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INTRODUCTION

The notion '"vacuum condensate' has now found its place in
the modern theory of elementary particles. It has lost its
quantum statistical sense and is identified as vacuum mean
values of the product of quark (@) and gluon (G) fields
(mainly of the form <gg> and <GG> ).

Recent progress of the hadron phenomenology has been stimu-
lated by finding out a close relation of the quark <gd> and
gluon <G%> condensates with very important low-energy proper-
ties of hadrons (mass, width, ete.)’!/.

In this paper we will not deal with the problem of vacuum
condensate in that context. We shall consider some consequences
of the hypothesis according to which the hadron A has the sin-
gular component of the gluon distribution function (DF) of the
form &(X)/X  which can be also called a "condensate" in its
original statistical sense’?/ ., Here X is the fraction of the
longitudinal momentum P of the hadron A within the infinite
momentum frame P+ = (IMF).

If one takes into account that dX/X is a one-particle
phase volume within IMF, one usually interprets that component
as the gluon bose-condensate in the hadron A, which is natural
from the point of view of statistical physics. It is not clear
at all how the singular gluon component is related to the
vacuum mean <GZ®> - the gluon vacuum condensate playing such an
important role in low energy physics of hadrons. However, con-—
sideration of consequences of the hypothesis on existence of
this exotic gluon configuration in hadrons is to our mind
of independent interest. The more so, it is the SLngular fune-
tion &(X)/X that becomes the limit of DF at Q% + ~ in
quantum chromodynamics/3/ .

It should be also stressed that all manifestations of the
singular gluon component take plase in the high-energy region,
since this is the region where DF and their statistical inter-
pretation have sense.

It is important that the physical consequences of this hypo-
thesis can be checked experimentally. The most specific charac-
teristic consequences are the change of the threshold behaviour
of the quark and gluon DF at large @° , the apparent violation
of the parton momentum conservation law at its experimental
check, appearance of additional power correcbicmé~to structure
functions. POMeaLHC T Wi RACTRETYY 1
gneumaz W ome2on2uEd




The statistical parton model and the generating functional
formalism are used for the consideration. This approach is
shortly described in sec.l.

Sec.2 deals with the DF calculation procedure with allowance
for the singular gluon component. In Sec.3 the results obtained
are dissensed. Possible variants are considered for (Jz—depen—
dence of the contribution of the singular component of the
gluon DF.

1. STATISTICAL PARTON MODEL
AND FORMALISM OF GENERATING FUNCTIONALS

We shall briefly present the basic statement of the approach
to calculation of one— and multiparticle DF of quarks and gluons
in the hadron A, developed by us’4/ .

Let the limit behaviour of DF be given:
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One can construct a correct extrapolation procedure L; which
takes into account some most characteristics properties of the

hadron structure’q/, so that the functions

£(X g0 woni Xy =By (F1R 00ein Xy)

will be well-defined in the whole physical region of variables
X, b,

lThus,__to find DF one should assign a form of the limit func-
tions 1;(X) .

Some information on limit functions is provided by the Regge
analysis performed for the amplitude of the virtual Compton ef-
fect on the nucleon. Hence follow the formulae:
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Here j = 1,2,..., 2f, f is the number of active quark
flavours; a(X) , bX) and gX) are some functionq_regular
at the point X= 0 with a(0)=2a >0, b(0)=b>0 and g(0) =2 >0

Finally, the N-particle DF to be found are described by the
formula
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are the 1limit multiparticle distributions; m, k, ¢ are the

number of valence, see quarks and gluons in th 1
Tyl ~ g e N-particle DF

Further we shall confine ourselves to consideration of only

gge-garticle DF. Generalization to multiparticle DF is not dif-
icult.

The regularised generating functional WA. has the form’?

W fjal = Tage'™ p"(g) (¢ - 10)>8

— do

-
.

(3)
expng(§)+ D (£)10@),

where n is the number of valence quarks in th
the nucleon n = 3), 1 in the hadron A (for
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?ii{;he regularised Laplace transform of the limit functions
‘ .
Further we shall assume that the limit gluon function<f(X)

Eontalns the singular §-like contribution of the condensate
ype:

f = + ——

and, obtain the DF of quarks and gluons in the hadron A .

The quantity K has a simple physical sence: this is the
part of the hadron A longitudinal momentum which is due to the
singular gluon component, therefor 0 < &1y



2. GENERATING FUNCTIONAL AND SINGULAR GLUON COMPONENT

In this section we shall find the DF ff(X) taking into ac-—
count the singular gluon component (the gluon bose-condensate).
For this purpose we shall generalise the formalism described in
Sec.] to the case of singular 1limit functions !S(X)lﬁ)

Indeed, for K # O uncertain quantities like jdx-é%%l%}X)
appear in functional (3) owing to the addend of (5). To elimi-
nate those uncertainties we shall employ the following standard
method. We shall regularise the &-function by one of the known
methods. The exponential regularisation

8(X) = lim pe” T¥ (6)

) > o0

is most suitable.
We shall take the DF of quarks and gluons in the hadron
in the following limit sense:
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we obtain general relations for DF
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Noteworthy is an important property of functions (10). They
becom? zero at X=1-K <1, and not at X= |, Consequences
of this are discussed in Sec.3.

Let, for example,
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where o (a,b,z) is the degenerated hypergeometric function. ‘p
Substituting H (y) into (10) we obtain the final result:
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where 1¥(X)  is normalised to 1, and 7= (n-1)( ~a)+b+g-1.

The free parameters r, B, g, K can be fixed by compari-
son with the experimental data. The parameter a = a(0) is the
intercept of the leading non-singlet trajectory (usually a(0) =
= 1/2). 1f one takes f = 0, expressions (l4) coincide in the
form with the known Buras-Gaemers parametrisations’® , modified
with the condensate type gluon configuration.

Here are the expressions for the moments of the DF f?(X)
<ty Eafldx.x"~1 () = <500 @ k)",
<Ay, =&t 5% g - g™, (15)
: I
<t'gK>n :<fg>;K)(l—K)n_l+K(8n2 +8nl {)—d—)@;@l). ,
Here
<fv>(:)= B(r+1,n~a) ¢@®.7r+1-a+n; —B{1 - K)) ’ (16)
B(r+1,1 —a) ¢(g.7+2 -a; - B(1-K))
6

K) — T —a +n; - 81 -K))
L 4 >( “_EE R B(r+ 2- a2, n~-1) il TR e &2 AQ=X) .
"8 8 d(g, r+2—a; - B (1-K)
' 16
(K) ¢(g+n—-1,7+1-a+n0;-B(1-K)) (16)
<fs:>n =gB(r+2-a, n-1) ;

d(g, 7+2-a; -B(1 -K))

It is evident that for
to usual DF I, (X)

K = 0 expressions (14) and (16) lead
and their moments, obtained by us earlier’®/

3. ON INTERPRETATION OF THE SINGULAR GLUON COMPONENT

As is shown in ref.”®’ | the logarithmic Qe-dependence of DF
due to the QCD perturbation theory’?/ can be introduced in the
formulae like (14) and (16) by (nlu)eans of parameters r, f and 8

(e.g., in t}ée fé)rm =7 + 7 -8, etc., where
= !n—ﬂ-/-é——— - is the standard evolution variable). In
InQf /A2

this case the parameter K may remain constant or be in power
dependence on ",
Here we cons%der two possible variants: %
a) K+ 0at @+ »,b) K 2K, #0at Q
In limit case a) we parametrise the Q° dependence of K in
the simplest way:

k@®) = K /Q%, an

-2 o0

where K, is the constant. e,

Expanding the binomial’ (1 —:K) in (16) in a power series
of K, taking into account (17) and the parton links of distri-
bution functions (14) with the structure functions

K - n-2 K 2 K 20 K
Y =v(,)rdxx Fp(X.2%) =<t > + <t (18)

. . s s . 2
we obtain the expansion in inverse power series of Q° for the
moments of the structure function F,:

2
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(19)

So the singular component of the gluon DF can be a source of
additional power corrections (1/Q - corrections) to the
structure functions.
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~ exactly corresponds to the result obtained within QCD in the

soft gluon approximation’® . This coincidence is probably due

to the fact that the gluon component, being singular for ¥ = 0,

corresponds to the limit case of the soft gluon approximation

when each gluon hasga zero share of the hadron A momentum.

In the 1limit case b), when
K-Ky at Q% ., o » there is
a peculiar phenomenon - a re-
duction of the physical
region for DF determination.

Usually (K =0) DF are F 2
determined in the interval FMNI ..
0 <X < 1; introduction of | v
the singular component makes AL 1\s

: 3 i
1t as narrow as 0 < X < 1 - K <1. I ¥

(0)
<F‘2>n

We also note that the first power correction -

elastic
peak

Here we note that the experimentally measured structure func~-
tions are presented as a sum of F and F*, F is related to
calculated DF (14) through the parton model formulae, and F*
corresponds to the contribution of various power and resonance
effects. Therefore the reduction of the DF determination region
may manifest itself in the experiment only at sufficiently

large energies when the contribution from the resonance compo-
nent of structure functions is suppressed. The situation may be
like that in the figure. In the interval AB one can see the
contribution of the resonance R* which goes to the boundary of
the physical region (X - 1) and vanishes at Q%, ., As a result,
the interval AB turns into an analogue of the energy gap: F=0
in it,

A more indirect manifestation of the singular gluon compo-
nent is as follows.

When one determines independently the total momentum of
quarks <X > and - separately - of gluons <X.>, one may "find"
violation of the parton momentum conservation law:<Xq> + <X> <1,
This could be an indication of a singular component which cannot
be directly observed. It would carry the missing hadron momentum
K =1 = <Xg> - <Xg>. We note that in thisg approach one can
try to find manifestation of the singular gluon component at fi-
nite values of Q2, i.e. both in mode a) and b).

At present, however, the momentum share of all gluons <X._>
is determined just on the basis of the momentum conservation
law; this does not allow one to detect the indicated "effect".

A possibility to independently measure gluon distributions will
be probably provided by a detailed study of heavy quark and mas-
sive lepton pair production in lepton-hadron interactions.

8

An indication of an extremally strong growth of.the g%uonlDF
in the X » 0 region’® can be considere§ as possible sxgna.—
from the condensate type gluon configurat}on. From the ixpgii.ke
mental point of view this growth agrees with presence o 1
configuration of the gluon spectrum at X =0.

CONCLUSTON

Some consequences of the hypothesis on e§ist§nce'0f the an-

gular -~ Kd(X)/X component of the gluon distribution function
idered. )

areD?E:i;gsifon functions of quarks and gluons in Fhe hadron
for the fixed value Q% = Qg have been found within the frame-
work of the .statistical parton model w1th‘a110wance‘for the >
adopted hypothesis. At K = O_those functions turn into uiga
normalised distribution functions that we obtained and use

S =
earlier /%

i i i i have been
Two limit cases with a_phy51ca1 Lntgrpretaéxon 1of >
studied under the assumption of the Q"-depen ence _ "
1. (K - 0at_@Q° 4 =). An inverse power series OF Q‘
(whe& K = KO/in) has been obtained for moments of distribu-
tion functions (structure functions).

2. (KK #0:; 1 at Q% . &). Here the determination
regi;n for sé;ucture functions is reduceq anq an gnalogue_of the
energy gap appears ( 1 - K ;<X < I). This situation can in

rinciple be detected experimentally: ) . -
i At ginite values of Q% the contribution of the singular com

ponent can be registered through a "apparent"_yiolatiéplof ;zie
parton momentum conservation law <X >+ <Xg>=1-K <1, w P
<X,> and <X _,> are total momenta of quarks and gluons extracte
ingependently from the data.’
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this work, to Yu.P.Ivanov and A.V.Radyushkin for fruitful dis
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