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1. Introduction

The Faddeev well-known paper/1/ laid

the foundation of the qu-
antization of the theories with the singular lagrangians by the func-
tional integration in the phase space, The important application of
this approach is the construction of gquantum theory of the gauge
tields’?*¥ and pravitation’?.

In paper /1 the moat interesting from the application point
of view first-class constraints/S/ were considered. For simplicity
the gauge conditions were supposed to be in involution between them-
selves, In addition it was assumed that the constraints and the gau-
ge conditions do not contain the time explicitly. However, there are
field models with the second-class constraints, for examnle, the
massive Yang-Mills field. And for the Lagrangians homogeneous of the
first'-degree in the velocities the gauge conditions must be explicitly
time-dependent/6’7/
n/ the second-class
constraints were included into consideration. In paper/Y/ the Faddeev
proof of the formula for the Hamiltonian functional integral was

79/

sn attempt which is not completely consistent, to our opinion, was

In paper 8/ at the same assumptions as in

extended to the gauge conditions explicitly time-dependent. In

made to consider the gauge conditions explicitly time dependent and
noninvolutary between themselves simultaneously.

The bagic peculiarity of the theoriees with degenerate Lagran-
zieng is the following. The physical dynamics develope not in the
whole phase Bpace {ﬁ , but only on its submanifold F defined by
the constraints and the gauge conditions. The physical submanifold

F' of the symplectic manifold and the canonical coordinates can
be introduced on it. The same ststement is right also for Je r r,
i.e.,for the difference of r and F r. In the case of the first-class
conatraints and geauge conditions involutory between themselves, the
corresponding canonical coordinates can be specified immediately

/1'7/. But if there are second-class constraints or the gauge condi-
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tions are noninvolutory between themselves then the consideration of
the paper/1/ is not applicable here. In thip case one has to use the
mathematical theorem ( ref. 710/ theorem VII.24) about the canonical
form of equations which specify the submanifolds. The Poisson brac-
kets of the left-hand sides of these equations equal one or zero1).
Then one has to prove that the dynamics on the physical subma-
nifold I i of the phase space is the Hamiltonian dynamics, i.e.,
the equations of motion on r= are the Hamiltonian equations and the
corresponding Hamiltonian must be determined. In papers devoted to
the quantization of the systems with the singular Lagrangians via
the path integration in the phase space, these facts do not proved
but implicitly are supposged beforehand/1’2/
that the effective Hamiltonian generating the dynaygcs on ' is the

contraction of the canonical Hamiltonian H on lﬂ « The example of

« And one usually assumes

the degenerate Lagrangians homogeneous in the velocities shows that
in the general case this is not so. The canonical Hamiltonian in
such theories equals zero identically.

In the present paper we propose a simple and consistent deriva-
tion of the formula for the Hamiltonian functional integral for the
theories with the constraints of the most general kind: they may be
the first- and second-class constraints and they can contain time
explicitly. The gauge conditions can be noninvolutory between them-
selves and can be explicitly time-dependent as well, In contrast with
other papers much attention will be paid to proving the Hamiltonian
form of the theory on the physical submanifold of the phace space.

It will be shown that At , where A is the Faddeev-Popov determi-~
nant, is just the volume element of the submanifold [ expressed
in terms of the noncanonical coordinates defined by constrainte and
gauge conditions. This simplifies the interpretation of the final
formula for the path integral. As far as we know, this property of
A was not noted in the previous papers devoted to this problem.
The final formula for the path integral in the phase space does not
depend on the choice of the gauge conditions., Usually, this property
of the Hamiltonilan path integral is demonstrated by infinitesimal
changes of the gauge conditione/1'8/. Here, this statement will be
proved by transition to an absolutely new set of gauge equations.

The material is arranged as follows. In the second section the
constraint equations 1n theories with degenerate Lagrangians are
analysed. The third sectinn is devoted to the derivation of the
equations of motion in the phase space. In the fourth section the
711/

1) In paper
references to /10/.

this theorem has been proved anew without

path integral representation for the matrix element of the evolution
operator is constructed. In the appendix the derivation of the for-
mula for the volume element of the symplectic manifold in terms of
the arbitrary noncanonical coordinates is given.

2. Different forms of constraints

Let us consider the system with a finite number N of degrees
of freedom described by a singular Lagrangian L‘(Q,q,,f)

" azL |
'%Z»/i/\’ rﬁ<n 141’,/‘4;@ (2.1)
%99 |
Here (} and CZ are the generalized coordinates and velocities 9}:

= (Q/I,... e ), § = (Q,l,...’ Q/n), Q,:Olq,/df . For the generality

we assume the explicit time dependence in L , therefore the congt-

raints explicitly time-dependent will be taken into consideration.
We suppose that the complete set of the functionally indepen-

dent constraints in the theory under consideration is known, i.e,

all the primary and secondary constraints are known

w (9,P. t)=0, s=1,.,m <%, (B}
| (2.
'.7/42//7/( ,ﬂ“}s_)I =m 2.3)
G2 I
|w5~0 (2.4)

/D.:gh-L) ‘Z=/w--)7&

t ;
According to (2.3) the equations of constaints (2.2) determine in
the 2 n -dimensional phase space /7 with the coordinates g /3
the 2n-m-dimensional submanifold /7. ’

The complete set of constraints can be obtained by the known
iterative procedure proposed by Dirac, It is based on the require-
ment of fulfilling all the constraint equations during the evolu-
tion. The primary constraints which are the consequences of the con-
dition (2.1) are given by the specific form of the degenerate Lag-
rangian.

The complete set of constrainte in the phase space can be ob-
tained in the framework of the Lagrangian formalism as we11/12/.
From the view point of this formalism the secondary constrainte are
the Lagrangian constreints in the theory (i.e. the Euler equations
that do not contain the secondary derivatives with respect to time)



and all the derivatives of the Lagrangian constraints with respect

to time up to some fixed degree. In order to pick out the first-
class and second-class conatraints in the complete set (2.2), one
must make some assumptions on the properties of the skew-symmetric
matrix || (L&) )" S; L f,..., 7 , the elements of which

are the Poinsson brackets of the constraints 7Y (q,/ﬁ t), s=1,...,m

6?C¢é 2)54{;/' L)LL{S C?&Gk’
(ws,ws, ' 7 ' ) - (2.5)
39, 9P 9P 99

Let on the submanifold /¢7 we have

sank | (u)s w )= 2%2 L, (2.6)

; \n
S,5=1,...,m,
il meavs thet the matrik ]I( > )| has on /Y exactly
)ﬂl- m -2 54/2 linearly 1ndependent eigenvectors with zero

eigenvaluesz) a
$ (9,2,8) (- 4)= 0, @

S.8'=1,..,m, (= o s
We suppose as usual the summation with respect to the repeated
endices in the corresponding 1imits. The requirement of the comple-
teness of the set of constraints (2.2) is written in the following

fom:/‘]z/ a aw //
5 (57 +(wn.H))
at
a="1,...,7%
The constrainta (2.2) can be numbered in such a way that the matrix
ll(ﬁ4) will have 2 nw linearly independent last rows and
accordingly 2’%4é linearly independent last columns., Now we go from
the initialconstraints set (2.2) to the equivalent set of the conat-

\M (2.8)

raints according to the formulae

\pa@/’/o’ ZZ)IE 0@6/07 ZZ)COS (9/,/0, /)’ A=ty (2.9)

<’ The coefficients 1in the condition of the linear indepen-
dence of the vectors § @ have to be considered as the functions

of 9 P

@-(Q’P)K):(/‘fﬂ_fd(%/q%)» A= ’>“~>2”22/- (2.10)

Ag the vectors g (9«p f) are linearly independent then
the equations of the new constraints

P Gpt)y=0, a=r.m, 2.1

(2.12)

9(9//02‘) 0, Ad=1,. 2m

2
determine the same submanifold /%7 as the equations of the ini-

tial constraints (2.2).
Taking into account (2,7) and (2.8), one verifies easily the
following equelities on the submanifold M-

(‘pa,‘%)iQO’ (‘P H)~ 0 (kP @) 0 (2.13)

m;z/é H<00<’@ﬁ)” >:¢ 2m, (2.14)
a, f_— ./,...,ml, d,ﬁ:/,l..,znzz.

/5/, i.e. at the outset one has
to evaluate the Poisson brackets or to make the differentiation in
the left-hand side from this sign and then to put P=0, #=0.
Thus, regrouping of the constraints (2.9) and (2.10) choosea the
first-class (2.11) and second-class (2.12) constraints which obey
on M the conditions (2.13), (2.14).

As is well-known, the first-class constraints result in the
functional freedom in the equations of motion in the phase-space ['.

The eignv{; means the weak equality

In order to remove this freedom one has to impose on the canonical

variables 3 gauge conditions "/ in addition to the conat-

raints (2.11) and (2.12)

(9P 1) =0,

These conditions must have the following property:

det ”(7[’%)“@:0,@:50- (2.16)
=0

[]:: /,_,,’”?/1 " (2.15)



The gauge conditions (2.15 ) cut out from /V7 the physical submani-
fold /7™ of the phase space. The dimension of / 1512(7}'7z;'*3).

/1,2,8/ we shall not demand the involu-

In contrast with papers
tion of the gauge conditions (2.15) between themselves. As we consi-
der the most general case of the constraints (2.2) with the explicit
time-dependence, the gasuge conditions (2.15) have to be time-depen-
dent too. Moreover, if the canonical Hamiltonian /1 is identically
equal to zero (in this case the LagranglarlL(q f; f) is the homo-
geneous function of the first-degree in the velocities q,) then
the gauge conditions (2.15) must be explicitly tnme—dependent/6’7/
beyond the dependence of the properties of the first-class constra-
ints (2.11).

In order to explore the equations of motion on the physical sub-
manifold A , 1t is convenient to replace the set of the constraints
(2411); (2. 12) and the gauge conditiona (2.15) by the equivalent
set of [ (%@1*'241 ) equations in the canonical form. It is achie
ved by the specisl canonical trensformation to the new cenonicel
variables CQ,/J

Q=EGplh,
(Q.4)=(~, /9) (@.7)- S -0,

7j—/
in terms of which the physical submanifold /

/3;—/1J (9/7ﬂ t), (2.17)

(2.18)

is defined by the
equations

@NX(Q,/O, %) = 0) /‘;X(%/O) )= 0, (2.19)

foe 7%*172.
t=7- ”3 }%2’ X= 1 z 2

The canonical variables on /7* are Qé, r 5 T4 6 £ )Z_)@‘m "
We sghall not prove here this statement; it can be found in the book
/10/ theorem VII.24, The gpecific form of the functions (1’(9,/0 f).
f3(¢ el f) £=7,...,# will not be used., We note only that they are
explicitly time-dependent as the constraints (2.11), (2.12) and the
gauge conditions (2.15) contain time explicitly.

For the abbreviation we shall mark sometimes the set of const-
rainte in the canonical form (2.19) by one letter

QA(%p,%)_—Q A=t 20m o, ),

(2.20)
S P, f = . Qa _ D)
CG.pH=0 opnb), Qm”ﬂfzﬂ/)_/%%(q,,p,f))
'Z /e (77L+7It) H=1 ”Zrm 2

e
The matrix’con&tructed by the Poisson brackets of the constra-
ints (Quﬂ,f) between themselves is equal to the unit symplectic
A 2 B
matrix of the dimension 2(7?21 *7722))(2(7% f,mz)
7

0 i,,,,m __ (2.21)
(g“)A-.QB)l: 7 e - 2(m 777).
- +
I ., 0 o,
1 2
llere ]7—);1»7?22 is the unit (n{’fmz))((ﬂfé fﬂ?’z) matrix,
1

3. Equations of motion in the phase space

¥e derlve now the equation of motion in the phase gpace taking
into account all the constraints and the gauge conditions written
in the canonical form (2.19). The canonical Hamiltonian

/{:@,91—1(%?,{‘) (3.1)
does not depend on the velocities (} in the case of the degene-

rate Lagrangians as well. Indeed, differentiating (3.1) and using
(2.4) we get

5//%(979,/0, Z) :a/p (;', +pdg
4 C/q a/{% d a/f _ (3.2)

fz;lz]i

Thus, 6/// does not contain the differentials of the velocities

-/Qu . Therefore,
7y

- A= Hgp ), (3.3)



(4/4; g—:d@z, + gﬁ/d@ + g'—folf. (3.4)

Let us take into account egs. (3.2) and (3.4) in the Euler equatiouns

dp, _ JL

ar 0y’

L?/‘/ )0@ ((f/f )07) (d/‘/ d)o//ﬂbe)

Besides the differentiation of the constraints (2.20) results in the
equations

@a/q,l_ gf 0(/) (;?Adf 0 | (3.7)

9,
A=ty 2(M +7,).
The condition (2.,21) enables one to use the Lagrange method of in-
definite multipliers. Finally, the dynamics in the phase spaceB) is

: C?§24 S _ Ci// éQSQA

=20 5ot
§.= A A
=1, 7,

Q(g,/oz‘) =0, A= 10, 20m +m).

The Lagrange multipliers.A (f) in the eguations of motion
(3.8) are determined by the following conditions:

e, aQ
At

t=1, .,/ (3.5)

, (3.8)

(3.9)

H

(%, H)+2, (z‘)(@

A,B= /,.,.)2(77% +1,).

3} In addition to (3.8) equations (3.6) and (3.7) lead to the

; (3.10)

that is not the equation of motion.

As the constraints Q?(c; P t) have the canonical form (2.20), (2.21)

we obtain
062,

at==3 |22 1),

(3.11)
; i = /_) J (227 + 7 .,
2(775 + 777 ) > A"B 5o B 2 )

After substitution of (3.11) into (3.8) the equations of motion
are written as follows:

927, V_f_ ~@,H).

Y= d,O (3.12)
Lo 925 108 (0 )
: ity AB=1,,20m )

It is obvious that these equations are not the Hamiltonian ones. Ho-
wever, we are interested in the dynamics not in the whole phase spa-
ce /ﬂ but on its physical submanifold defined by the const-
raint equations (3.9). On /" eqs. (3.12) can be written in the exp-
licitly Hamiltonian form

$ ﬁ/?’ . OH;

tall 52/7 /lz CQQL[ ’

¢2 @, p, t)=0, A= Tyuwi s 2P 470, ). (3,18)
A

£ Mornn iy PO (3.13)

b

where

= ¢
/fr(?vﬂf):f/‘ QA jAB 9.{ = +(QB,H)}. (3.15)

The constraint equations (3.14) are noninvolutory invariant
713/ for the Hamiltonian equations of motion (3.13)

relations

A2, 90, ~ ‘
2 =5t T(Q.H)=0, 9,pET

A=1,...2(m+77,).
7

(3.16)




Using them, one can reduce the number of the equntions in the Hamil-
tonian system (3.13) by’2(7z%'+3”é). For this purpome, the canonical
transformation (2.17) should be used. In terms of the new variables

@1,3 the equations (3.13), (3.14) are written 1in the following
form: "

- OH 59N

(] = = =, t=1.,7%, (3.17)

2 « Lhidis | 2
z z 7
0 Q.
H = 0, P =0, Z:”'-/”Z“’{:) (3.18)

A4 red 2

» 1L XL 2, T, .
The new Hamilltonian %((], p, f) is

H@.RH=HG@rH),p(a R ¢, Hr o
*R(& A ).

Here the functions

% :%' (@v ’L?ZL)) Pz :/? ("(_/, /? /)_' (3.20)

Z2=17,..,%
determine the canonical transformation inverse to (2.17). The addi-
tion term R ((2,/2 £) in the Hamiltonian 1s due to the explicit

time-dependence of the canonical transformation (2.17). Thim term
18 defined by the equations

OR(Q.BE)_ 08, 9pY) GRGAE. JPiupt.

b 2
R ot 1) YR
=1, ,7%. ‘
After differentiation with respect to Z+ the right-hand nides of
(3.21) have to be expressed by (3.20) as the functions of tf)/% R
The equations of motion (3.17), (3.18) are in fact the Iamilto—

nian system with 22=2(7 —777’-;%2 ) equations only

(Q=a~/1, /5__@/‘(’ (3.22)
“ 9P “ 7@

178
d:/)-“\‘z

10

Here . ) 3
K((%,/?(,f)-\f/(@/q/z f)I@ZM:pHX__O’ (3.23)
A=t L, K=, W+

is8 the corresponding Hamiltonian. On /7ﬁ the contribution to

/ﬁ’({? )/7 f} is given only by the canonical Hemiltonian and ﬁ?(&%/?fu
oK

K((g>(/3,f)= U’/(@(W,/?f)}/’(lzeﬂ, ’)+ (3.24)
+R(cs7,/3f)]10 —p 0" »

z

Tt -r{ /
According to (3.16) the rest'equations in the system (3.17) on

give

C%+X=&, /A;x:&a (3.25)
—2 - =4 . 7
7=7 ;76 ;;zg, K==L, ..., ’+1¢Zz

Thus, (3.18) are the invariant relations for (3.17).

In paper/g/ the wrong conclusion was made that /2 vanishes on
the submanifold /lf and consequently equals zero on o as well.
The clear example showing that it is not so is the case of deﬁgyerate
Lagrangians homogeneous of the first-degree in the velocities .
Here the canonical Hamiltoniagi;s identically zero and the dynamics
on the physical submanifold / is generated by f? only.

4. The construction of the path integral

At the outset we represent in a usual mannar/14/ the matrix
element of the evolution operatorfaor the Hamiltonian system (3.22)

U(Zé,”f/):TPfﬁ[“ijg/\’(@,/i,f)a//_], (4.1)
¢

o g (R *
as the path integral on the physical submanifold /ﬂ of the phase
apace

[-4Q7. 0" Ut/ .a'y =

= éxpft'j[/jéz‘/f(%f/)s’ z‘)}d%}fﬂ (27)*
t

)

(4.2)
dd(f/ﬂ;if)
d}ﬁ,://:: Lsoin s 2:77-777/'7772.

11
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Now, with the aid of the 2) -functions, we extend the functional
integration to the whole phase space /ﬂ with the canonical coordi-
nates CQ /3 [:?f

7= feap f[w H@RL)-R@PONI .

J(f /0
/78<c7 PEIC s v il

z
-
H=r rex =1 (QJZ)
Tak%ng into account the E; —functions in (4.3), we have spread
the sum 5’ P in the exponent in (4.3) to all the variables

P Q "(",‘f—( 7 0,(”)2/ and the effective Hamiltonian K has been
replaced according to (3.24) by the sum f/*/e

Now we make the change of the functional integration variables
with the aid of the canonical trensformation (3.20) which is inver-
se to (2.17). We shall not discuss here the possibility of this
procedure and refer only to the vast literature about this problem
/15-17/ | peter this change, the additional term /X  1in the canoni-
cal Hamiltonian (4.3) Vanishes

/&xﬁf f[ﬁ@ H(g,/o f)de}

s (4.2)
T8 (g.n1)5P t9.000]1 %‘f”m.

In order to use this formula we have to know the explicit form of
the constraints and gauge conditions in the canonical form. Transi-
tion from the initial set of constraints (2.2) and gauge conditions
(2.15) to ths set of the constraints and the gauge conditions in
the canonical form (2,18) is a rather difficult mathematical problem
/10/. One must solve the partial differentiasl equations., Therefore,
it 1s very desirable to obtain a formula for the path integral in
the phase space in terms of the initial set of constraints (2.2)
and gauge conditions (2.19).

Let the initiasl set of constraints (2.2) and gauge conditions
(2.19) can be written after the change ﬁb and /9 by (3.20) in
the form

12

7 P ,f)—“(?,

an’ 2+ (4.5)
Az/,,.,,2m+2m7 K=ty N2,
=7 777
Canonical variables and ﬁD g(; .. on /7 do not

enter obviously in the constreint equations (4 5) o As the constra-
int equations (2.19) and (4.5) determine in the phase space the same
submanifold /7* , then from (2,19) 1t follows (4.5) and vice versa.
The variables ’7 (@2*-9(” f) A=1,. z(ﬂz’rﬂf)are by virtue
of (2.3) and (2. 16) functionally independent. Therefore, they can _
be consldered as the noncanonical coordinates on the submanifold /7
which is the difference of /° and /7*' /7: VAR f’ﬁ

Now we use the following identity:

/= /f(aé J('/ 7, )u)

2(77/+777) (4.6)

/7 é‘(};(@x p,t) /7 0/47 o P

P Lt TtX

In order to prove (4.6 ) one must go in this formula to the integra-
tion over the noncanonical variables 4?A and use the expression
for the volume element of the phase s8pace iIn terms of the noncano-
nical variables (see Appendix)

7n-1 @ A1 +7),)
140 dp = G 5os? /I 6/74:

X= ItX 1+X ﬁ(é’ 72( ))A:’ (4.7)
m e,

=(det 1 (g,,1,)1) VZIT”’”’Z/

Substituting (4 6 ) into the integrand in (4.2), we obtain

fesp | [P@ ~H(@.RH-R@RLIHH

4.8)

L, )

3@ P ) (g,)N) UM)

142" 74 (25;)2

13



As it has been notedabove, from (4.5)Zit follows (2.19). Therefore,
we were able to spread again the sumX 2 (@ in (4.7) to all
the variables A, (., 7 =1,..., 72 o by st (3.24) instead
of /\ . Using in (4 8) the change of the functional integration va-
riables defined by the canonical transformetion (3.20), we obtain

the final formula for the path integral
2(’”*""7)

/- /M/J/ fz/w - HG.pt)dt] /7 5(7 (g,/21))
' 2r oy holpd) (4.9)
(#/10r,,.), M A il

=1 0k

The additional term f? in the exponent caused by the explicit time
dependence of the constraints and the gauge conditions disappear

after the change of the variables (3.20)s In (4.8) only the initial
complete set of constraints (2.2) and gauge conditions (2.19) enter

74 (9,p,1) = (4.10)
=1 @G,pt), 8= 1,0 M7 2 T (g pt) - SRAT

2(77,+Zﬂz)

=7
Due to theg -furllqctio’ns in (4.9) it is a1l the same what set of
constraints (2.2) or (2.11), (2.12) is used in constructing the path
integral.
Iet us have another set of gauge conditions

ﬂz,(ki,/’)f):ﬂﬁ A=t 7, (4.11)

5//1{ .-, N _ ¢0 4/ (4.12)
e (7(01 5@) TN /..

Using (4.9) we can construct the Hamiltonian path integral in this
gauge. The set of constraints (2.11), (2.12) and the new gauge con-
ditions (4,11) can be replaced due to (4.12) by the equivalent set
of equations in the cenonical form., Making the inverse transition to

14

=
eg. (4.8) and integrating over /7 with the eid of the E; -functions,
we will obtain formula (4 2) in which independent canonical vari-
ables CQ /D s X=7 will be replaced by some new canonical
= g

coordlnates on / CZx /7 s =1, . Thus, we have the Bame
formula for / up to the change of the functional variables in the
path integral defined by the canonical transformetion from C%;, 2

o @, P, .
The integration measure in the final formula (4.9) is determined

" A= (o/ef/l(fz 7 )l 1. -

According to (4.7) A is the volume element of the Bubmanifold
=7\ F expressed in terms of the noncanonical coordinsates
which are defined by the constraints and gasuge conditions (4.10).

Appendix

We derive here the expression for the volume element of the
phase space in terms of arbitrary noncanonical coordinates. Let
be the 272 -dimensional phase space with the canonical coordinates
Q, Q/,,,,D, P, and 24 functions 5:" §/(Q Py p=1,.. 28
determine the transition to new variables 1v /7 which are in ge—
neral case noncanonical. We suppose that the Jacobian of this trans-
formation is different from zero

At D+ 0, (a.1)
E%%? é?gL

==t e 2 (4.2)
¢, F=1..,72,
D= |% 95|, .
@/3 apl 5=’Z+/,.‘.,277/,

S
The volume element ¢/’ % is defined by

A= /74/9//0 At D /7/§ (1.3)
/ﬂ 4

Let us show that det Z) can be represented in the form

7/2
a{ﬂ/[)=(a’e//[[§m§y][{)> (8.8)

15



where ‘ § % ] are the Lagrange brackets where the (ﬂr /é)x [ﬁ-r %) ﬁatrix é} has the form
2 ek

3 7
{g % ] Z, <d¢ 5/0( 38 ﬂ@ 4 (A.5) X, F, v Iz
-~ 08, 08, 0%, 7, .
For thisTpurpose we considé" the product of the matrices D J_D ’
where D’ 1is the transposed matrix D and J  is the symplectic T/ ]vz ek
unity matrix . 0 ]_ OQ) = 7 ’72 to 7l (a.11)
NN
J: _[ 0| (4.8) conen l 2 u s WY ok ;
where J is the unity )710 matrix, det J =1. The 4direct calcu- /V 2 /V 2 /v n+k
lation gives , ¥ ¥ R 4
= || (A.7)
D J 'D ” [ é/u\ gy-] n 5 7 é/w)ij‘l: 24 By the simple transformations we obtain the well-known formula

If we evaluate the determinants in the left- and the right-hand sides 7 //2
of thils equa v, we get o4)e e grange brackets . an e = e =
11t (A.4). The la brackets (A.5) and th 6/(’?‘106‘ a’é/o@ L

Poisson brackets are connected by the formula

Z L% % (5 § ) (5.8) (é/f/(f’@ o@)) (6/6/”(1’ JC",,)H)
Honce dau(Aad) can ve represented in the f = (ﬂ/ﬁ(hg ) }])
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B 06veanMHEHHOM UHCTUTYTE AQEPHBX MCCEAOBAHMI Havan
BexoauTh cBopHuk "Hpamrxue coobyenuna OHAHU". B Hem
6yAyT nOMewaTbCA CTaTbu, COAEPKAUMNE OPUFMHANbBHHE HayuHHE,
HayuHO=TexHUYEeCcKHe, METOAMYECKME W MPUKNafHHE pe3ynbTaTl,
Tpebyoumne cpouHon nybnukaumm. Byayum uvacTbio ''CoobueHwmit
OMAW'', crtaTbu, Boweawne B COOPHUK, MMEIT, KaK WU Apyrue
uananma OUAN, cTaTyc oduumanbHeix nybnukayui .

CbopHuk '"Kpatkme coobueHua OUAU' 6yAéT BHXOAMUT b
perynapHo,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators.

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condensed matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.
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