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1. Introduction

Nowdays & lot of papers appeared where the behaviour of the
Green functions wae studied in the infrared limit (see, for instance,
/1-4/ and the references therein)., The interest in thie problem is
caugsed by a widely discussed possibility of the connection of the
infrared ssymptotice of QCD Green functions with the problem of
quark confinemant. For this purpose the standard fermion propagator

(0T Hfac) ¥45) /0> (1.1

has been used that, obviously, is not a gauge-invariant object. It
can be shown in the framework of the exactly solvable Schwinger and
Bloch~Nordsiek models /5,6,7/ that the infrared behaviour of the
function (1.1) essentionslly depends on the choice of a gauge.

The electron propagator in QED hae a branching point at /"Lz w*
in the infrared 1limit and the exponential explicitly depends on the
choice of s gauge. The simple pole appears only in s special gauge
A =3 (the Soloviev-Yenni gauge). The propagator (1.7) is not a
good object for studying the querk confinement problem becauss of
ite gauge-dependence, In two-dimensional QCD it is not poseible to
solve the problem of quark confinement if one works on the basis of the
gauge-~dependent Green function (1.1)/8/. Besides, in a general cese
of the non-Abelian theories the gauge noninvariant objects suffer
from infrared divergences and that is why, strictly speaking, they
do not exist /9/. Due to this fact the requiremsnt of the gauge-
invarience can be considered as the condition of obsornbility/w/.
So, & self-consistent study of the structure of the gauge theories
should be based on the use of gauge-invariant objects.

We shall study the gauge-invariant (G.I.) spinor propagator:

Gz 9) = z'<o/7yﬁ)f@oﬁ};f:;€ Ao ENHofe> o2
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in the framework of the Abelian theory. The propagator (1.2) contains
the exponential factorfmﬂf'ﬁ;-ﬂ/q’/;/] with the contour in-
tegral over the vector field £ ) that compensates the gauge tran-~
sformationa of ‘}é/z) and ;Z/y) G.I. spinor function (1.2) was con-
sidered in 12/ from the viewpoint of a gauge~invariant definition

of a quark mass and in /13/ in the framework of exactly solvable
Sohwinger and Bloch-Nordsiek models.

In the present paper we shall introduce a new class of gauge-
-invariant fields through combining the fields of PFock and Dirac
classes. It will be shown that in this new class there naturally
appears a particular case of the propagator (1.2) - the propagator

g otr. u“‘/z, J) for which as the integration contour, the only
natural contour for a two-particle Green function appears, namely,
8 plece of the etraight line that connects two points ¥ 8snd ¥ of
the Minkowseki space, The advantage of this path over any other con-
sists in the fact that if in the G.I. propagator & /%, %) one
would choose the filelds }1; '}Z:ﬂj, in a special Fock gauge/ul

(-0 ))<= 0 o then £ Prymould cotncide with the
usual fermion propagator in this gauge. Thus, the propagator
G’“‘t'x,y) is connected with the S-matrix elements by usual re-
duction formulae.

In the present paper the Dyson-Schwinger squations for the
gauge-invariant propagator £  /%,Y)  will be derived, and the
behaviour of this propagator will be studied in the infrared limit
on the basis of the equatlions obtained as a well as of the functional
integration method.

24 e constructi of the -invariant (G,I) spinor
propagator
There are two known classes of G,I._vector fields:

@&/7)=Afﬁ7'a“f0’}'g/b/,€), (2.1)
8. (xlf) :4'ﬁ7‘34ﬁ5f%x-y),49 ), (2.2)

where 1s & fixed point of the Minkoweki space, and f;; in (2.2)
is & real function that satisfies the condition a%/z)=;/3) .

1 Symbol /° denotes the ordering along the contour (mee /”,).
In the Abelian case this symbol can be dropped if one choomes n
straight-line contour,

In the case of a straight-line integration contour in (1) the

£1e1a 8. (¥/7)  coincides with the field taken in the Fock gauge’l%/
ﬁ-[)"%’,/zj=0 2). Due to this fact we shall call these fields

the fields of the Fock class. The fields (1.2) were introduced by Di-
rac/ls/( the Dirac class fields). It 1s important to emphasize that
the fields (1.2) ocoincide with the fields ﬂf taken 1n the gauge
LR A E)=0.

The field BJ. /1/2) (1.1) 1n case of the straight-line integra—
tion path can be expressed through the tension tensor 6,,; by the
inversion formula /14,15/

5 4
Bullely) = Ji5s (x-0) oo (+5(x-1).

The inversion formula connecting the fields with /L;,; has been deri-
ved by us for the Dirao class in

By (z/f) = J/3f Var-) Fur (9). (2.4 )

It was shown that the fields (1.1) and (1.2) considered on the
equations of motion satlsfy the Lorentz gauge condition &fBJ,=0.
This condition according to the Dirac terminology appears here
as a seocondary constraint.

The G.I. Fock and Dirac fields are obtained from the ordinary
electromagnetic filelds ﬂ_,, /x} taken in a:}‘ aribtrary gauge with the help
of the gauge transformationlﬂf/l') —’A/ /I) = /@4 (x) + 57],,) /J.) with
the chotce / = /] [x/@)=-fa/5/1'[)%’»(7*5@-’-fyfor the fields (1.1) and
1=A(x]f)= —fdyf’Zr-y)/f,ﬂ) for the fields (1.2). With the help of

the local phase transformation with the same cholce of /\ we find
the form of the G,I, spinor fields in Fock and Dirac clasgesy respeoc—

Viaty)-ospr g f o Mtg 00, A
: (2.6)
V)= exp - ipfis f 1a-9) Ao (9) Tte)

It 1s easy to see that the spinor fields of the Fock class (2,5)
are G.I. flelds up'to the global transformations (they are multiplied
by the facotor exp[l,l/[)] under the gauge transformations).

Besides, due to the faot that the point Z 18 fixed for the
fields of Fock (2,1) and (2.5) classes, the translation invariance of
the spinor and veotor propagators constructed with the help of

fields (2,1) and (2.5) is broken. (If one would take 1n (2.1)
X )mp 15/ 5

hils gauge condition has alsc been considered in

(2.3)

3
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and (2.5) Z: (x) , then the gauge invarience of PFock vector and
spinor fields would be broken.) These difficulties can be avoided by
taking the limit 7._»00 o

Here we propose a new way of introducing the G.I., fields that
is free of the difficulties mantioned sbove and allows us to const-
ruct a G.I, epinor propagator& /-1‘; .‘l) of the type discussed
previously in the Introduction.

We introduce the field

Igﬂ/x/z f) A_//x)"—,. [/4279/2)7‘
et Y- poten,

where J/;, patisfies the same conditions as the function fg in the
Dirac class (2.2). The inversion formula for the field (2.7) looks
like

(2.7)

/-r/f £) fdss/x~ 70" Fes (945G -1 + ae
2.8
;.rl‘ /_/;’.S'//—.S‘)(x 7) P2 (9 *S(x- 2))*ﬁz’f/z 7) 9/7;)]

let us note that in the frameworKk of perturbation theory the gauge
conditions are introduced for the free vector fields to be quantized
later. In this case from (2.8) with the sccount of antisymmetry of
the tennor/:,) y the Maxwell equations, and the properties of the
S Tanokio 3 2 -samy-to #2207 thet thin 2028 By (x[y:$) satie-
fies the Lorentz condition

9’3] #/73./'):0’ (2.9)

that once more appears as the secondary constraint.
The G.I. epinor field corresponding to (2.7) is introduced by
the phase transformation

Yix)—= ¥oxlyif) = eap (i3 N (2175 ) ¥,
where /L /x/!,f) is the expression that stands in square brackets

in (2 7).
5£2. 4.
'l'o constmct the 6 /1':-‘9 let ue choose = X#Y

s S it fodlt s 2

3) We are interested in the case when Z is & function linear
in 2 .

4) 'it; this choice of 2 and f the fiel /,3 coincides with

the field taken in the” gauge “/Z-(x<«v)/2)’/, used pre-
viously in /19/ in deriving the dynamical equation- for the two-par-
ticle relativistic wave function.

In this case the G.I. spinor propagator is defined as follows
J

S¢R. 4. ’ : ==
G (9) = Lo/ T () exp L] ifa;{%g/;)j}l//_y)/a > (2.10)
where the integration is performed slong the piece of the straight
line that connecte the points 2 end ¥ , 1.e.

$7= 2% 909-2), 04s44. s

3. Schwin equations

Let us dorin the Schwinger-Dyson equations for the G.I. pro-
pagator 7/, 4)detined vy (2.10) and (2.11). (In what follows
we shall amit the symbol str.l.) Let us add the Lagrangian by a

M

term with the vector source JJ', 240{ :L/x)A /.1!) + In the interac-
tion representation the Green function (1.2) can be represented as
followa:

; s, ¥
Glx 9/7) :SZ—[TJ?(I'W) b Lt
where
STl =<o/TSIT]]0>, (3:2)
(3.3)

Here S[J] is the S-matrix in the presence of the source J, . The
G.I, Green function (2.4) that contains the vacuum diagrams will be
rewritten in the form

}/1‘,5/]) Oea/;[j/.,/ff‘(z], )]j/z 9/7), G

where

;/31 IJT) = L0/ T ¥ /) ¥As) S[TT0>.  (35)

It 15 easy to check that the funct:lon (3.5) satisfies the equation

/ L4 /axf a’;J’/x) -3 axf’-/ {3 —é—] GUpl) s
- éxwf; 219/;)]) m]ﬁ/"d/f) fﬁ"’)
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With the account of (3.4) we derive from (3.6) the equation for func-
tion (3.3)

[‘/-;‘é’x’ ;JJ'KI) }[ax,j/s 9/)] ] (3.7)
P 5317 = = 0(x-3)<o/ Paep 3./ ’/;f,q, (§)SL7]/0> =
=-d(x-9)S.[7].

Defining the vacuum expectation value of the vector field /Qy

Zp(x) =S8, LTTCO) T A () SLTT 0> 5 (3.8

we find with the help of (3.1) the equntion for the G.I. function
(1.2)

(% ~dizm 7 A,
-1}1("/.1’) z; f; Z(pﬂf'j m]ﬂ(z‘,.‘f/f)-‘--é‘ﬁ‘ﬂj-

The gauge-invariance is easy to check of the obtained equation.

The second Schwinger equation for the vacuum oxrctation value
of the vector fileld can be found in a standard 'I It coincides
with the ususl equation because the latter contains the spinor Green
function with the coinciding arguments. In this case and with our
choice of the integration contour the exponentional factor in (1.2)
disgappears. Thus, the second Schwinger equation acquires the form

U la)=J2ps (2:2) [T 122+ 3 3P (36 (:2/7))], (3.10)

o
where /,3_,9 is the vector particle propagator. Equations (2.10) and
(2.11) are analoges of Schwinger equations for the G.I. propagator
(1.2) that we are looking for.

4, Dyson eguations

Let us transform equations (3.9), end (3.10) so that they compo=-
ge a system of integral equations. To do this, we shall perform the
transition to a new functional variable, Z(J,/zj. Meking use of the
relation

I U (Z)

J‘.f/y) f ST70%) ;}id/}) ﬁ/Zo‘Du/zy} J i

SUal2)’

L
We ntroduce in analogy with /6/ the vertex function

lx 4/2) = G C‘Z;Zj‘) ) (4.2)

Hence we have

JG/ "y/”) A desl / T ’
W- :ﬁx‘/y Gﬁ,x/aj&{z—,y/zjg‘(y,y/u),u.3)

then equation (3.9 ) tekes the form:

[t0x-m+2 U () */J;yf k»&/j@ﬁ 9/%) +

r‘g}/ Kot o of 2 [ﬂ,;(r/z)"g lwf /8 Dur (5,2)/- o
-Glaxfu)/” A Z)C/y,y/zej -&(=-9).
Defining the G.I. vector field
By (x,5) = U () + ,_.x/ 15725 (F), (4.5)
and tho mass operator
/*//.z-, y/u) —z;/ "_'/'dx o’z.ﬂpv (%, 2) +# i
,f o " Dur (£,2)]C (x.x72L) (%, 9/2),
we rewrito oqmtion/P.u as followse
[ie - m +3 B (/)] (o, 9/2) -
(4.7)

~ s M, 3 7) G (9 9/ u) = — I (x-9).
It is easy to cast equation (4.7) into the following form
Gl /%) = Se (x-9) + 3 [ 9'Se (-3B89 9)G (4 9/2)-
- [tz Se (B~ )M (z) 9 ) G (4 9/2). G



The mass operator (4.6) has @ G.I. form. To see this. we shall give
it the form

M 5/%)= 134 50 T Vi) exp [i3 //; A9 (¥)]
- Fl9)B) (2, )812] 0D,
Let ue study the second Schwinger equation (3.10). Calculating the

functional derivative J/J./) /%) of both sides of (3.10) we f£ind
with the help of (4.1)

Do (%, 8) = Dup [, 3) -

_4}/“/20/2’08‘/4“(2‘ 2)§P[/¢%%L$j)ﬁ)5jj(4.10)

(4.9)

Defining the polarization operator

Lip (6:0)= (3 Sp[f 4S5 2/%)

S Up (T) (4.11)
=1 5p/) oz 42 G (2, 2/u) 272)6(2)2/u),
we represent (4,10) as follows
Do (% 5) = Dpes (5 ) — .

~f42 28 (2) o0 0) 0y (5 9).

Infrared esymptotics (Dyson-Schwinger equations)

To study the behaviour of the G.I, propagator (1.2) in the inf-
rared region, we shall apply the method developed in 20

Equation (3.9) with the mccount of (4.1) and the contour para-
metrization (2.11) can be raproaonted lt Y¥=0 in the form

(Bt 35 - 2u s Blsm)-
‘fﬁﬂ‘f‘/x) /gx,,x%ga,ﬁx)] mj&ﬂr,o/zz) -8t),

.

where 2ﬁf/€t/’f/4;2122w?{€t"Z;L;i;pfiy

T Eaye (5.2)

Gul) = oz 8o e 2) s
Let us transform to the momentum representation and consider the
object

//’/!!/ /dx exp(iPx) [ (x) ax,x’f/a/.f % (5%)] bl
Glx,0/n),

With the definition of the Pourier-transform g,//c)

Velx) = / /j—;,)v eap (~(xx) § (i), (5.4)

we obtain

(,O/a) fuml},,/'dsfw [e** L)t~ 73:/"/(5.5)

FLEKpSE AKSZ L Oy K,SK—‘KIS%//C)_/'G(JC,O/%).

Performing the integration by parts in the last term of (5.5) we
come to

Du(ple) = _/;’S (ﬂm[‘,{;,(/c)ﬁ/P KW + Ky %l (5.6)
Gr-seIn)).

In sccordance with /20/ in the infrared 1limit, in (5.6) the follow-
ing upproxinntion- can be done:

}7/,0//1/ f"’S/]—)q[ /K)*Kf%%fﬂjﬁff’/”)= (5.7)
/,[][}"alf)[ J’%/’C)]GKP/H) 0

It can be shown analogously that in the infrared limit

Sz /u,/x)— -, x /,/s UofsH) ]G (2, 0/W)=0. (5.9

Thus, we ses that in the infrared region(;/”) obeys the equation
F-m)G(R) =L, P'=m, (5.9)

i.0.,in the infrared 1limit the G.I, fermion Green function has the
gimple pole


http:y(rJ.'IJj(4.10

5//’/=/m-;’\)-,1 pr=m? (5.10)

Assuming that for renormalization of the G.I. Green funciion the
counterterms will be needed of the same etructure as for renormali-
zation of the S-matrix, we find for the renormalized Green function

G’(’f’-’)z z},‘G/x,y)_ (5.11)

Thus, in the infrared limit the renormalized G.I. propagator has
the simple-pole singularity

’ =1
/7 ot Z‘ z‘: ~ A (5012)
G// M'ﬁ) P m.

6. Infrared asymptotics (functional method)

Let us represent the G.I. epinor propagator (1.2) in the form
of a functional integral over the fermion and vector fields

; = Ly e
G (2:9) = LfDLV. FIDA Yix)eap [0 [ Au (5) ] P,
-mp/lf/%?z}/q‘yf -

where 5[3‘. V‘,/l_] ig an action functional of QED and the func=-
tional integration mea.su.res.Q[Y; Z]anda@ﬂ are renormalized so

as to obtain from (6.1) at}f-ﬂ a free spinor propagator. Besides,
the ma-uroﬂlq includes some gauge condition whose particular form
is not essential here. Performing integretion over the fermionic
fields in (6.1) we get

4lx %) ‘/09/4 W%fﬁﬁ:[ﬂ]j'

/et[éa -]

Gl y/A)exp g JE A )],
where 6:[/4_] is an lctioﬁ of a free electromagnetic field /?/ , and

((2.4/A) 1is the Green fnnction of the fermion in an external field
that satisfies the equation

[+ 3 fx -m]G (3.9/4) = - S (%-9). 6.

A formal representation of the solutions of equations like (6.3 ) in
the form of functional integrals wae propoged in /21/. Following to
21/ it has the form

(6.2)

10

Gl 9/A) = [Lox *}i‘&)fm]g//r,ylﬂ)’ (6.4)

where

o s S
(le.s1h) = i fosenp [-is(m* 2)] 9B S Lx-9-2 o5 B5))

0P LB 30878 -3 (LB (5)+ 5 (IF2(E)) e
A1/ 2180))f

The integration meesure DB in (6.5) is normalized as follows

Jobesp[-ifos Bulf)B )] 1. e

In the infrared limit the following approximations are valid /20-22/,
Firat, it is possible to put in (6.2),

a’et[z'é?*}/?-m;]_ f, g
g7 . ey L, (6.7)

which means the neglect of vecuum-polarization effects. Second, the
term 6\749 can be amitted in (6.,5), which corresponds to the neg-
lect of spin effecte. It is important to emphasize that these appro-
ximations do not bresk the gauge-invariance propsrty of the initisl
spinor propagator.

After these spproximations the functional integral (6.2) can
be calculated explicitly. Finally, we obtain

% "g
Glx Y) = z://.s' eap /-1 S(m ‘—1'0)[/93 &5‘?[ L:/;’;B Zg‘/j
.[1.51*-”2—[/-;4%71_)/&‘(’:‘3-1 "’[1;’(2)) (6.8)
eap [ § 9 Jews i T (i) Qs (s W) i),

where Y S
Ty (o) = fuli) # [ 5 8 w5 HGEB(5) - s
+§(w-x+2 [478(7))

end o@fﬂ/h’o %g)- is the photon propagator in an arbitrary
gauge. Upon some mimple calculations expression (6.8) takes the form
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Glas) =t /dé'n,a[z-?(m m)J/wm/ z/ 818D -

[ 4 K (2 9/B)d (x- 9~ ,Zfa’ﬂ?/[})
explf 3Pl 1/8),

where

K 9/8) f /5 By (- 5) *4/% ;/’@,;[zf 7" (6.11)
b1))8%)

P(x9/8) = 1/ ,&/ % 8, 4“1)‘&«9[—3/"23/2)]3 (5)#

f“/ﬁzf;uff;fk¢53u9(9? ;?‘) {‘{/f {Df
1-$2 /s 15’//,,@ [E-x+2 /s 6.12
b’/)-}‘] v /Z o

(6.10)

In the course of our calculations we suppose that there i1s perfor-
med the regularizaticn that dces not destroy the gauge invariance
(for example, the dimensional regulerization). In this case all the
integrals we meet are meaningful.

For a straight-line path it is easy to see that the functions
/f/l'/ .9/5} and 55[:,://5) depend only on the difference of X and ¥ .
Paseing in (6.10) to the momentum representation, l.,e.sperforming
the Pourier trensformation over the varisble Z-¢¥ and performing
& shift of the functional-integration varisble

Bulp)= 8+, p=s7, e

we obtein the G.I. Green function in the momentum rcpreuontction

GlP) =1t ﬁ.s'ea;a//.s'/ﬂ - fm//a%) ez /- z.S‘ﬂif' w7, Z/
[,04”2 4/‘5//4'))jm/0[— z¢//;/w)j :

In the infrered rogion it is possible_to neglect the functional ar-

gumeng_in functionals /f//’/a)) and 95//’/@ The functions /[///0/
and 5??4%47 + 88 1t is easy to show, aro equal to zero, Thus, fi-
nally, we find in the infrared limit /’ = M that

12

(S(PEm*ei0) .

_m_ . (6.15)

GiP) * [}fﬁ:t/7(%jé;ﬁfé?
]

T. Conclusion

Thus, we hove derived an analog of the Dyson-Schwinger equations
for a gauge-invariant propagator. The mass operator that appears here
has an explicit gauge-invariant form.

On the basle of the Dyson-Schwinger equations and functional
methods the behaviour of the gauge-invariant spinor Green function is
gtudied in the infrared 1limit. It is shown that unlike a gauge-non-
invariant Green function that has a branch point in < -gauge, the
gauge~invariant spinor propagator has a slmple-pole pingularity in
the infrared limit. Note that this result is completely consistent
with the resulte obtained previously in the freamework of the Block-
~Rordeick mode1/13/

The authors express their gretitude to A.E.Dorokhov and V.I.
Sevrin for useful discuseions.
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