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I, Introduction. 

At last time nontrlvial Itrr"OI.. ur ~hQ rela ti v1..tic nuclear 
physics : cumulat ive procH,a.ua, !';MC-~r ,r.c t. IUlQmalous nuclear depen­
dence in large P.1. proo••••a arO ot j( ..."t l nt.ereat tor the general 
public at physiciat •• Such an ifltor•• l.jlllC phenomenon as the cumula­
tive particle proc1uct.1.ou ahow. t.hat Inull l quark configurations are 
evidently pres ented. 1n nuo l eull /1-)/. H I our opinion thia i. confir­
med by NA-4, EKe , SL!O expUrDn~nl. ~n d..ep i nelastic lepton-nucleus 
scattering /4-6/. A. t o the IUlomll loua nuclear dependence in large 
P.J. processes obs . rved. by Cronin ' " group in 1974 /7/ and investiga­
ted in deta i l by Sul.ev ' s grou~ at l b. Serpukhov accelerator /8,9/, 
the theoretical s ituat ion 1. JJ tI L 'Ili t hfllc t ory now /10/. 

The interpret at ion ot lhe ohs.ned oftects is difticult because 
ot two reasons : 

1. Distributions in nuclei and in tree nucleons are ditterent 
due to the Permi-motion at nucleons and a poss ible presence ot the 
multiquark tluctons /1-)/; 

2. Hard hadron-nucleus inter action c an be more complicated in 
contrast with the deep i ne lastic lept on-nucleon scattering because 
at the multiple rescattering effects at quarks at a colliding had­
ron and the absorption at secondary hadrons /10/. 

These circumatancea have not been taken into account eo t ar. 
Theretore, this paper contains the analysis at the relat i ve oontri ­
butions ot multiquark tluctons and rescattering at quar k ot th 
colliding hadrons taking the Permi-motion into accOunt in thft forma­
tion ot anomalies at the large P~ meson production, that have been 
observed in the experiments /8,9/. 
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This analysis is based on the mo s t realistic hadron and relati ­
vistic nucleus models. The s e models. as we thiny-, are the additive 

quark model of hadrons /11/ and the quark-parton model of nuclear 

fluctons, naturally expl aining t he EMC-e ffect and the propertie s of 
the cumulat ive produc t ion /2, 12 ,13/. 

The mechani s m of l arge p~ hadron pr oduction in hadron-nucleon 

collisions at high ene rgi e s shou ld be known in order to analyse the 

hard hadron-nuc l e us proc esse s . As is known this mechanism can be 
the hard elas t ic scattering of quarks with t h e SUbse quent fragmenta­
t ion of one of them into the observed large P~ hadron / 14 /. In the 

ca se of hadron-nucleus interaction the constit uent quark of the ini­
tial hadron before a hard collision with a quark of a nucleus can 

have a number of soft Collisions (at small momentum transfers), that 
cannot be neglected if tha moment un transverse of the final 

hadron is not asymptotically large /1 5/. The quark collisions inside 
the nucleus succeeding the first hard ones can be negl ected because 

of their small contribution /1 0/. The physical reason for that is 
the following: the constituent quark shakes off i ts gluon and quark­
antiquark cloud after the hard collisions, therefore its cross sec­

tion of the interaction with the nuclear matter decreases fast. The 
difference between the quar k distributions in free nucleons and in 

nuclei should be taken into account close to the one-nucleon kine­
matic limits, that is at X.l. ~ 1 /2,3,16/. For the process of lar­

ge P.l.hadron production in N-N collisions at the angle in the900 

N-N centre of mass the variable x goes to x.J,. .. 2F,L/ .J'S. 
Just a t large XL the anomalies in the inclusive meson spect r a 

have been found /8 , 9/. The value of x~ in these experiments amoun­
ted to x~ .. 0.81 ( lS • 11.5 (GeV), P.1. - 4. 65 (GeV/c). 

The paper is organised as follows. In Sec. 2 we consider the 

mode l of multiple rescattering processes. The inClusion ot multi ­

quark contigurations in nuclei will be discussed in Sec.3. The re­

s ults calcuat i on and their discussion are given in Sec.4 Sec . 5 
is devoted to the main results and the conClusion. 

II. Multiple Quark co llisioD• • 

The ro l e of multiple quark collisions inside tne nucleus in 
spectra of large F~particles produced iD h-A interactions at high 
energies has been investigated in ret s . / 10,15, 17, 24/. In the 
general CBs e the quark of the init ial hadron can have both 80ft 

(at small transfers /t / , 1 (Gev/c)2) and hard (at large transfers 


/t/ ~1 (Gev/c )2) collisions inside the nucleus. It was shown 
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/15, 19/ that soft multiple rescattering of quarks of the inH ial 

inside the nucleus give the main contrihution to the spectrum of 

secondary particles, in particular, mesons at P ~ 2 ~ 3 ( GeV/c) , 
but at larger transverse-momenta hard quark collisions have to be 

taken into account ,that ~ s. the oollisions at large t ransfer. Howe­
ver, contrary to general opinion the hard rescat terings cannot 

explain the observed A- depend ence of spectra /1 0 , 20 , 2 1/. In this 

connection, the authors of ref. /18/ have made qu.alitative and quan­
titative statements that the main con t r i bution t o the formation of 

the anomalous nuclear de pendence is g iven by the proce3ne~ in which 
the large angle scattering occurs because of a sovoral of soft and 
one hard collisions insi d e the nucleus. Tho accurate calculations 
under these assumptions have not b~en pertonnod Du lar. Therefore 
it is intera.ting to de ve l op the method proporoudbef ore /15,17-19 /. 

The dynamics of the production o.r lnrel.l r part icles in h -A 
reactions can be considered in tho .following fIllUlJlsr. According to 

the additive quark mo del /11/ ovary c OMsLllucnt quark. valon. of the 
initial hadron s catters multiply soflly QII nucle ons inside the nuc­
leus, that is at small transforo indupenduutly of each other. Then 

it scatters hardly on the qunrk of thu Iluclear nucleon that is elas­
tically at large t ranJ3f er. After thE\"I. the quark can be considered as 
the point like parton the croaa-oection of which is very small. There­

fore this quark-pa rton does not practically interact with nuclear 
matter until a hadron is formed from this parton mainly without a 

nucleus /1 0,20/. I n the case of the product i on of rather fast had­

rone al l a r ge P in h-A reactione we t ake into account multiple 

soft and one hard quark col lisions inside t h e nucleus. 
We shall consider new t h e inclusive l arge P~ meson spec trum 

in P-A interact ions. Ac cording t o t he above-mentioned and ref s. / 15. l!i 
18/ it can be represented in the fo l lowing form: 

d3 
± pd E> r- (n) ( X Ie> ') ( 1)E n , .L p "'=\ 

- (""> ~ \ 
Here the follOWing notation is introduced: t- (X, I .\..) 18 

the inclusive hadron spectrum after n - mul tiple qUttrk 0 0111 ­

sions inside the nucleus. that depends on the longitudlnlll IflOfilu lltum 

4­

fract ion x and t rwlsver",e-molJ)"ntum P.l of hadron r n is the pro babi­
li t y of n quark co l lision", inside the nuc l eus. 

We sugges t to reprcsonL Lhe hadron- spo ctrum Ed("fo/Jp in fA­
collisions in lhe followl.ul; Lorn: 

db ~ ...J (»- 1) .-i i J :l ")E - ::: '" N b" (x KJC::r('I..}_'_ ou"(S, t 1 (2)
d5P L..." ~I- " N 1. ~ , ~ ~ .. 

>"\ II cit ee ­
l> '\ .') d d

" <'D rl.- (-Z) S- (S +- t 
'1 

+/A d)( , )/." "lei 2K..L 

G,. ("'- I) = /"1 ((""- 1) + , ; A " 
'l- cr J <3:1 .J., is "he convolut~ _ n of June L.I. ·~ nB 0'oJ("'-t) , r 


and t't- determined as foll ows: 


..-Ib' -I) ("I .2. Z . . :::. r C\1 ' 1) b 't,. (XJ K..l...)~ ~ cl)l-.ld)(..2.. ~d PLl..d f'z..\.. C~IJ 
;<' " \ 1.1. ) \ ( ..... , ~J 

.... f) {)( - X "1. X"2.) £,- (2..) ( k..L - ~ _ Ii:) .):::: G-", ® 5/"' -1)'1. '2-.L­
I" 

Nh 
(!I 

'I 

- 1)~ ~dl: \ d'g (S- L ((l, t »)n-1 f((?, 2 ) )( 
- coO 

* e:x.p (- S- T_ (~, .~~») ; 

'2 

T_ (~ z-):: } \ (~ 2 ') oi ~ I rft,) cl 3
'{" A· 

I- c><=' 

(,,·1 ) 

P('\} is the nuclear de ns ity; i1-()l.,-p. ) is the probability of the quark 
to have the longitudinal momentum fraction X and the transverse-mo­
ment um Pl after n-l interactior.a inside the nucleus. It is calcula­
ted ae the convolution of n-1 differential cross sections of the 
quark-nucleon interaction 

{ de;-­~,(x.,~)~ 
E>~ dXd2 fi 

GN(x2 ) is the distribution function of quark in the nucleon (we 
assume so f a r that the nucleus consists of A independent nucleons) 

, ·/j'f "'\.1 '"' in the long~ tudinal momentum fract ion 'dG:uo, t)/dt is the differen­x2 I
tial cross section of the elastiC quar k-quark scattering depending 
on the to tal energy square S of collid ing quarks and on transfer t 

/1 4/; D~ (Z) is the fragmentat ion function of the quark into a 
hadron. 

The cross section of the total quark-nucleon interaction is 

chosen in the fo rm G""'':::: 31 b accordir.g to the addit i ve assum­
""tV 
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ption /11/, where 6"'11 is the cross section of the total N-N 
collision. The momentum spectrum of the quark in the processes 

qN .... qX is chosen the s ame as in the reaction NN --9 NX /23/& 

!, (X , k1.) ::. (p +1 ) )(" Bi! -e.- 6 "1. (3) 
21r 

because the quark-nucleon i nteraction is soft. 

Notice that expression (2) in contrast to refs. /1 5 , 19/ was 

written under the assumption t hat soft multiple quark collisions 
take place before a poi.nt i! , but at a the hard quark co llision 
at large transfer take s plac e ; after t hat t he quark-parton inte racts 
inside the nucleus with a negl igtble cross sect ton. 

The distribution of constituent quarks in the colliding nuc le­
on depending on x and ~ i s presented 1n ref. / 14/ in a factorised 

f orm: G,IJ ( X, "-1.) = ~/J(X)9'" (~llThe quark distribut i:)!- i1': the 

nucleon 1jtJ lKJ.) depending- on an internal transverse-momentum can be 
taken in the form suggested in ret. /14/: 

-= ~ e -SIC.!.~N (KJ..) 
2Tr 

( lOt) 

The method of calculat i on of the quark function G- ~ eX,~ ) 
after multiple soft quark collisions inside the nucleus is presented 
in refs. /15. 19/ . Omit ting the calculational de tails we give only 

the final expression for G{i)(X, K.l. );: ~( ...](X) 3(144) ( K..L): 

cr (~) ( KJ..) ::::- __S,,-2---,-,-_ _ ( BIC'.l )3T'K,.....1 (81<1.)
<1 2 rr r(!...:1 +1) 2. 2" , 

~ ( '"'>C)() = ~N® w( ...) , 

W (1oo )( X) = (P.+1 ) X ~ ( "'" J..) .... -1
(.... -1J! X 
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Here K ... llJ) is the :.lcOonu1tl fW1Ctl ':J II of m order. real) is the 

garr.:na functic.m, B -:. 2 1< K,. ) , .vhere ( K,'>18 the mean mo:nontum of 
t he quark in the nuc l eon; it 1 3 determi ned from Lhe deep ine l ast ic 

I-N sc a t t ering data (seL! r efs. in ref. /'4/). As ~", ( X) we can use 
i n our ca l c ulat i ons Lhe di stribution of valence quarks s Lnce t he d is­

t rjbutions o f cons t i t uL!nt and valence quarks are pr ac t ically equiva ­

lent b:) th at small X /24/ and l ur ge X /29/. The distribu t ions of 

valen~ e quarks i n the pr oton are the result of the EMC- data fitting 

/2 5/: 
xu (X) = 2 rx (1 + 1. z X) (J - X)~· 3 

rJO<)/U(X) = 0.513 (.1 - X) · 

We should like to notice that these functions de sc ribe the EMC-data 
at Q2 = 5 .. JO(GeV / c )2 that co rresponds t o transverse-momenta 

PJ. "'== 	 2 .. 5 ( Ge V / c ) • 
We use the pa rametri ?ation of the elastic quark scattering in 

(1) that is different f rom the parametrization of the "black box" 

Feynman -Fie l d model / 14/ t aking into account the scaling violation: 

1~ 	
J M =- 30 (G-eVY (4) ti t (s + M)~ 

.i 
J' ~ ")?>If the paramet ri zation "if (~ .. "',) (-"t ... M~ de s cribes t he 

larg~ P~ me so n i nclus ive spectra in P-P collisions at FNAL and ISR 

ener gies (1 9~ S£. 62 (GeV», then (4) describes the IPhHE data at 
f:? c 11.5 (GeV) ver y we ll where the scaling violation effec t s a re 

c learly seen. 
In f ac t, the nuc leons inside the nucleus are not frozen, their 

mot ion inside t he nucleus has to be t a ken int o acc ount in the same 

way as in ref. /1)/. The quark distribut ion f unct i on in the nuc lear 
nucleon l.s presented in the form of the convo lution of the quark 

function of the fre e nucleon and t he function of Fermi-motion of 

nuc l eons inside the nucleus N~ / 13/: 

J 	 ) J X'~: (X) = N: ® 9#J == 5N: (x ') 1N (~I X' . 
X 

For simplic it y of calcu l ations t he funct ion Np
A can be chosen as in 


ref. /1 J /, in the Fermi- step form: 


7 



Ix-fl< ~N; (x) [ ~.' L. ~- (x - i)') 
1)(-.1.I~~ 

( G-e V/c ) . KF 
) 

KF = O.i9~ == 
m~ 

The choice of the Fermi-mot ivD in t hi s form i s an approach of course. 
Howe ver, it can be justified by t hat the inclusion of a rather real 

function NFA changes the quark function~x) by about 10% - 15%. 
In calculating the contribut i on of the multiple quark colli­

sions the quark di s tribution in the nuclear nucleons including their 
Fermi-motion has to be taken int o account. 

I II . Mult i guark conf i gur a tions i n nuclei 

The anal ysis of the cumulative production in hardon-nucleus re­

actions /1-3/, data on deep inelastic lepton-nucleus processes and 
other experiments point out that the distributions of quarkS in a 

nucleus and a free nucleon a r e rat her different. We think that ob­
served effects of relativistic nuc lear physics are the result of a 

permanent formation and decay in a nucleus of multiquark configura­

tions-fluctons. 

We shall use the fluct on model c onsidered in refs. /13/ accor­
ding to which the momentum distri but ion of quarks and gluons in the 
flucton consisting of colourl ess t hree quark clusters is the convo­
lution of quark and gluon distri butions in the nucleon and of an 
effective nucleon distribut i on in the f lucton. 

According to the model discussed the quark distribution func­
tion in the nucleus (averaged over transverse-momentum) is represen­
ted in the following fo rm: 

...!- AAGA(X) = L (I<'i G~(x), (5 ) 

~ - i 

A A A 
where Cw is the probability of the :!f.-nucleon flucton ('E C I< an , 

.. .~j 

and G~ (X) is the quark distribution in the flucton consisting of 

3k valence quarks ( . SK GtIt (X) cl X ~ )k). TbQ dist ribut ion Gk(x) 
can be represented as the Mellin convolut ion of the momen-tum distri­

bution of colourless 3q - clusters and the distribution of the quark• in these 3q - clusters: 
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b-" (X) = ~I.J ® NK ' (6) 

G1(x) = qN (X) is the quark distribution in the nucleon, Nk(X) is 
the distribution of 3q - clusters. The distribution Nk(X) (k q 2) 

fol lows from t he desc ription of the expe rimental data on disintegra­

tion, EMC-effect and the cumulative processes (see re f. / 13/). It 
has the fol lowi ng form (with taking into account the Fermi-motion 

of 3q-c l usters in the flucton and decreasing of the average momen­
tum fraction of valence quarks in the nucleus, etc.) 

B l..~-W ~ 
N,, ( J(...) = A",x 1i«1-X) 'IN.JX) J X=-K, 
8 -. A(2 K-W +.2)-~ 

(7) 

,w~3 , A = O • .3~ , 
" K. - A 

~ is the ratio of the momentum fractions of valence quarks in the 
nucleus and free nucleon. The parameter value VV ~ 3 corresponds 
to the case when the quark of the initial hadron in the hard scat­
tering knocks out only of all quarks of the colourless 3q-cluster 
of the k-nuc leon flucton, thus exciting its colour degrees of free­

dom of other k-1 colourless 3q-clusters of the flucton remain almost 
unexcited. We shall not discuss the problems concerning additio­

nal quark and gluon sea formed in nuclei /13/, since we are interes­
ted in l arge values X where the sea gives a negligible contribu­

tion )( ~ 0.3). 

I V. Results and discussion 

We consider now the large 'lL meson production processes in the 

prot on-nucleus colli s ions taking into account both the multipl e r e8­

cattering processes and the presence in the nuc l eus of multiquark 

f luc t ions of density - fluctons. 
For thi s purpo se we subst itute the quark distribution in the 

nucleus (5) into the formula of the mu l t i ple res c at tering (2 ) ins­
tead of the momentum distribution ot quarks in free nuoleons. 

First we shall discuss the quntitative results. As is shown in ret. 
/12/ the quark dist r i but i on f unct ion in the flucton calculated by 

expression (6) is cons iderabl y larger than the quark funotion of the 
nucleon qN(x ) at x close to 1. That means the following: if the mi­

nimum i ntegra tion limit )<......... is large, the final meson spectrum 
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Fig. 1 
c hanges very much if we shall take multi quark states in the nucle ­ ) . 

R 

us into ac count. If t he interna l trans verse-momenta K.l. are neglec- J> of R .. 

" 
'" .. ted i n expres sion (2 ) t he integrat ion limits Xl...... X . will 

) :l .....tt "4':"". ' ""'" '" I 
be presented by simpl e expr ession / 14/: , where 

_~ /J~ 	 " 
are the i nva r i ant A ­" Xl.. c...~ ~Mh , 	 ,. 

mes on spectra produ.ced in P-d and p_p'1-1 """" ~ Altl 	 .. interactione re spec t i vely ; the das hed2 ~-l -Cd t14.i 
11 curve is t he r esult s of calculation the 

ill!!: Ol 07 1M doub l e quark re scattering and Fermi-moti­
<;tHH 

on are taken into account. The solidXZ ...iH Xi )(.L t 9 'VIc.14/2. , 	 curve i s drawn taking the double quark collisions and Fermi ­
Ie 	 (f -S.~~ /Z Xi - X.l. vt-8 ('M/2, 	 motion , and 6q-states in deuteron int o consideration; i I 0 

are the experimental data at initial proton energy E .. 70(GeV)
IlU 

where ~C.M is t he emiss ion engle of t he f inal meson in t he cen t r e from ref. /8/ and /9/ respectively. 

of mass of the nucleon-nuc l eo n co l l ision. In the case ~~~ =90 0 

Fig. 2 we have 
1\0The XL-dependence of R .. 

_ fe'L 7 7i:-t') + fC'L(?l-) • 
' .0= >U. , ~z. "",",If = X.:!. XJ. 	
,~ 

Xi...... 2. - X..l 	 - 12.[f",I7t+h f p (?\'-)) 
1~K. 2X:!. - X.1. 	 where fen. (Ii) are 7\ -meson spectra .. 
to 

in the reaction P C1~AX; the .. '" 
solid curve is drawn taking bothTherefore, it is shown that XZ ....M /~ goes to 1 also at x-'- -- 1. 
the multiple rescatterings andSince the kinematic boundaries of quark di s tri butions in the free 
other multiquark configurations UI 

" I -------=-­
Q.3 G.6 07 o.t X...nucleon and in the flucton er e diffe rent , the inc lusion of quark 

in nuclei into account; the dashedflucto ns in ( 1 ) has to give a considerabl e increase in the spectrum 
curve is the contribution of multipleat x~ close t o 1. 
quark collisions and Fermi-ruotion of nucleons in nucleusConsider now the Simplest example - t he scattering on the deu­
only. I are experimental data at Eo - 70 (GeV) from ref. /9/.

teron Pd -- h X 
The i nvariant differential cro s s sec t i on of the process Pd 

has the followi ng f orm ( t =Ef;p ) 

Ipi = (1 - L11 ){Iff + Ifn + Pl./- (z)} + 


(8 )
J 

-t C6f tp 61 

J Fig. ). A-dependenc e of the rat io Rt,.iS tJa. probability to f ind a 6q - state in the deut erou, 

_\ P:a. =- .i- .6 <~l> is the probabi lity of the double r escat t eri ng, 
 at x.L- 0.81, the so lid and dahsed

l 'u curves deno te the same as in fig. 2; 
,. . ! a re experimental data /9/. 

t is t hel(trhadron spectrum after the reecat t ering calcul ated by (2). 

H) 	 II 
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The ratio of cro s s sec tions 

R ( )1..1.)::: IrJ -. h X 
2lff~hX 

of, 1 _ 1l''i-+ TT -) 
( _Q II" = 9 O· C. J = o , tt - ­
~M ) 'f 	 2 ­

in comparison with the experimental data / 9 / is pre s ented in fi g . l . 

It is shown that the mechanism of double rescattering is dominating 

at )(.1. ,,0.7. At larger Xi the main contribution c omes from the 

hard scattering proc esses. But the experime ntal error c a n reach a 

very large value (dashed curv e in fig. 1) at X.!. = 0.81 according 

t o /9/ thus we cannot inder that the contribution of the 6q-state 

to the inclusiv e process Pd -h X is large at attainable experi­

mental a ccuracy at XJ.. = 0.81. 
12Really, the calc ulated results (see fig. 2 ) for P C -- h )C 

show that the contribution of the fluc t on mechanism is sufficient 

at )(..L~ O. 7 and it is dominant at Xl.. ~O. 8. 

We shall consider the medium and heavy nuclei where the ano­

malies are large /9 / . 

Since the power ansatz for A-dependence is not true in the in­

clus ive one-partic le spectra of large P.l. hadrons, i.e.,the cross 

sec tion cannot be represented i n the form /9 /: 

£ rJ6 (pA --J,K) = Aa({PJ.) ~ ([) N .- 11K) 
J~ 'P r 

we 	 shall consider the ratio 

-= Ed, (IJ A -- hX) ~ Erl6 (f N -- hX )R "1J r If' d}p 

in 	the dependence on A at the fixed value J(.1.' 

The calculated results at only one value of ~ (the value 

X~ c 0.81 is most improved in the experiment /9/ now) are presen­

ted in fig. 3 because of the diff i culty of the numerical calculati ­

ons. One CWl easily show that the main nuclear effect that gives 

an anomalously large meson emission at Xi >0.7 ~ 0.8 is the exis­

tence of multiquark fluctons in nuc leus. The inclusion of multiple 

rescattering processes and Fermi-motion of nucleons desc ribes only 

20% of the effect observ ed at X.1.= 0.81. In this case the value of 

the c oherence radius of nucleons in the flucton as the parameter of 

the flucton model was equal to 0.97 {fm.) for all nuclei (exc ept 

J2 

deuteron). Thi9 corrollponds to the pro babi l it y ot f lue 'to n tornat ion 

in 12C tlpproX~ltltly of 18. 5% and i n 6 4 Cu , 207p b o f 25% and JO% 
respectIvel y. These pro babi lities calcul ated in t he f ramework of 

t he gas description of EMC and cumulative eff e c ts /13/, prel~linary 

NA-4 data and anoma l ies found by Sulaev 's group / 9 /. which confirlns 

the basic assumptions of the flucton model /2, 13 / . 

Our results point out that the results o f refs. / 26/ are uncor­

rect, where the anomal A-dependence of large P~ proc esses /7/ h~3 

1; (,,',1 explained with the help of mul tiquark sta tes at compara tive ly 

small ~ ( 0.2 "::: ~< 0.6). 

Our results agree with ref. /16/ qualitatively, whe re the parti ­
0

cle production on nuclei at 0 .8<.1-.1. (,1.2 (~~ = 90 ) is predicted. 

It has been noticed /8/ a rapid de c rease of c r oss sections with res­

- 0 
pect to lIr.J. for large P.1. cumulativ e processes (~:~ . 90 , 

JI..l. ~ 2) in contrast with the cumulative production of small p ... 
..a 1111 0 .... )hadrons (~" _ 180 , X _ A . 

V. 	 Conclusion 

The analysis of the inclusive large ~.L meson production in the 

hard hadron processes on nuclei has allowed one to understand the 

relative contribution of multiple rescattering processe s and thp. ex­

istence of multi quark fluctons in the nucleus in dependence on )(.l. 
the multiple rescattering processes are dominating at )(..1.(,0.7 ~ 0.8 

whereas at larger ~ the mechanism of hard scattering on fluctons 

is dominating. The model of multiple rescattering in which the multi ­

ple soft co llisions suggested in this paper are taken into account 

before the hard collision allows one to describe the multiple re scat ­

te r i ng proc esse s inside the nucleus correctly. 

The f l ucton model succesfully used earlier for the description 

of t he cumulative product i o n and EMC- e ffect with such parameters ie 

applied for the de scri ption of anomalous phenomena in the l arge flL 
proc esse s in nuclei. 

The authors woul d l i ke t o t hank R. M. Sulaev. A. S. Dyshkant, 

L.P. Kaptari . fj.l\.Kopel i ovich, V. V. Zmushko a nd A.I. Ti tov for useful 

di scussions. 
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E cilpeMoD A.II., KJlM fl.T., J1bJK3coB r.li. E2-85-537 
JKe cTK l1£' ,1HPOII­ Jl I W Pllbll ' npOl~C CCbI 

H MIIOI'OKlI.lII1HlllbIC KOII"'lIrypa~HH B ll,D,pax 

Hccnt!A Y (!T CJl HHKnlO3HBHoe ol5pasoBaHHe a,o,POHOB C 150JlbWHMH no­

nepetl t lhlMH HMnyn bcSMH ~ B P-A peaK~HllX. nOKasaHO, 'ITO OTnH­

'1He pacnpeAeneHlril: KBapKOB B CB0I50,D,HOM HYKnOHe H B HApe MOllCeT 

npHBeCTH K aHOManbHO l5onbWOMY B~OAY aApOHOB, B qaCTHOCTH, 

MeSOHOB, C ~ = 2~ /V1f ~ 0,7-0,8, 'ITO nOAToep-.o.aeTCH 

3KCnepHMeHTanbHO. UPH MeHbWHX X.L OCHOBHOH BKna,D, B paCCMaT­

pHBaeMbie ClIeKTpbl AaKlT MHOI'OKpaTHbie KBapKOBbie C TOnKHOBeHH H 

BHYTPH HApa. 

Pa60Ta BbIlIonHeHa B nal5opaTopHH TeOpeTH'IeCKOH ~HSHKH OHHH. 

npenpHHT Oe~e~HeHHoro HHCTHTYTa R~epHWX Hccn~o.8HHA. Qy8Ha 1985 


