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During the l ast f ew years muc h i n t eres t wa s paid to the 
prob l em of studying the struc tu re of gauge theories in t erms of 
gauge- invariant ( G.1.) ob jects ' 1,21 . Our work i s devo ted to the 
same problem. We sha ll star t wi th a short ana l ys is of t he Abe
lian case. 

Let us consider t wo clas ses of G. l . vector fi elds 
x 

dzllA (z). ( I ) B/.l(x IO = A/.l (X) -all ( 
. e II 


and 

(2 )B/x l C)= AjJ(x )- ajJ ( dy f'(x-y )AII(y). 

II 

where e i s a f ixed point in th e t-li nk owski space and f is a 
rea l funct ion that sa t i s f ies t he cond i t i on ~ fv (z) ~ c5 ( z). 

In t he case of a s t r ai gh t -line integra t ion cont our i n ( I) the 
fi e ld co incides wi t h t he fie ld t aken i n the FockI? ~x 10 
gauge / 3 : (x_~ Y.L A~ (x) = O. Due to thi s f ac t we sha ll call 
these fie l d s the fie ld s of the Fock class. The fie lds ( 2) were 
introduced by Dirac 5 ' ( t he Dirac c l ass fi e ld s ) and studied in 
refs . ' 1.2 ' . I t is i mport an t to empha si ze tha t t he fie l ds (2) 
coincide wi t h t he fie l d s AjJ t ake n i n t he gauge fI.L(p) A,,(P) = O. 

The fie ld BIl(x I O ( I ) in case of the s tra i ght line integ
rati on contour can be expressed t hr ough the tens ion tensor Fllv 
by t he i nversion formul a 13.4 / 

1 II (3)nil (x ~) = r da a(X - ~) F ( ';+a(x-';».
o IIjJ 

The inversion formula connect i ng the fields with F"V has been 
derived by us for the Dirac class in / 6/ 

B" (x I f) = (dy tV (x-y)FILII (y). (4 ) 

In was shown that the fields (1) and (2) considered on the 
equations o f motion satisfy the Lorentz gauge cond i tion a/.lBIl=O. 
This condition according to Di rac termi nology/7/ appears her e as 

• This gauge condit i on has a l so 

1 



a secondary constraint. Let us discuss some possible choices of 
the functions I Il(x) in (2). In ref /2 1 the next form of f has 
been considered 

r(O) (x) =.L n (daf(a)o(x-an), (5 )Il 2 Il-oo 

where nf,L is some fixed 4-ve ctor. In p -space formula (5) looks 
like f(O)(p)=-iV.P.n /(np ) . It i s obv i, ous th;lt LIIC f un <.: 

. Il 11 • f TC
tlOn ! (p) can be taken ~n anothe r fann: ; p) - i ll j// « np) ± it") , 
i.e.,llin the configurational represent a t ion 

l 

+ 00 

! ; (x) = =+ nil ( da 8 ( =+ a) 0 (x - a n) . (6 ) 

The G.1. field (2) wi th the choice of f Il in t il(> f o rm " f (5) or 
(6) coincides with the field All taken in t he axiol A>l uge (nA) = 
= O. 

With another choice of r\p) = -iV.P. PIl / p2 Ll lc fie lds (2) 
coincide with the fields AIlIl taken in the Loren t7. gau ge 
pllA (p) = O. The corresponding inversion formul a has the form 

Il p
BL(p) =-iV.P. 2... F (p).

Il p2 1l1l 

One can get an impression that the right-hand side of this 
equation is equal to zero due to the equations o f mot ion. But 
this is not so due to the singular nature of t he de nominator. 

Let us mention that in the Fock class (I) the point e is 
taken to be fixed, that leads to the breakdown of the transla
tion invariance for vector and spinor fields ( i f we shall con
sider in (I) .; as a function of x, i.e., e = ~(x) , then the 
gauge invariance of the vector and spinor field wou ld be bro
ken) . 

Moreover, the spinor field transforms under the local gauge 
transformations in a global way by the factor exp ( igA ( x/ ~» 

These difficulties can be avoided as ell ~ 00 

In the present paper we suggest a new way of in t roduc tion of 
the G.I. fields, that is free of these difficulties and allows 
one to construct such a G. I. spinor propagator G str.line (8 , Y ) 
in which the integration is performed along only one dis t inct 
contour - a piece of the straight line (str. line) between x 
and y . 

Let us introduce the G.I. field 

B (xle;f) AIl(X)
Il 

(7) 

vL [ ! dz A (z) + ( d rf 11 ( e(x ) - r ) A (T») ,
lI 11 

axil e(X) 

2 

where for the function r ll 
(e(x) -T ) the same conditions as for 

the function fll in the Dirac class are valid. 
The inversion formula for the field (7) has the form 

1 11 

BIl(x I ,e; f) = J da a (x- O FilII (e + a (x-e)) + 
o 

. p (8) 
ae ex) 1 11 11 

+ I (da(l-a )(x -e) F (e+a(X-O) + (dyf (x-y) F (y)l. 
axil 0 pv pv 

The C. l. spinor field corr esponding to (7) is introduced with 
the help of the phase transition If; (x) ~ If; (x I~; f) 
= exp( i g A(xle;f»If;(x), where ' by A(x I C! ) we denote an ex
pression that appears in square brackets i n (7) . 

For the construction of G Btl.line (x ,y ) let us choose 
e.= (X+ y ) ·/2 , 

v 00 

f (e-r) = _(X_y)lI / 2· (d a o «l+Y) /2 + a (x - Y) / 2 - r) *. 
o 

In this case the G.I. spinor propagator is defined as 

ll
G stl.l. (x ,y) = i < 0 I T If; (x)exp [ig rdz A (z)]lf (y) 10 > (9)11 

l( 

where t he integration is performed over the piece of the 
strai2ht line that connects the po i n ts x and y . 

We f i nd that Schwi nger's equation for the G.I. Green func t ion 
ha s t he fo rm 

[iyll(L_ g 0 _g(_a_ (dZ V 0 )_igull(x)_ 
axil oJIl(x) axil x oJv(z) 

( 10) 

_i g (_a_ rdZv u (21) ]) -m) o Btl ·l.(x,yIJ) =-o (x-y ) . 
ax il x 11 

* With th is cho ice of e and ! t he vector fi eld Bil 
coincides wi t h the f ie ld All taken in t he . gauge 

(z- .!.±L t A (z) = 0, which has been u se d i n/ SI 
2 Il 

while deriv i ng the dynamica l equa t ions for two-pa r tic le 
wave fun ctions . 
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The second Schwinger equation for u~ (x) coinci de s with the 
usual one. To the propagator (9) there corr espond s t he next 
G.I. mass operator : 

y ' II 


M(x , y I u ) = i g y/1 dy' < 0 IT.,IJ (x) exp [ig r dz A/z)]~ (y ') x 

x 


(1 1 ) 

a y II . - I "lr r 
x ( up.(x) + --jL r dz uv(z)] IO>G . · (Y'.Ylu) . 

ax % 

From (10) it follows t ha t in the i n f rared l imit a Fourier 
transform of (9) would con t a in a singularit y of a simple pole 
(m -p)-I . So a s i ngular ity of the branchin g point \, hich oc
curs for the standard pr opagat or in some gauge s does no t appea r 
her e. This resu l t has been ob tained by us prev i ously i n ~I with 
t he he l p of ano t he r method, name ly the method of the functional 
inte gr ation. 

We define the generaliza tion of the fields of the Fock class 
for the nonabel ian case by the next formula: 

x II 1 
B/1 (x If) = A/1(x) - a/1 r dz AII(z) -ig r da a[A/1(z(a») ,Av(z(a)). (12) 

f. 0 

where Z (a) = f. + a (x- f. ) , 0:5. a .<;; 1 . The invers ion formula 
for the fields (12) coi ncides with (3) up to the substitution 
of QED F /lll t o F/LII = A/L,II - Av./1 - ig [A /1' A). + 

In papers / li the G.L tension tensor :J/lII (x IC) = U (x lC) x 

xF/lv (x)U(x IC) wa s constructed with the help of the matrix 

x 
U( x lC) = Pexp[-ig r dzIlAv (z»). ( 1 J) 

But 
there. 

rna t ~ . on 

t he G. I. vector fi elds themselves were not cons idered 
To in t roduce them we sha ll perform the gauge transfor-
A AU) - 1 i ( a· ) -1" -+ = w A w + - W W ... 11 /1 g 11 

The field (12) transforms into the G.I. 
nected wi th J J1lI ex IC) by 

1 II 

:BjL(x lf. : C) = r daa (x -f.) JI1I1 (f.+ a (x-f.». 


o 


Wl
. t h W (x ) = u+ (x I C) . 

field :B11(x1f.;C) con

(14) 

In terms of the Mandelstam contour derivatives defined by the 
relation ~U(xIC) = lim [U(x +~xIC') -U(xIC)] / ~x, where 

6x-+ 0 
4 

t he c (mL our s C and C' differ from each othe r by 6.x only, t he 

equ :J ! i ly ~~f l111 + ~'J IIP + all'JPII = 0 takes place. H'i th t he help of 

t his equality it can be shown that the nex t formula 

~f /LJxI C) ~ a::B/L (x I f.; C ) - ~:J3 / x I f. ; C ) 
i s va lid. 

Thus, we see that t he connect ion of the G. I. 
'J1111 (x C) and the G.!. vector fi e l ds :B11 (x lf. ; C ) 
the wel l-knm.m r e l ation i n the abel i an case up 
of us ua l de r iva ti ve s by t he I'1andelstam contour 

(15) 

strength tensor 
is analoBous to 

to a s ubstitut ion 
derivatives. 

-II I t i s easy to find by making use of equations of mot ion 
a :J' /1I1(xj C) _= 0 that the G.L field :B/1(x lf.: C) sati sfies the 
condition al1:J3/1 (xi f.; C) = 0 appearing as a generalisat i on of the 
Lore ntz gauge condition for a non-Abel ian ca se and ha s a sense 
of the secondary c ons traint. 

Now we shall give a generali za t ion of the fie l ds of the Dirac 
class for a non-Abelian case. He define the f ie l d 

13/1 (x l f) =A/1(x) - r dy r 
V
(X- y)D/1 Av(Y), (16) 

where D/1 = a: /1 - i g [AIL""] is a usual cova riant derivative 

and the f unction rll(x-y) satisfies the same conditi ons as in 
an Abelian case . The inversion formula for the field (16) has 
the f orm of (4). By analogy with the previou s case 
form with the help of the gauge transformation w(x) 
the transi tion t o the G.L variables ~/1(xlr;C) and 
that are connected by 

P/1 (xlf;C) = rdy fll(X-Y) 3'/1I1(y). 

let us per
=.U+(x IC) 
3'/1I1(xIC) 

( 17) 

The strength tensor 'Jl1v (xIC) i s expres sed through ~~(xlr ;C ) 
by the f ormula analogous to (J5). As in the case of the fields 

(12) it can be s hown t ha t the relation gl1 p/1(xlr ; C) takes place 
as t he secondyry cons traint. 

The local gauge transition of spinor fields that i s cons is
tent wi th the gauge transitions of the vector field s with 
(.<l(x ) = U+(x IC ) leads to the C.r. spinor vari ables 'II Cx/C) = 

l, 
 =r(u+(x IC»!/J (x) • wher e r connects the adjoint and fundamen 

t al repres en tations . 

It is clear f r om (14) and (17) that the G. r. fie l ds :B/1 (xl';; C) 
and :B/1 (x l f ; C ) obey the condi tions (x-OJ.l. :B jl (xlf. ; C ) = 0 and 
rV(p) :Bv(p l f; C = 0 respec t i vely (for tV taken al ong the 
fixed vect or). But for the arbitrary choice of the contour C 
t hey do not coincide wi th the ordinary Yang-Mills fields All in 
the s e gauges , and therefore the corresponding Green functions 
are not connected by the us ual reduc tion f ormulae with S -matrix. 
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\\Te shall consider the cases when the G. I. fields:B1l 1.n some 
definite gauges coincide with the usual fields. Let us start 
with the Fock gauge. We shall perform in (12) the gauge trans i 

+ 	 1 v 
t ion wi th U) (x) = V (x I'; ), where V (x I0 = Pexp [-ig rda (x--{) Av(';+a(x~l. 

o 
In contrast with (13) we have chosen in V(xIO instead of the 
i nfinite contour C of an arb itrary form t he piece of the 
straight line that connects the points .; and x . In this case 
we get the fiel ds :B (xl';) that under the gauge transformations 
transform i nto :B~ ( ~ 10 =w(053 Il(xIOw- 1 (O . He have used that 
VW(xIO =w(OV(xI Ow- 1(x) . In the Fock gauge (x-f)IlAIl(x) = 0 
the fields :B1l (x IO coincide with the f ie lds AIl(x) because in 
this case V(x l';) = I and the second and third terms in the 
right-hand side of (1 2) disappear. Thus under the local gauge 
transformations the field :B1l(xIO transforms in a local way 
only. It is obviou s that in the lim i t .; ... 00 the gauge inva
riance restors. 

Le t us consider the axi a l gauge. We introduce the matr i x 

( 18)V(x Ir ± ) = P(p ) exp [ - ig r dy f v (x-y) Av (y)1 • 
+ 	 

where r ~ is define d by (6), and p(p ) are the symbols of 
a -ordering (anti- a -o rdering). Under the gauge transforma- + 
tions Vex If ±) transforms in the next wa y VW(x I f )=w(x) V(xlf -). 
The unitary matrix (18 ) is a particular case of ( 13). Thus the 
construction of the G. I . variables is analogous to that we have 
considered before. The fields :B1l(xlf ± ) wo ul d coincide with 
the usual fields taken i n the axial gauge . The inversion formula 
for them is 

+ ~ + 
:B1l(xl r-) = +nv r da (;I(+a) J (x-ani f -).IlV 	 ( 19) 

-<><> 

In 	order to gene r alize the fields (7) to the non-Abeli an 
case with the choice of f v in the form fv('; - z )= (x -Ov x 

"" 
x r da o« (+a«(- x ) - z) we in troduce the matr i x 
o 

V (x ) I ( (x » = P exp [ - i g 
1 vr d a (z - 0 Av (.; + a (x - .;» ] t hat is 

a part icu l ar case of ( 13) , Thus t he con s t r uc t ion of the non
Abe lian G.l. fi elds i s per f ormed f ol l owi ng t he general approach 
cons idered befor e. 

The authors expr e ss t he ir grat itude to A.E.Dorokhov, 
G. P. Karchemsky and V. I .Savrin fo r useful di scussion s . 
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IlocTpoeH HOBbiH Knacc l<ann6poaotJHO-nHsapuaHTHbiX /K.H. I no
neA. Ilonyqea~ ~opMy~ o6pa~eHH~, Bhlpa.a~e K.H. BeKTOpHWe no
n~ qepes K.H. TeHsop~ aanp~•eaaocTH. IloKasauo, 'ITO WI~ BBeAeH
HbiX K.H. DOJleH B Ka'leCTBe BTOPH'JHOH CB.H3H B~OOJI~eTC~ YCJIOBHe 
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c o6bl'lHbiMH. I!onyqeHbl ypasHeHHll.UaAcoua - Wsuurepa WIH K.n. cnu 
aopaoro nponaraTopa. IloKasauo, 'ITO B cnyqae K3~ OH HMeeT 
a HH~paKpacHOH o6nacTH oco6eueocTb B BHAe npocToro nonwca 
<P-m}-1 . 
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rlpenpHHT O&I.~HeHHOI'O HHCTHTYT8 JIAe pHWX Hccne,qoaaJIHA. ,llytSH8 1985 

Skachkov N.B., Solovtsov I.L., Shevchenko O.Yu . E2-85-430 
Gauge-Invariant Yang-Mills Fields 
and the Role of Lorentz Gauge Condition 

A new class of gauge-invariant /G.I./ fields is construct
ed. The inversion formulae that express these fields through 
the G.I. strength tensor are obtained. It is shown that for 
the G.I. fields the Lorentz gauge condition appears as the 
secondary constraint. These fields coincide with the usual 
ones in some definite gauges. The Dyson-Schwinger equations 
for the G. I. spinor propagator are derived. It is fou~d that 
in QED this propagator has a simple pole singularity (p-m)-1 
in the infrared limit. 
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