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1. Introduction

The intermediate position QCD“_1 holds between an exactly
solveble model - the Schwinger model, esnd the ususl Q(‘-D3+1 moti-
vates the interest in it. Thus, the non-Abelian structure of the
gauge group is emphasized. Does such an intultive conclusion take
place in this theory? To amwer this question we study maseless
QCDy,4 in the frame of the minimal quantization schema/1/ (in
terms of gauge-invariant variables). An adequate and convenient
description of two-dimensional field-theoretical models with far-
mione provides their bosonization /2'3/. In the model considered
this procedure is troublesome because of the non-Abelian gauge
group. A possible way out of thie difficulty is some special choice
of geuge conditions 4’5/. However, such an approach does not allow
one to make general conclusions about gauge-dependent quentities,
for example, sbout the coloured-objects Green functions. So, it ie
important to formulate the theory in terms of gauge-invariant vari-
ables and bosonize 1t in this general case. In the present paper
we show that the solution of this problem consists in constructing
the unitary irreducible representation of the Kac-Moody algebra
(the current algebra in QCD1+1) that satisfy dynamical equations
of the theory.

The paper is organized as follows:

In section 2 by the Schwinger model example the minimel quan-
tization seheme is illustrated. The topological confinement crite-
rion based on the results about the quark Green function 1s for-
mulated, .

Section 3 is devoted to introduction of gauge-invariant vari-
ables in two-dimensional QCD.

The problems cormected with the bosonization of the model are
conaidered in section 4,
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2, The minimal quantization scheme:
Schwinger's model

Quantization of two-dimensional messless QCD - the Schwinger
model, iIn terms of gesuge-invariant variables (which we have called
"the minimal quantization scheme") in the finite-volume space-time
leads to an Interesting result sbout Green's functions of charged
objects 7/, Without entering into details, we shall give a brief
review of the method used and discuss the main result.

The Schwingex model action
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The variables (4) are invariant under U(1)-gauge transformetions,
Their choice is rigidly fixed by the dynamice of the system and by
the requirement of gauge invariance. However, in their construction
procedure iteelf there is an ambiguity because the action of the
inverse operator 3;1 in (2) ias determined up to a function sa-
tiefying homegeneous equations

WAE)=0 , 3 0%Af) =0. (5

We are interested in the solutions of equations (5) in the
claas of smooth function

g(x) = exp :”‘(1)5 )
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vanishing at the space-time boundaries, which correspondis to the
abgence of chargés in 1t. At the ends of the time interval thess
functions determine & map of the 1line R(1) (with identified end-
~-points~ see 7 ) onto the group U(1). The smoothness condition
then transforms into the reguirement of an integer value of the
corresponding degree of mapping
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that may be written also as
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314being the first homotopy group.
In the finite-volume space-time
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equations (5) have euch nontriviel solutionse
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which changes the form of variables (4)
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Ae @ result, the sources of the charged fields in the Green-
functions generating functional acquire phase factors (6), (8)
which represents the topological vacuum degeneration in Schwinger's
model /8/. After taking an average over this degeneration and re-
moving the infrared regilarization (R, T2 o0 ), the quark Green
function vanishes in the limit P‘-a 0 , whereas the neutral-
—current correlator preserves its one particle-pole (the quark bound
state in the model) + This may be considered as a manifestation
of the confinement in Green's functione context 9‘10/.

The quark Green function vanishing in the Schwinger model is
connected with topological degeneration of the gauge-field vacuum
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which follows from (7). So, its generalized form
T, (6)-Z, ®

where D 1is the space-time dimension;and G,— the symmetry group
of the theory,may be considered as a criterion for the existence of
topological confinement mechaniem in it.

Por example, in QED3+1 condition (9) is not valid,

J(B(U(i)) =0 3

which is in agreement with the observability of electrons. In QCD3+1
relation (9) takes place and if this criterion is really crucial

it would allow us to make a conclusion about colour confinement
there/11/. Thus, we have to compare the results of straightforward
calculations and those following from the "topological" criterion
in different field-theoretical models. The itwo-dimensiomal QCD is
an interesting object from this point of view., Since

m4(5U(ND=O, (10)

the topological nature of confinement mechanism may be confirmed
by the presence of free quarks in the model spectrum.

3. Gauge-invariant variables in QCD1+1

The two-dimensional massless QCD with a gauge group SU(N) is
described by the action

5= (e [-4 B PP it ],

8, &
FY DA - BuA +aE Ay Ay

(11)

lus)

; P
AP R Lo
[.LQ, t(’]=2ifa6crc

an.-- =J{|2) “"NZ‘{

PSR Ay

For subsequent considerations it is convenient to use the cova-
riant derivative in the adjoint representation
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for rewriting the action (11) in the form
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where

()= P Jr T ().

Following the method from section 2, we eliminate components
Ao through the constraint equations
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Here, we find a difference from QED, ,. From (10) it comes out
that there do nol exist nontrivial solutions of the corresponding
homogeneous equations. Thus, for the general solution of (13) we

obtain
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The action (12) then becomes
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A 2 -1
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where the operator ‘L is defined as
x, | o o
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Variables (15) are invariant under SU(N)-gauge transformationsi
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The covariant derivative Vﬂ in these variables colncides
with the usual one
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The action (14 ), when (15) and (16) are taken into account,
takes the form

A

that is the same as in the gauge A:L:-O « An analogous situation
takes place in QED1+1 with the only difference that the axisl gauge
does not provide an explicit manifestation of the nontrivial dyna-
mics of two-dimensional Abelian gesuge Iield/12/. However, the gauge-
-invariant variables make poesible another way for solving the confi-
nement problem - study of analytical properties of the quark propa-
gator and their interpretation in the epirit of quentum field theory
and statistical physics, In particular, the existence of a single
pole will be connected with the presence in the spectrum of a par-
ticle with the corresponding quantum numbers, the absence of such

a pole will mean the sbsence of this particle in the asymptotic
Btate9/1/.

4, Equations for the bound states in two-dimensional
quantum chromodynamice

The action (17) is similar to the Schwinger model action (3),
which may be bosonized,the theory being equivalent to the free massi-
ve pcalar field one/3’13/. Bogonization is based on the appearance
of an anomalous term in the axial current commutator
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due to the negative-energy states filling /12'14/,

The substitution
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trangforms relstion (18) into the scalar fileld ¢ (r) comuutator.
The axiel current partial conservation law then takes the form of
the Klein-Cordon equation
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The non-Abelian gauge group in two-dimensional QCD makes the
current commutation relations more complicated
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The algebrﬁ_(lB) ie known as the Kac-Moody algebra with e cent-
ral extension /15 . This algebra also arises in the free fermion
theory in two-dimensional space-time, in the nonlinear ® -model with
the Wess-Zumino term added to the action 1 ,in two~dimensional su-
persymmetric fermionic models/17 . For the QCD1+1 bosonization we
shall be interested in a sulLclass of irreducible unitary represen-
tations of the algebra (19), the separation being based on the dy-
namical equations of the theory - the vector-current conservation
and the partial conservation of the axial one.

It is not difficult to find that

‘i[Ho 3 J\St/ (1’)] = B(J-Sl:’ (T’)' (20)
where +{O is the free ilamiltonian in the model,
H, = de{ (x)y 2,1 (x).

With the help of the Heisenberg equation of motion for the com-
ponent isg'(l) and eq.(20), we are led to the following expression

for the axial current anomalous divergence:
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Let us define the operator ;Oo (x) as
ab bc .
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Equation (22) and the vector—current conservation law are
then written in a compact form
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Bosonization of two-dimensional QCD consists in constructing

the unitary irreducible representations of algebra (19) as soclutions
of the system (23). So, this sysiem describes the bosonic excita-
tions in the model. The experience from CII:‘.I).l+1 and the proposed
scheme itself are not compatible with the assumption that this mode

is connected with the gauge field 18 « It should rather be inter-
preted as a bound state of fermions.
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5« Conclusions

A relation of the confinement problem with the sfudy of analy-
tical properties of the coloured-objects Green functions seems na-
tural from the point of view of quantum field theory and statistical
physics. However, one of the difficulties along this way is the
gauge dependence of these quantities, It may be eliminated after
formulating the theory in terms of gauge-invarient variables. Their
introduction and the results obtained give rise to an assumption
of topological mechaniem of confinement and to the criterion of its

roalization/1'6'11/.

For checking the results of application of this critferion to the
two-dimensional masegless QCD, we have to bosnize the theory starting
from its formulation in the frame of the minimal quantization sche-
me. We have shown that in this case the bosonization is reduced to
the construction of the Kac-Moody aelgebra unitary representations
as solutions of the dynamical equations for the currents. This
approach has been successfully used in solving anslogous problems
in the Abelisn case (the Schwinger model)/12/ and also in the theory
of free Majorana fermions with chiral O(N)xO(N) symmetry in two-
~dimensions 16 « This gives us a confidence that it will provide
the correct interpretation of the bosonic mode in QCD1+1 and the
verification of topological confinement mechanism and its criterion.

I would like to thank V,.Pervushin for discussione and B.Bar-
bashov, A.Efremov and E.Ivanov for the useful remarks,
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