00bEAHHBHHDIA
HHCTHTYT
ALEDHBIX
WCCREA0BAHKA

AYOHa

E2-85-592

K.K.Gudima, G.Ropke? H.Schulz) V.D.Toneev

ENTROPY OF THE SYSTEM FORMED
IN HEAVY ION COLLISION

Submitted to ''A¢"

"The Moldavian Academy of Sciences, Kishinev
2Wilhelm Pieck University, Rostock (GDR)
Central Institute for Nuclear Research, Rossendorf,
B051 Dresden (GDR)

1985



http:13.08.85

1. Introduction

One of the goals of studying relativistic heavy ion reactions
is to investigate nuclear matter under extreme conditions as high
temperature and density. However, the information about the proper-
ties of the hot snd dense matter is obscured by the fact that the
intermediate nuclear system remains hot and dense only for a rather
ghort time ( ~ 10_22 sec.). The interesting quantity which may pro-
vide a8 window into the early stage of the collision process is the
produced entropy, because the entropy will grow rapidly when the nuc-
leons make their first collisions and will remain nearly constant
when the expansion phase of the nuclear fireball begins. Siemens and
Kapusta/1/ have suggested that the entropy per baryon (S/A) attained
during the collision process may be related to the ratio of the deu-
teron to the proton yield (13dp) by the following formula:

S/A = 5/ - n (Rdp /N7 ). (1

This simple relation is obteined for a dilute gas considered as an
ideal mixturs consisting of different species being at disassembly
in chemical equilibrium. Modifications of (1) arising due to the
account of the in-medium corrections have been discussed in refs./2’3/
Provided that thermodynamical equilibrium is established, the appli-
cation of formula (1) might give us information on the entropy value
attained during the collision process if effects connested with the
finite size of the system can be disregarded and if the dilute gas
approximation is applicable. Concerning the finite size effects, of
reat interest are the firest experimental results of Gutbrod et al.

4/ /5/ who measured the cluster abundances in high
energy heavy ion collisions by means of a 437 detector (plastic
ball). Since they found a saturation of the Edp ratio only for large
multiplicities, one is led to the assumption that the cluster pro-
duction rate is strongly correlated with the volume of the emitting
source or, in other words, the cluster abundances become a function
of the impact parameter,

and Doss et al.
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In view of this new experimental situation the applicability
of the simple formula (1) for extracting the entropy has to be re-
considered.In doing this, one has to start with a theoretical treat-
ment which considers the relevant dynamical aspects of the forma-
tion and the disintegration process of the intermediate nuclear
system. One of the promising ways to study such dynamical problems
is to apply the cascade model 6/.

The cascade model permits us to calculate S/A directly without
making use of relation (1). Of course, having the specific entropy
at our disposal its connection to the cluster production is one of
the central questions which will be discussed in a subpequent paper.

The entropy value for the reaction 4005 + 40Cn at BOO MeV/nuecl.
and zero impact parameter has firstly been calculated by Bertech and
Cugnon using a cascade model. To our knowledge, such typem of
cascade calculations have not yet been repeated or extended to other
projectile and target combinations and different beam energles as
well, Therefore, one of the aims of the present paper im to study
to what extent the calculated entropy values may be model dependent.

Invoking the cascade model,the time evolution of the entropy
production during the collision process can also be inventigated.
Considering a head-on collision one could expect that at the first
stage of the collision the entropy will grow rapidly but as soon
a8 the thermal equilibrium is established the entropy will approach
a saturation value. For noncentral collisions the generated hot nuc-
lear matter may be far from thermodynamical equilibrium snd, there-
fore, cascade model eimulations can give us reliable information on
how such an intermediate system disassembles and how the entropy
value per baryon evolves.

In oalculating the entropy value we will use iwo different
methods in order to be able to check their relstive accuracy. One
method to be used is cloeely connected to that previously employed
by Bertsch and Cugnon/7/, who besed their entropy calculatlion on
a proper subdivision of the six-dimensional phase space.

To get confidence that the entropy value is accurately calcu-
lated within the used cascade model approach, we applied a second
method which is based on the assumption that a local equilibrium is

established for each r-space subvolume of the intermediate system.
In doing so the averaging over momentum space is performed. We will
shom that the second method has to be preferred compared to the
first one. This is because the resulting entropy can also be deter-
mined adequately in the case of low phase -space densities where
statistical fluctuations play a decisive role. This concerns mainly

-

the latest stage of the collision process when the reaction products
go apart and the specific entropy does not change at all. For the
practical cdlculations, the introduction of the e¢ylindrical coordi-
nates yielding an adequate description of the reaction geometry has
been proven to be highly advantageous.

The cascade model approach to be used will not be explained in
the present paper (for details see ref.fs/). Both the methods to be
employed for calculating the entropy are presented in the next sec-
tion. The time evolution of the specific entropy is studied in sec-
tion 3. For comparison we consider first an exact soluable model sys-
tem and then investigate the entropy evolution of the Ca + Ca and
Nb + Nb systems for head-on and noncentral collisions as well. At the
end of section 3 a comparison is made with the results for specific
entropy valuee inferred from the composite particle yields measured
with a 47r detector. Concluding remarks are given in section 4.

2. Calculation of the entropy

For the entire hot nuclear system formed in the course of a

heavy ion collision the calculation of the probability to be in a
certain state seems to be hopeless from the point of view of an exact
quantum mechanical description, and therefore a rigorous calculation
of the time evolution of the density operator and of the entropy seems
to be imposeible. However, since one deals with a rather hot nuclear
ensemble the entropy value might be evaluated by meana of the inde-
pendent particle approximation if one introduces the probability

is= i(?.ﬁ,k)that a certain single-particle state or a certain phase

space volume is occupied. In the Fermi gas approximation the entropy
can be written as

s.- (dr[$tsu-hbu-n]

where d?¥ - 4 A%r d’P/(Znt\Ys represents the phase space volume ele-
ment (the Boltzmann constant has been dropped). The factor 4 ie due
to the spin-isospin degrees of freedom. The distribution function

is normalized to the particle number A of the system

§ $CE3DAY = AlY). )

In the claseical 1limit one hee §'<<1 , and the entropy takes the
form

S/a=1-<bndy )


http:4IlUlrMJ.ou
http:considered.In

with mean value

<Ch&> g g{ﬂnfdx/’SSA?. (5)

Providing that thermel equilibrium is reached so that

§ = _9/\% exp (- FG/ZMT) one has
<fn s = Ch<£>~%(‘l'€"2) (6)

3 3/
and < £'> - XA /92 ¥ wherf is the particle number densi-
ty of the system and A= (_Zﬂt- /MT)‘/"denotee the thermal wave
length of a nucleon. Combining (6) and (4) one finds the usunl ent-

ropy expression for the noninteracting Fermi gae In the classical
limit

Sh =%t (V%) = %= ta [2¢H]

Notice that the phase space occupation function f introduced
above does not contain two-particle correlations and therefore the
in-medium corrections and cluster formation effectls are nol contained
a priori from the point of view of a fundamental description. Howe-

ver, in the case of local thermodynamical equilibrium thesa effects
can be accounted for by solving a Bethe-Goldstone-type equation (cf.
refs./3’8/). In the low density limit the phase occupation function
4 can be related to the ratio of deuterons to protons (TEJP) and
formula (1 ) follows from (7).

According to these simplified derivations for the calculation
of the entropy within the cascade model two strategies may be app-
lied. In the first one which is similar to that described in ref, =
the entire phese space is divided in cells with A'XZ = 4 [f}lA%q/bKt)
and the distribution function is then :
% N, Zg M:(R) (@)

= ’

T AT R AT

where N:(R) is the number of nucleons in the i'P cell ana R gives

the number of cascade runs. Introducing 54 in this way one had in
principle to consider the limiting case of an infinite number of

runs, Since this is not poseible for practicel reasons, one has to
be aware of the statistical fluctuations. Therefore, the method (8)
for calculating the distribution function by ite average value with
respect to one cell 4 at fixed time t has its own gpecific fea-
tures., This is because the division of the phase space in cells has

to be done with some care in order to obtain a rather smooth distri-
bution within the entire phese space. It is clear from (7) that a too
small cell division (where fluctuations in the estimation (8) of the
distribution function are not negligihle) gives a too small entropy,
whereae a large size of cells would lead to an overestimation of the
entropy value., In dividing the phase space into cells the adequate
geometrical description of the cescade processes has to be conside-
red in order to preserve the essential fact that the entropy should
not grow if the free motion of all cascade particles sets in. Accord-
ing to the Liouville theorem the entropy remsins then congtant be-
cause the volume of a phase space element does not change. However,
the phase space element itself is extremely deformed due to the free
motion, and thies requires a finer and finer subdivision of the phase
space in the cells 4 .
With (8), the formula for calculating the entropy is

g <2 [ bndis -5 - S00]0% 0 (g,

The respective results for the entropy per baryon obtained by the
latter formula will be discussed after the second method employed
has been introduced.

Using (9) the entropy can only be evaluated if the statistical
errors in the particle numbers of each cell have been kept small
and if at the same time the translational motion of a certain cell
in the six-dimensional phase space due to the free motion is consi-
dered properly. In practice it might be difficult to fulfill simul-
taneously both requirements, and another way for calculating the
entropy value might be more promising. let us assume that in the co-=
moving reference frame a local equilibrium is established for each
subvolume 4V; of the entire system. In this case we characterize
the moepntum d;&tributioe'in eacE Egbvolume ALG by the mean velo-
city Uy (€)a<P:/my= gi(g)/RMih and the temperature 7¢ deter-
mined byg.[é;m)‘"i“) z/éM‘Z_p: 37/2. The distribution function is

ZRES

5. [Fxﬁ,{) = ;{: axp [~ (ﬁ_ MU, (¢) )2/21‘17:(4)] (10)
with
5 ¥ it = f—; /\2 (11)
J, - B, ,
4 aV; 4

*) Actually, in the calculastion we have employed everywhere
relativistic formulae and used also the relativistic Boltzmann dist-
ribution function (see ref. /9/ for details),
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where N; is the mean number of particles in the considered space
subvolume, see eq.(8), and the factor 4 is due to spin-isospin de-
generacy. Having the distribution function (10) at our disposal the
momentum integration can be performed in calculating the entropy
value. For the limiting case ‘P'. A;!<<1 the expression for the
entropy per particle takes the form

Sh%h-5 3, ‘“‘S’a/‘i/«)/% £,

which for a uniform distribution goes over imto (7).
In the actual calculation we used the general expression fol-

lowing from (2), when the integration over momentum space of the phase

space elements is completed. One should expect that after having
smoothed over the momentum distribution, the final resulls for S/A
will not be very sensitive to the choice of the subvolume size. In
this way (12) can be treated as an additional test for the appliica-
bility of (9) to calculate the entropy value attained in the course
of a heavy ion reaction. The numerical enalysis is represented in

the next section. Since local equilibrium wes assumed in the latter
method one obtains an upper bound for the entropy value. Thie is be-
cause the emoothed distribution function (10) is inferred via the
principle of extremal entropy at given mean values of §;, {IL and7}'

3., Calculational results

It was already pointed out in ref./7/ that in celeculating the
entropy the cell configuration has to be determined in an epproxi-
mate way, whereby it is not practical to divide the six-dimensional
phase space into cells without considering the sensitivity of the
distributlion function to some of the six variables. Several aspects
of the cell subdivision have been discussed in ref. 7 . Here, we
will not repeat or even copy to some extent this discussion but we
will immediately begin with the representation of our results.

First, we consider a model aystem of 80 nucleons the Boltzmann
equation of which is exactly soluable. We are mainly concerned with
the problem of the phase space division aend investigate 1n subgec-
tion 3.1. the applicability of the two methods to evaluaste the ent-
ropy during the stage where the free motion of the reaction products
sets in,

In the next subsection we consider the collision process of a
real system and begin the discussion of the entropy evolution for
head-on collisions, Of mpecial interest are the absolute values of
the entropy attained in the latest stage of the collision process.

Our approach permits us gimultaneously to study the time dependence

of both the distribution function & end its various moments such as
the particle number density, the local mean velocity, the local tempe-
rature, etc. Finally, we investigate the entropy for noncentral col-
lisions. In subsection 3.3. we compare our results with those where
the entropy is determined via the cluster abundances.

3.1. Model system calculations

Since the phase space subdivision has to be done properly we
investigate initially a model system of a freely expanding nucleon
gas characterized by an initial temperature T;: 40 MeV and an initial
Gaussien distribution with mean density <j>>= E$=O.17 fm™3. Such a
model pystem may describe the disassembly stage of a head-on colli-
gion after the violent reaction process has taken place. A total num-
ber of 80 nucleons has been chosen so that the results can be rela-
ted to some extent to those found for the 4009 + 4OCa central colli-
sion at 800 MeV (see also ref./7/). For this model system the Boltz-
mann equation can be solved exactly (see Appendix A). The resulting
value of the entropy per particle S/A (mee(A7) ) is constant in time
and given in Fig. 1. First, we have calculated the specific entropy
as a function of time employing the method of ref./7/. As 18 clearly
seen in Fig. 1, the corresponding values of S/A are somewhat larger
than the exact ones and increase with time. (Por the subdivision of

Sip Fig, 1.
4.2 A=80 To=40MeV 3] .
e | The evolution of the specific entropy
) o 1 for the model system calculated by
/// { using method which is based on a sub-
38 //f i division of the 6-dimensional phase
i sy ] (cf. ref./7/). The exact result is
38 ‘ ‘/1* = ) shown by & dot-dashed line. The cur-
34 Jtéf:ji:l_ L : ves are calculated by using different
ﬁ subdivisions (spherical reference
32 4 frame): ArﬁNar\tN *Ng, =2x4x
| E 1 %E‘ L x5x2(1), 2x4x5x4 (2),

Bt[fmlc]z. 2x4x5x2(3), 1x4x5x2 (4).
Here Ar is the step along the radius (in fm), N Opr’ Np, N'Gp are

in turn the number of steps in coordinate angle O - (measured rela-
tively to D direction), momentum p and ite polar sngle O . The sub-
division in epr ig the sams as in ref. besides for curve (3) where
it is uniform in cos epr. The subdivision in cos Qp is uniform
everywhare,
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the phase space see figure caption). As discussed above, the increa-
se in the entropy with time is solely due to the fact that an ini-
tially fixed subdivision begins to fail when the system has conside-
rably expanded. ''he average phase space density becomes smaller and
consegquently the entropy increases., This effect can be obscured by
choosing relatively large cells because then one can get indeed & sa-
turation behaviour for a longer time interval but simultaneously

the absolute value for the "quasiconstant'" specific entropy is larger
than the exact one. This is illustrated in part by curve 3 in Fig. 1.

From the results represented in Fig, 1 it is seen that the pre-
cige value of the entropy can only be reached with a relatively small
cell mesh size with respect to the radial extension, Forav =1 fm
about 500 rums turnmed out to be quite sufficient in getting reliable
results. For even smaller intervals the number of cascade runs has
to be increased.

The results represented in Fig. 2 are obtained by employing the
second method of section 2 which is based on a smoothing over the
momentum space and where a locel temperature for each cell in the
co-ordinate space has been introduced. In doing so, the collective
motion of the single phase Bpace cell which doss not contribute to
the temperature or the entropy can very easlly be extracted. Usling
a reasonable cell subdivision, the exsct results for the specific
entropy, the mean temperature and the mean density are reproduced
for & large time interval.

If statistical fluctuations become relatively large, the cal-
culated entropy deviates from the exact one. The curves labeled by
3 and 4 in Fig. 2 demonstrate the importance of having enough runs.
Curve 4 is celculated by using R =10 and demonstrates that due to

AR
36! A=80 To=40 MeV . Fip. 2.
L *ﬂiuﬁ_:f“féj The evolution of the specific entropy,
e e e e average temperature and density of the
e A T model system calculated by means of
2 L the momentum averaging method. The
7] = exact result is given by a dashed line.
IMeV] S The pubdivisions for the various cur-
Y [tm?*] ves are:
30p-, \\ 05 ArxNg. =2x8 (1), 1x8(2),
\.
2ol )\\ Ny 0w 2x4 (3),2x4 (4), 3x 8 (5).
D\ X \*flrb oo The subdivieion in the polar angle Qr
1 ~ 4 1
L -\\t\*Jé“Pj is chosen as uniform everywhere. The
M ——t——e—=al number of runs is R = 500 except for
H{tm.c] case (4) whers R =10,
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the improper account of statistical fluctuations the calculated va-
lue of the entropy may be smaller than the exact one.

Curve 5 i1llustrates that a saturation-like behaviour can be
achieved by using rather large cell sizes., The lower part of Fig.
2 gives the temperature and particle number density as a function
of the time. All quantities considered are in excellent agreement
with the exact ones for times smaller than 15 fm/c.

The conclusion from these model calculations is that the second
method based on a smooting over the momentum space has to be pre-
ferred with respect to the first one. At the beginning of the colli-
sion process where the size of the entire system is gtill smsll there
seems to be no difference in applying both methods. However, when
the collision process approaches the disassembly stage and the free
expansion of the intermsdiate system begine, the second method seems
to be more appropriate to calculate the entropy value because then
the population of the entire phase space can better be controlled
and, especially, the relevant thermal motion within a cell can be
separated from the cell's collective motion,

32+ Entropy evolutions for real systems

After having discussed these model system calculations let us
turn to a real case and consider the reaction Ar + Ar at 0.8 GeV at
zero impact parameter. The results obtained for the specific entropy
by using the two methods described in section 2 are shown in Fig. 3
(see aleo the figure caption). The phase 8pace subdivision as in ref,

yields no pronounced saturation pattern for S/A when the colli-
sions have ceased and the minimum value is about 0.6 units larger
then obtalned by the momentum smoothing procedure. In this respect
it should be noted that for a non-Gaussian distribution the momentum
smoothing procedure gives an upper limit for the entropy. As can be
seen in the lower part of Fig. 3 the momentum averaging procedurs
gives & saturation behaviocour in a wider range of time,

In contrast to ref./7/, in the Dubna version of the cascade
model/s/ nucleons are consldered as bounded initislly in a finite -
range average potential of the Saxon-Woods type. Therefore, the
results of both approaches cannot immediately be compared. To make
a direct comparison to the results of ref./7/, we have replaced the
initial nucleon density distribution by a sharp-edged one,neglscted
the binding as well and repeated the cascade calculatione for
Ca + Ca at Q8GeV/nucl. In this case the entropy value obtained by
our momentum smoothing procedure turns out to be S/A=3.2, i.e. it
is about the unit smaller than that given by Bertsch and Cuguon/7/
who coneidered additionally the interaction among the participants.

9



Fig. 3.
3l The evolution of the specific
7 \ | entropy for central Ar + Ar
A% (0.8 GeV/A) collision.

X Upper part: Bertsch-Cugnon
| method as in ref./7/ (see al-
so Fig. 1) with 4r x N g o

XN xNg =2x4x5x2(°),
2x4x5x4 (%), 2.5 4x
;_XSXS(O).

1 Lower part: Method of the pre-
sent work (see also Fig. 2§
with &r x N g, = 2.5 x 8 (o),

1.0 x 8 (&) for spherical sym-
metry and Ar X Az = 2 x 2 (*),

1.5 x 1.5 (x) for cylindrical
symmetry.

S/p

8 2 30

1 lomscl
We have estimated the participant -participent interaction and
found that it does not contribute very much in this energy range.
The difference of about one unit can mainly be attributed to the
more correct treatment of the collective motion of each volume ele-
ment,

Taking into consideration the diffusivity of the system one
would obtain an additional increase of the specific entropy about
0.6 units.

Having a reliable method for calculating the specific entropy
at our disposal it is interesting to study the time evolution of
quantities characterizing the system. We show this in Fig. 4, where
in the upper part the relative position of the projectile and tar-
get has been sketched for four different time situations. From Fig.
4 it can be seen that the specific entropy reaches the saturation
value when the two nuclei maximally overlap. (Note that we represent
the specific entropy S(t)/A(t) where A(t) is the number of struck
particles. Since the number of struck particles is rather small at
the beginning of the collision, the specific esuntropy decreases with
time). In contrast, other mean values as the mean number of struck
nucleons saturate at the disassembly stage. In this way, the entropy
measured indirectly by relating the cross sections of composite par-
ticles (see refs./4'5'11’12/) gives us at lesst valuable information
ebout the system when it has bypassed this stage of the evolution.
The stebility of the numerical calculations is demonstrated by the
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The evolution of different average
characteristics for central Ar+Ar

(0.8 GeV/A) collisions. On the upper

part of the figure it is shown how
the colliding nuclel are situated
at the time moment marked by the
8rrows.
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12! 1285 10%s
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| AT = 10 MeV
_6_ 4
12+ ]

-2 6 0 6 2 B Z [fm]
FiE. EI
The temperature field for cas-
cade nucleons from central
Ar+Ar (0.8 GeV/A) collisions.
The contoura for the temperature
field are defined by k x T (k=
1,2,e«0)s At given time moment,
the dashed circles indicate the
undisturbed target nucleus (Rif
=1,07 AY2 ), and the arrows
show the position of the pro-
Jectile nucleus.

fact that the specific entropy remains fairly constant, although
the entire system is enormously cooled down.

Since we have calculated the entropy via a smoothing over the
momentum space it might be instructive to show the contour plot of
the temperature field. In Pig. 5 the dashed circles glve the posi-
tion of the initial target nucleus with 12v1_=1.07 A1/3, whereas
the full lines denote the different contours. (Note the different
temperature increment A47T). The formation of the well defined tempe-
rature field shows clearly that a smoothing over the momentum space
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is very favourable for considering the later stage of the collision
when the free expansion sets in.

LA R B B B Pig, 6,
Impact parameter dependence of the
Sia specific entropy for the Ar + Ar

Ar + Ar (0.80 GeV/nucl.) (0.8 GeV/A) collisian. The values
= 1 of S/A are shown for the breakup

density <§G-')7= yo/ﬁ a

6 Sia T
« Fig. 6 shows the dependence
q:______._____,_——"””’ | of the entropy on the impact para-
[ ——— S meter, It is clearly seen that the
2k ~\’\\“*E?° | specific entropy increases steadily
\‘\\‘\ a8 the collision process becomes
0 ) , , , . f more periphersl. Such a tendency
0 4 6 can also be obtained from the ana-
b [fm]

lysis of the 49r data of refs./4’5/.
This is because for the peripheral collision the struck particles
become rather spare in phase space, whereby the associated temperature
exceeds that of central collisions. For comparison we have also shown
in Fig. 6 the entropy normalized to the total nucleon number. As ex-
pected, that quantity approaches zero for large impact parameter
values.

The phase space occupancy function<§>for noncentral collisions
has been shown in ref./13'14/ for Ca + Ca at 0.8 GeV/nucleon and is
in reasonable agreement with our findings.

3.3« Comparison to entropy values inferred from composite
particle production of relativistic heavy ion collisions

Finally, let us discuss our results in connection with the other
models relating the production of composites to the produced entropy
in the system. Concerning the 4 I data an extensive discussion of the
situation is performed in ref./5/
by using the method of Kapusta/11/ and StScker/12{ respectively.
Both models are based on quantum statistical approaches for infinite
nuclear matter and include the finite size effects of the clusters.
Kapusta's model 711/

where entropy values are extracted

predicts the number of real deuterons and deu-
teron-like pairs contained in the heavier clusters, but does not
specify these clusters. The model of Stocker et al./12/ includes the
formation of heavy clusters up to mass number 20 and the decay of &ll
unbound resonances of these species.Purthermore, it also includes

the contribution to the entropy originating from the pion and delta
production,

S L g T T 7 T 5 Fig. 7.
a : + Kapusta Projectile energy dependence of the
LI k % ! 1 specific entropy for central Ar+Ar
' code collisions."Experimental” points
s from /5/ are obtained by means of
3k : T 4 two different procedures /11,12/.
%{ T T Stocker et al.
| ]
’ The results of the analysis
e Ca+Ca
1t | are shown in Pig. 7. It is rather
° Nb+Nb | striking that the two models give
ob« . . 4 ‘Agkg__J rather distinct results. The appear-

0 1 2

ing difference of about twe units
Ei ! nuct [GeV]

cannot be explained by the contribu-~
tion of the heavy fragments at lower energles and/or by the contri-
bution of the pion production at high beam energies. From the fig.7
it 1s seen that the cascade results for the specific entropy are in
between the predictions of the other two models and seem not to fa-
vour one of the methods for beem energy up to 1 GeV/rucleon. For
higher energies the cascade results seem to cope with those obtained
by Kapusta's method (see also ref./14/).

To investigate the origin of the large differences between
the entropy values inferred by using either Kapusta's or Stocker's
method, the cascade model predictions for the cluster formation have
also to be analyzed. For that aim we have developed following the
line of a previous paper/a/ a dynamical coalescence model which en-
ables us to describe the composite formation as a function of the
temperature and deneity of the nuclear medium and relative momentum
of the compomites. The specific entropy values represented in Fig. 7
are not much changed when allowing for clusterization but one obtains
information how the composite production is releted to the specific
entropy value, Details of the calculations will be published else-
where.

4. Conclusions

¥e have presented a cascade model calculation of the gpecific
entropy. The used method is based on a smoothing of the distribution
function in the momentum space by introducing a temperature field,
Compared to the method which i1s based on a straightforward subdivi-
pion of the six-dimensionel phase space/’/ the method presented here
allowa us to calculate the entropy in the esaturation region more
accurately. This is because the thermal motion can well be separated

form the collective motion of the cell. The numerical results have
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shown that the specific entropy for the head-on collision of 40cg440cq
at 0.8 GeV is S/A =3.2 and about one unit smsller than that given in
ref./7/. This is mainly due to the too rough phase space subdivision
and the partial inclusion of collective motion effects in the calcu-
lated entropy. Furthermore it has been found that the account of the
diffusivity of the medium increases the specific entropy by about

0.6 units for *Oca + 4008.

It is elso worthwhile to note that the cascade results for the
specific entropy agree well with the predictions of the hydrodyna-
mic calculations including viscosity effecta/15/. This concerns the
absolute values of the entropy and their dependence on the beam ener-
gy as well,

Compared to a recent analysis of 4y data of ref./S/ the entro-
py values do not favour the predictions of Kapusta/11/ or Stacker/12/
et al. but are clearly smaller than those obtained by using Kapusta's
method, It seems to be dublous whether or not the relation (1) can
be used to derive the entropy from the deuteron or higher composite
formation, becauge this relation is valid only in the low density
limit where in-medium effects on the cluster formation are negli-
glble. We suppose that cascade model calculations give a reasonable
and independent approach to evaluate the entropy. On the other hand,
the formation of compositeg should be performed within a coalescence
model which takes into account in-medium corrections. In this way a
consietent description of cluster abundences as well as entropy va-
Jues may be found.

Two of the authors (G.R. and H.S.) are grateful to the Muclear
Division Group of JINR for interesting discuseione and the kind hos-~
pitality extended to them.

Apperndix A

Neglecting the collision term the Boltzmann equation takes
the form

RIFFLPY , Borias (a1)
S (r, )*):0
ot Tk f P

The initisl condition at time f =0 is written as

$(5. 8, t=0)= P(3) 9(P)

where /q ,;z
) = (Tm‘)% Q 24
2 2
and 2 - 451_
9(f) = (2x£)° - EHT _A° o 2MT
‘i(ZWMT;) 4

are the distribution functions for the density and momentum,
respectively. The normalization conditions are

b [ pleirtdr = A

9P PZ(Z_:%%

Bince for T >0 the system expands as r = *‘Bf and at the
same time the momentum distribution remains unchanged the solution
of (A1) can be writiten in the form

SRBA) < p(R-£t) 9(B) n2)

whereby the local density, velocity and temperature arse given by

=1

rl
-» ¥ 4 _-—.'—
PO (o5 0RD/ for g gy P

L(Rt) = j(’?.ni:)’ (F,P',é)/fdrf =M"A£z 7;/145&) . (a4)

T(rt)= 3‘/-(211?:]1 —-LM—LI-) (7 ,{)//Jr{._.'];/ﬂa)(“)

2
with ﬁ(\’:) = "'7;*.1/’10 . With the help of expressions }AB)-
(A5) the complete solution of the Boltzmann equation (A1) reads 1
B 4 % [P-Mu(iy]? e

o TNT. Jacy o 24P

s = (o) (e ) € pe p AR
27 2n A BlE)

So, the time evolution of the density diptribution function is cha-
racterized by a broadening of the effective width A% 5 A*Ay)
and a lowering of the amsociated temperature 7, -» 7;/7369.
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The specific entropy st € =0 1is given by
o A = (Slap> s <lag>)
3 (A7)
= & <p>A 3
= 42 il E;(,fh 2—/)

Inserting into (A7) the time-dependent solution (A6), one sees that
the specific entropy is conserved for any time instant. The quan-
tity é% (eni—l):0.46 appearing in (A7) additionally compered to
the expression for the entropy given in the text (eq. (7)) is due

to the fact that in (A3) the Gausseian distribution function is used.

1.
2.
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Cyanma K. K, w ap.
IHTPONMA CHE ToMM, OOPAJOBAMHON B CTONKHOBEHUM TAKENWX MOHOB

£2-85-592

I pamuax Kackaproi Mogenu MCCNeayeTCA 3momouns IHTPONMKU CUCTEMB,
ODPASOBANKOR NDU CTONKMOBEHMW TAWENHX WOHOR. METOA BHUMCMEHMA 3HTponum
HEHOBAH HA CTNAKMBAHUU GYHKUMK DAacNpPeaeneHusA B MMNYNbCHOM NPOCTPaHCTBE nyvem
AUEABHKA NONA TemnepaTtypw. flokasaHo, YTO PeaynbTUPYIWAA BHTPONUA, NPUXORA-
SACA HA OAWMH HYKNOH, BecbMa YyBCTBMTensHa K npoueaype pasbueHua Gas3oBoro
NPOCTPAHCTBA Ha AYEHKM Ha CTaguu CBOBOAHOrO pPa3neTa NPOAYKTOR PEaKUMM.

U3 CpaBHEHWA C NOCNEeHUMM IKCNEPUMEHTANbHMMM pesynbTaTaMu ANA ygaenbHoM
SHTPONMM, M3IBNEYEHHOM W3 4m -MIMEPEHWUI BHXOAA COCTABHBIX YACTHLY, HawngeHo,
HTO KacKapHuie BWUMCNIEHWA He NO3BONAKT OTAATh MPEANOHTEHME KaKOMY-To OQHOMY
METOAY MOAENLHOW OUEHKU 3HTPONKUM M NPEACKA3WBANT 3IHAUEHWA IHTPONUM MeHbuwe
TeX, KOTOpWe CReaynT M3 PAacCMOTPEHMA Ha OCHOBE PABHOBECHON CTATUCTMKM.

PaBorta BunonHena B NlaBbopaTopun TeopeTuueckon duamku OMUAM.

MpenpHHT O6BbeHHEHHOTO MHCTHTYTA RAEPHNX Wccienopamuii. dyBua 1985

Gudima K.K. et al, E2-85-592

Entropy of the System Formed in Heavy lon Collision

The entropy evolution in heavy ion collisions is investigated by means
of a cascade model study. The method for calculating the entropy is based
on a smoothing of the distribution function over the momentum space by in-
troducing a local temperature field. It is shown that the resulting specific
entropy is rather sensitive to the proper choice of the phase space subdivi-
sion at the disassembly stage of the collislon. Compared to recent results
for specific entropy values inferred from the composite particle yield of

Ar measurements, It is found that the cascade calculations do not favour

other model treatments but as a trend we obtain smaller entropy values than

following from conventional considerations within equilibrium statistics.
The investigation has been performed at the Lsboratory of Theoretical

Physics, JINR.
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