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During the last few years much interest was paid to the
problem of studying the structure of gauge theories in terms of
gauge—-invariant (G.I.) objects 1.8/ | OQur work is devoted to the
same problem. We shall start with a short analysis of the Abe-
lian case. _

Let us consider two classes of G.I. vector fields

Bu(xm:Au(x)-aug dz"A_(2), | ()
and
B,&xIN=4,x)-d, [ dy !”(x-y)AV(y). : (2)

where & is a fixed point in the Minkowski space and t" isa
real function that satisfies the condition avfu(z) =8(z).

In the case of a straight-line integration contour in (1) the
field B, (x|&) coincides with the field taken in the Foék‘
gauge"'a/ul s (X =EW Ag(x) = 0. Due to this fact we shall call
these fields the fields of the Fock class. The fields (2) were
introduced by Dirac '5'(the Dirac class fields) and studied in
refs. ¥*’ | It is important to emphasize that the fields (2)
coincide with the fields Ay taken in the gauge t“(p) Au(p) = 0,

The field B,(x!£) (1) in case of the straight line integ-
ration contour can be expressed through the tension tensor F,,
by the inversion formula’34/

1 g
B, (1€) = T daa(x-8) F, (Evax-£)). (3)

The inversion formula connecting the fields with F,, has been
derived by us for the Dirac class in”®/

B, (xI1) = [dy ¥ (x—Y)‘F‘WA(Y). \ . .(4)

In was shown that the fields (1) and (2) considered on the
equations of motion satisfy the Lorentz gauge conditiom 6“8,1:0.
This condition according to Dirac terminology’/?/ appears here as

* This gauge condition has also beeq.sonsidered.i.a.f“
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a secondary constraint. Let us discuss some possible choices of
the functions f,(x) in (2). In ref.’2/ the next form of f has
been considered

(0) ™ —-1-n

” [ dae(a)d(x—amn), (5)

where N, is some fixed 4-vector. In p -space formula (5) looks
like fﬁ“Kp)=-—1V’P n, /(np). It is obvious that the func—
tion f (p) can be taken in another form: _(P) —in,/((op)t ie) »
i.e., 1n the configurational reprosentatlnn

f‘;(x)=$n# (da6($a)8(X—an). (6)

The G.I. field (2) with the choice of fy, in the form of (5) or
(6) coincides with the field A, taken in the axial gauge (nA) =
= 0.

With another choice of f;(p) —-iV.P. P, p2 the fields (2)
coincide with the fields A,  taken in the LorenL/ gauge
p“A (p)— 0. The correSpond1ng inversion formula has the form

p
L _ v
Bu (p) =—-iV.P. __p2 Fw(p).

One can get an impression that the right-hand side of this
equation is equal to zero due to the equations of motion. But
this is not so due to the singular nature of the denominator.

Let us mention that in the Fock class (1) the point & 1is
taken to be fixed, that leads to the breakdown of the transla-
tion invariance for vector and spinor fields (if we shall con-
sider in (1) £ as a function of x, i.e., £=&(x) , then the
gauge invariance of the vector and spinor field would be bro-
ken).

Moreover, the spinor field transforms under the local gauge
transformations in a global way by the factor exp(igA(x/&))
These difficulties can be avoided as &, » =

In the present paper we suggest a new way of introduction of
the G.I. fields, that is free of these difficulties and allows
one to construct such a G.I. spinor propagator GS'-lne(g y)
in which the integration is performed along only one distinct
contour - a piece of the straight line (str. line) between X
and y

Let us introduce the G.I. field

Bu(xlf;f) = A, (x) -
(7)

—a“ ﬁ‘dzA(z)+ [art’ (@) =r)A ()]
¥ L)

where for the function f (& (x) -7 ) the same conditions as for
the function f¥ in the Dirac class are valid.
The inversion formula for the field (7) has the form

1 v
B,(x&;1) = 0( daalx-£) F,, (E+a(x-£)) +

(8)
1 F
+ df (X){ f da (1-a)(x=&)” P (f+a(x &) + fdyf x-y) F,_ (1.

ax*

The G.I. spinor field corresponding to (7) is introduced with
the help of the phase transition ¥ (x) -» ¢ (x|&;f) =
=exp(ig A (x |€:£))y (x), where' by A(x|€.f) we denote an ex-
pression that appears in square brackets in (7).

For the construction of GS8U-line (g y ) let us choose

¢ —(x+y)/2.
€ (¢-r)=-(x-y)" /2 ([ dad(=ey) /2 + alx=y) /2 -r) "
In this case the G.I. spinor propagator is defined as

G (xy)=i<0|Ty (W) explig Fdz"AV(z)] J(y) 0>, 9)

X

where the integration is performed over the piece of the
straight line that connects the points x and y

We find that Schwinger's equation for the G.I. Green function
has the form

liy#( 9 g2 —gl 2 !szu —-5—-—-]—iguu(x)—
ax*  8IMx) axH x 53¥(2)

(10)

y ’
—igl2— [ dz'u (@) -m] G*"(xy|T) ==8(x-y).

ax* x

*With this choice of & and f the vector field B,
coincides with the field A, taken in the . gauge

(z— 5él—flhu(z) = 0, which has been used _inxa/

while deriving the dynamical equations for two-particle
wave functions.



The second Schwinger equation for u,(X) coincides with the
usual one. To the propagator (9) there corresponds the next
C.T. mass operator:

,

"
= v , ,
M(x,ylu)=igy¥ [ dy’<0|T¢ (explig [dz A (2)]¢ (")~

b-¢

(11)

el o v,

x[uuu)+

y
[ dz"u, (2)10>G
X" ox

From (10) it follows that in the infrared limit a Fourier
transform of (9) would contain a singularity of a simple pole
(m-p) ! So a singularity of the branching point which oc-
curs for the standard propagator in some gauges does not appear
here. This result has been obtained by us previously in?/ with
the help of another method, namely the method of the functional
integration.

We define the generalization of the fields of the Fock class
for the nonabelian case by the next formula:

. 1
B, (x1£) =A,(x)~d, gx dz” A (2) —igof da alA, (2()), A (&a))], (12)

where z (a) = é+a (x=&), 0<a <1 The inversion formula
for the fields (12) coincides with (3) up to the substitution
of QED F#V to Fﬂv —A Vu-—lg[A LA ]

In papers’! the G. I ten51on tensor ?uy(x C)= UT (x|C) x
thV(x)U(xIC) was constructed with the help of the matrix

X
U(x|C) = Pexpl-ig [ dz"A, (2)]. (13)
But the G.I. vector fields themselves were not considered
there. To introduce them we shall perform the gauge transfor-—

v OJ_ -1 L X —1 ¥ - U+ C
mation A#» Au_CDA#m + - (6um) I3 with o) (x|C)

The field (12) transforms into the G.I. field 3ﬂ(x|§;C) con-
nected with 3ﬂy(xiC) by

1
B, xliC) = [ daa(x-£) F,, Era(x=6). (14)

In terms pf the Mandelstam contour derivatives defined by the

relation 6 U(xIC) = lim[U(x +AxlC) -U(x|C)l/Ax, where
-0
4

the contours C and C° differ from each other by Ax only, the
equality a, uv v, tup + é;.gpu

this equality it can be shown that the next formula

= 0 takes place. With the help of

Ex g =y § 15

Fukx|C) = 3, B, (x1£:C) ~G,B,(x' £ C) (15)
is valid.

Thus, we see that the connection of the G.TI. strength tensor

3#V(x C) and the G.T. vector fields ﬁu(X|§; C) 1is analopous to
the well-known relation in the abelian case up to a substitution
of usual derivatives by the Mandelstam contour derivatives.

L It is easy to find by making use of equations of motion
3" o (x1C) O that the G.I. field B, (x1£:C) satisfies the
condltlon auﬁ (x1£,C) = 0 appearing as a generalisation of the
Lorentz gauge condltlon for a non-Abelian case and has a sense
of the secondary constraint.

Now we shall give a generalization of the fields of the Dirac
class for a non-Abelian case. We define the field

B,(x[f)=A (x) - [dy { (x~y) D, A, (), (16)

d .
where Du"g_— - 1g{A ]

and the function f (x—y)

is a usual covariant derivative

satisfies the same conditions as in
an Abelian case. The inversion formula for the field (16) has
the form of (4). By analogy with the previous case let us per-
form with the help of the gauge transformation w(x) =U" (x|1C)
the transition to the G.I. variables 3 (x/f;C) and 3uv(x]C)
that are connected by

e f- _ 1
R, (x11:C) = oy V(x-y) F,, (). (7
The strength tensor ?lixlc) is expressed through 3 xIf;C)
by the formula analogous to (15). As in the case of the fields

(12) it can be shown that the relation 9 ﬂu(xlf:C)
as the secondyry constraint.

The local gauge transition of spinor fields that is consis-
tent with the gauge transitions of the vector fields with
w(x)=U"(x|C) 1leads to the G.I. spinor variables ¥ (x|C) =

U zC) ¢ (x) |, where I’
tal representations.

It is clear from (14) and (17) that the G.I.
and B, (x(f;C)

takes place

connects the adjoint and fundamen-

fields
obey the conditions (x-f)uﬂu(xlg;c ) = 0 and

1 (p)Bv(p f;C ) = 0 respectively (for ¥ taken along the

fixed vector). But for the arbitrary choice of the contour C
they do not coincide with the ordinary Yang-Mills fields Ay in
these gauges, and therefore the corresponding Green functlons

are not connected by the usual reduction formulae with § -matrix.

5
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We shall consider the cases when the G.I. fields By in some
definite gauges coincide with the usual fields. Let us start
with the Fock gauge. We shall perform in (12) the gauge transi-

1
tion with @ (x) = vz [£), where V(x|£) = Pexp[-ig /[ da (X—@VA,,(EM(X—.{))].

0

In contrast with (13) we have chosen in V(x|£) instead of the
infinite contour C of an arbitrary form the piece of the
straight line that connects the points & and x . In this case
we get the fields %Jxlf) that under the gauge transformations
transform into 8% p(X1€) =w(®) B Odf)w'*(f) . We have used that
v (x| £) m(.f)v(x|f)w‘1(x) . In the Fock gauge (x=¢)" A p(® =0
the fields @ (x|£) coincide with the fields A,(%) because in
this case V(x £) =1 and the second and third terms in the
right-hand side of (12) disappear. Thus under the local gauge
transformations the field $,(x|£) transforms in a local way
only. It is obvious that in the limit & += the gauge inva-
riance restors.

Let us consider the axial gauge. We introduce the matrix

V|5 =P(P )exp [ —ig [dy [, (x—y) A ()] (18)

where fs is defined by (6), and ?(? ) are the symbols of

a -ordering+(anti* a —ordering). Under the gauge transforma-
tions V(x [f~ ) transforms in the next way V (x/f )=w(x) V(x|f 7).
The unitary matrix (18) is a particular case of (13). Thus the
construction of the G.1. variables is analogous to that we have
considered before. The fields @u(xlfi) would coincide with

the usual fields taken in the axial gauge. The inversion formula
for them is

Bu(xlri)=:—nﬁjjdae(;a)S“V(x—aniri). (19)

In order to generalize the fields (7) to the non-Abelian
case with the choice of f, in the form f, (£-2)= (x=£),, x

ov

% fda5(£+a(§—x)—z) we introduce the matrix

V(x)\é(xn F expl-ig rda(x—g’) A (6 +a(x=£)]  that is
a particular case of (13), Thus the construction of the non-—
Abelian G.I. fields is performed following the general approach

considered before.

The authors express their gratitude to A.E.Dorokhov,
G.P.Korchemsky and V.I.Savrin for useful discussions.
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