH OHXH. 

RpenpiiHT 061.~HeHHOro RHCftiTYTa ~~,qep- HCc:JIUOINIIBA, .llJGHa 1985 

Nesterenko V.V. E2-85-597 
On the Derivation of the Formula for the Hamiltonian 
Functional Integral in Theories with the First-
and Second-Class Constraints 

A simple and consistent derivation of the formula for 
the Hamiltonian functional integral in theories with the 
first- and second-class constraints is given. The gauge condi­
tions may be noninvolutary, and the constraints and gauge 
conditions can be explicitly time-dependent. In contrast to 
other papers much attention will be paid to prove the Hamilto­
nian form of dynamics on the physical submanifold of the phase 
space. It will be shown that 6-1, where 6 is the Faddeev-Po­
pov determinant, is just the volume element of the phase 
space in terms of the noncanonical coordinates. The invariance 
of the final formula for the functional integral under finite 
transformations of the gauge conditions will be proved. 

The investigation has been performed at the Laboratory 
of Theoretical Phy~ics JINR. 
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