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1. INTRODUCTION

The measurement of the anomalous magnetic moment of the elect-
ron is one of the basic tests of quantum electrodynamics (QED).
As is well known the free Dirac equation gives a gyromag-
netic factor g4 = 2 for the electron and the anomaly a,=(g ,—2)/2
arises if one includes radiation corrections. Its measurement
in the latest Geonium spectroscopy experiment 1/ gives

a(exp.) = 1159652 193(4) x 1072 )
The current theoretical value is /%’
-12

a_ (theor.) = 1159 652 460 (127) (43) x 10 (2)
where the first error arises from the uncertainty in the fine
structure constant a and the second is due to theory. The dif-
ference of about 2 standard deviations between (1) and (2) is
an open question and has stimulated a more detailed study of
various higher order corrections to a,.

In this paper we consider the magnetic moment 8, of an elect-
ron moving in a homogeneous magnetic field H between two paral-
lel, infinitely large superconducting mirrors with distance a
between them. This is a simple model for the exYerimental 8i-
tuation in the Geonium spectroscopy experiment/ ’ There are two
sources for additional contributions to the magnetic moment,

The first is the magnetic field which gives corrections of the
order/3/

a (magn.) - a (SHLF. (3)
m

For the used in the experiment magnetic field of some ten kG
they are completely negligible.

The second source is the mirrors which modify the photon-
propagator entering the radiation corrections. To have an image
from the order of these contributions we consider the dimensio-
nal constants H ,a , and m, which are present in this case.

In the following we use
1
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Ao L _ BeH (5)
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as dimensionless combinations of them. Here Q= oH is the
P T

cyclotron frequency of the electron in the magnetic field and
w=n/a is the lowest eigen-frequency of a photon between the
mirrors. In the experiment’!’ the cyclotron frequencies used
are 0 = 51, 89, 142 GHz. The electron moves there inside
a cavity ("Penning" trap) of about | cm diameter, which gives
@~ 90 GHz so that the parameter A is of an order of one. The
other parameter .8, is very small and for a = 1 em equals

-10
2.4+10 7%

From these parameters we expect for 8.0 an apparatus—depen—

dent contribution

a_ (app.) =adtQ2), (6)

where f(A\) is sone function to be calculated. If this function
is of an order of one we get &, (app.) - 10-1" which is by two
orders smaller than the uncertainty in (2) and of the same or-
der as the uncertainty in (1) and as weak and hadronic contri-
butions (they are listed in ref.’#/, for example). So it is of
interest to calculate the apparatus-dependent corrections to 2,
in order to exclude them from the explanation of the diffe-
rence between (1) and {2). Furthermore if the function f(A)

in (6) is not much smaller than one, these corrections could
be measurable.

Hers, a remark is in order concerning the role of the magner
tic field. At the first sight having in mind the estimation (3)
it seems to be negligible so that the apparatus-dependent con-
tribution can be calculated for a free electron, This was done
already in ref, However, in the experiment /!’ mainly the
magnetic field ensures that the electron moves inside a cavity
("Penning" trap) whereby the radius R=1/yeH of the electron or-
bit is much smaller than the diameter of the cavity. So what
is measured is the magnetic moment in a stationary electron
state. Now the question arising is: Will this be the same mag-
netic moment as that of a free electron. The answer we get is
no. Namely, from our calculations it turns out that the func-
tion f(A\) in (6) depends on a nontrivial manner on both H and a.
Therefore, it is necessary to calculate the apparatus-depen-
dent contribution to a, for a stationary electron-state in
the magnetic field.

We use the following model. The magnetic field H is direc-
ted along the third axis and homogeneous. The mirrors are ori-
ented perpendicular to the first axis, intersecting them at
the points x'=# 8 . They are assumed to be plane, infinitely
large and superconducting. So we have for the electromagnetic

2

field the usual superconductor boundary conditions and can use
the representation of the photon-propagator developed earlier

in ref./%/. For the electron in a homogeneous magnetic field con-—
served quantities are (besides the energy, the spin projection
to the magnetic field and others the x1-and x® -coordinates of
the centre of motion (see, e.g., ref.’?/). We use a representa-
tion of the electron state which is the eigenfunction of the
operator for the x!-coordinate of the centre of motion with
zero eigenvalue. This state is localized in the

x!-direction and therefore, the electron moves in some region
in the middle between the mirrors. In the x2— as well as in the
X%~directions the position of the electron is not fixed but in
those directions the mirrors are infinitely large.

As concerns the dimensionless parameters, § eq.{4), and A,
eq.(5), we assume A to be of an order of one and § to be small.
We calculate the leading contribution for 8.0,

) The paper is organized as follows. In the next section we
introduce the formalism for handling the electron in a homoge-
neous magnetic field. The third section contains the calcula-
tion of the mirror-dependent contribution to the magnetic mo-
ment. The results are discussed in the last section.

2. THE ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD

. In this section we introduce the formalism needed for hand-
ling the electron in a homogeneous magnetic field. It is well
known and can be found in standard textbooks .However, the
representation used in this paper is not standard so we will
explain it here in some detail.

) The starting point is the generalized Dirac equation (i.e.,
including radiative corrections) in an external field A (x)/67
The corresponding action reads at the one-loop level . |

S = fa*xaty §(x) [(10, ~m+eA ™™ (x)) 5(x—) - 5 @) )
Here Z£(xy) is the self-energy operator of the electron

3 (xy) = ~1e28°(xy) v/ D, (x¥), (8)

S°(g?) is the electron propagator in the external field AB‘%x)
obeying the equation .

(13, -m+eA"™ (0 18° (1) =8(x-y) , &)

and D;jxy)is the photon propagator which will be specified in

* . . . . .
A detailed representation is given in the book of Sokolov
and Ternov /37,



the next section, Terms containing the vacuum-polarization are
suppressed in eq. (7) and will not be discussed in this paper.
The potential A®*'(x) for the magnetic field H is chosen in
the form A“‘(l)u-lwugxl .

The self-energy operator Z(X,y) contains ultraviolet diver-
gences. They are not influenced by the mirrors. We assume that
they are removed in a standard manner.

To handle the action (7) it is convenient to take Fourier
transform with respect to X% (a = 0,2,3) and to expand the x! -
dependence in the Hermite polynomials, For this reason we ex-
pand

1P,

. T —~1Pyx®
Ytx) = —L2& JeH T o u, ()¢, @, ) (10)

(2m)® n20
with n?=veHx'+VeH "', and u,(n) -(2"m\/ﬁ'/fin(n)m(--g-n2).

Hn () are the Hermite polynomials. The functions “n(") are ortho-
gonal [ u (n)u (m)dn=38,
—_— .
In terms of ¢ (pa) the action (7) reads

3
d p s R -~ -~
S= r@—ﬂ)ag'\/eﬂa'nzzod’u@a) [Ks,n (Pa) - zl.n(pa)]"bn(pa ) (11)
where
Ky o) = -m) 8, + I iuy v 2eH(s+ T_I“‘ ;2 N (12)
p=t1 g

is the kernel of the free action and
5, () -z % VA [ ax' dyu () () 29 |
s,n'Pg’ = a you () vy (ng 24 1% y%eg@ (13)

is the self-energy operator in this representation. Here the
following abbreviations are used

D= 0 8 . = +
P=p Y0+ BY. ¥, =3 (y +ig®) (u=11).
Furthermore we have assumed that i(x,y) is translational inva-
riant in the 0,2,3-directions. In fact, translational inva-
riance is broken by the mirrors as well as by A®*(x) in the
first direction only. "

The wave function of the free electron in the magnetic field
(i.e., without radiative corrections) obeys the equation

IR, .0,)9,0,) =0

4

e —————————————
It has solutions for p0=6\/m2+p§ +26HN. These are the well~
known energy levels of the electron in a homogeneous magnetic
field whereby N denotes the number of the state and € distin-
guish between electrons and positrons. For every N and ¢, this
equation has two solutions with different spin projection (p=%*1)
on the magnetic field. For e=+1 they are

(.p0+m) aa.N—l ¢
0 (pp+m) &
Vg - 1 P —— %
Yy ) “By & T+ Ys ()| -iv2eHN SN ';T ’
SV EST g Py 8, x (14)

n =\/2|:'0(130 +m).

Later on we need the following formulae, which can be checked
easily

L4 12 v’
g (1 +po Y, = 8vv'(_:t +uv)33'N_1§“8t'N_ lg-g
o 12y,v" _ m .
'ps y Qe w’g = sw'(l +quv) bs,n_&ug BI.N-—_L‘.l; (15)

— ’

3 —
¢,”y(u) ¥, =8,,.(iV2eHN /2p, Yud o 13255 i 12—:1 .

They are valid for P; = 0 andu=#1, The conjugated spinor is

V=y*Ty°,

The solutions ¢ (X) given by eqs.{14) and (10) describe an

electron state with fixed emergy py=vm®+p2+2HN , spin pro-
jection v = +1 to the magnetic field, impufse component pg,
and x!'-coordinate of the centre of motion whose eigenvalue is
Pg/eH. In all of the following considerations we set p =Pe=0
and get the representation of the electron state which has been
explained in the introduction.

For the calculation of the self-energy operator of the elect-—
ron we need the electron-propagator in the magnetic field. It is.
as usual in field theory, the inverse kernel of the free action.
We define sﬁ" (pg) by

I K (S (p)==5, . (16)
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This equdtion can be solved exactly with the result

v 1+m712 i 1+p
3°‘(p g (@ +m)—E= 88.‘+1“y(#)\/2iﬂ(l+_.2__)8,';_“ g
8, N
& =1 _p02+ p:+m2+2gﬂ(n+%-“—)—ig

Here o'% =iy'y%, The i¢ —prescription in the denominator is taken
in such a way that 8;’.l (pg) 1is the causal propagator and for va-
nishing magnetic field coincides with the usual causal propaga-
tor. The corresponding representation in coordinate space is

3 — —ip_(2%—y*

Pa veH X e ba lf)(np)ut(r)p)ﬂ:,(i’a)- (18)
@) 5,t>0 LA - il

8°(x,y) =

Obviously, S%(x,y) given by {18), satisfies eq.(9).

Now we consider the corrections to the energy coming from
the self-energy operator. For this reason we use the action
(11). The corresponding equation of motion for ws(pa) is

-~ -A = (
IR, 00 -5, 01,60 (19)
In the sense of standard perturbation theory for quantum mecha-
nical systems (see ref./7/ for example) the correction to the
free value for p, is given by the perturbation I , (p,) taken
in the unperturbed states y Y (p,) eq.(14):

- ¥ 3 2
Ap, s,éo'ps(p") 2o @)% 0| b0 (20)

P =Vm? +2eHN

The unperturbed energy levels are degenerated with respect
to the spin projection and therefore one has to be carefull with

perturbation theory, However, the self-energy operator “}:, ()
does not mix states with different spin-projection’ ' and there-
fore trouble does not occur.

The correction Ap, to the energy is a function of the num-
ber N of the electron state and of the spin projection v. So,
it can be expressed in the form

Apy= C +pgHva (21)
where up=e/2m, 1is the Bohr magneton, a, is the anomaly of
the magnetic moment, and C is independent of v.

* This can be seen explicitly in the next section, where enly
averages of the form (15) occur.
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3. THE MIRROR-DEPENDENT CONTRIBUTION
TO THE MAGNETIC MOMENT

As we have seen in the foregoing section the corrections to
the energy levels are given by eq. (20), and especially the cor-
rections to the anomaly of the magnetic moment by eq.(21).They
can be written in the form

—

Ly v TS Y
Yom B v gl ano’e Zea ¥ - (22)

: Now we must fix the photon-propagator, entering ae,eq. (22)
via the e]..ectron self-energy, eq.(8). As is explained in the '
introduction we have for the electromagnetic field superconduc-
tor boundary conditions at x'=*a/2 and use the representation

?f the photon-propagator with such boundary conditions given
in ref.’%/ It reads

"D;v(x.y)-D:,, (= - + D7 xy), (23)

8 .
where . D‘:, (x.y.) is the full photon-propagator consisting of the
free (i.e., without boundary conditions) part

k(x—y)
D§, (x-5)~g,, [ 4% ©
o W emt x®_g.

and of the mirror-contribution

-

N 3
DS (xy) = | Lk s o0
g 2m)3 = H g0°=+1 4TsinTa

(24)

x exp[ ik, (x* -5 “) +iT(Ix’- Sl +ly 5o |- 5 (roo )],

Here the following notation is used. The index a takes values

a =.0,?,3, I' is given by IN'=y/ kg-kz «-t:+i¢. where the ie¢ -pre-
scription ensures that ImI’>0.It originates from the usual ie -
prescription of the causal propagator. The vector-structure

1s given by

ky
‘"""kI‘L? for u,v =023

®,, = 25
0 for p=lorve=1. :

Thf. free part qfv.(x-y)of the photon-propagator, if inserting
tl.lem into eq. (22) gives rise to corrections independent of the
mirrors, whereas the mirror-contribution D“‘:, (x,y) to®Df (x.y)

uv »

1



gives rise to mirror-dependent contributions a (mitr.). This is
that we are interested in. The corresponding part of the self-

energy-operator Zg, eq.(13), is
R | Y [ axlayte e u (®)u. (1P) x
B, a [ s Ll T

;
x B, xy) /'8 @yl , =

a
X =y =2

At this place it is useful to replace the vector-structure (k)w,.
eq. (25), of D;y (x,9), eq.(24), by

(®),, = B, +8,; 8, (1+ 860! - o) sEn(y’ = Z-07)). @n
The propagator occurring in this way is denote by Ecv (x,y). We
state, that the difference between (k)u . eq.(25), and (K)y .
eq. (27), being inserted into the mirror-dependent part of the
photon—-propagator, gives no contribution to the magnetic mo-
ment. The proof of this statement will not be given here be-
cause it is rather lengthing than different.

Therefore, inserting (E)uv » eq.(27), instead of (K)y, .eq. (25),
into D (x,y), eq.(24), we get the mirror—dependent contribution
to the electron self-energy in the form

1+oo”

‘—11“&_
d%q go’e 2 Y
- —i S e — e ———— S f k
%e.t(Pa) = (em? a.aiﬂ 4Tsinl"a n,n ZDY“ L 4
x[(8  + B8,1) Fyp (®) F‘ L ® +8, l,JJ‘.:,“(I&) G‘,’,; (k)] (28)

with the notation
B, () =veH [dxu, (VeHx)u, (VeHx — Vel kyem(Dlix- §ol) (29)
and

4 o g e = e a ; a
Gs.n(k)=\/el~l_£ dxu  (VeH x) un(\/eHx-\,/eH ke)sgn(x—-z—a)exp(1l"lx~-2-a|).
(30)
For handling the y -matrices we use the following formulae (u=t1):

12 , . 12
po 1 1+pu‘c
YB=W§ 51 2(m —pyy° ‘:ELQ )—-g"——

Bap? (0gy°+m) 5

1+uo'® 1-pp’ 1+p’0'®
ae p MOTB_ s (pyo—m)lizHe 1ruel
8,85, (B +m—3 )"Bju,= ﬂ(Por m) — 3
8

B

a - 2 .
&gY K, Y oa (+n ))'

1)
a b’ (31)
2
which can be checked by the standard rules for manipulations
with ¥ -matrices.
Here a remark is in order concerning the spin structure,
As it can be seen from eq.(17) all y -matrices occurring in

the self-energy operator i“ eq.(28), have a structure given
by eq.(31) and therefore, having in mind the averages (15), do
not mix states with different spin projections v.

Next we insert Zg,;; eq.{(28), into a8,,eq.(22). Using formu-
lae (31) and (15) we get the following expression for the appa-
ratus—dependent part of the anomalous magnetic moment:

" , =il 4o’
a (app.) ==ieZm g s Je8 2
uDH (27)3 g,0%=+1 4T sinl"a

s | R p? ® F° '
pu=s1 n.ngzo 2 Ne gﬂ_'n_m) N L’ e I(‘k)

g’ 2 g’ 2

. . (32)
kg p— g
Lt 2 . R w-c” ® x

o
G , 2 2 —iy—1
x o L 1;! (k)] (-(p0 +k0)'°‘ +K +m” +2eHn —i¢)

Here we have used the invariance of the integral over kg with
respect to kgs-kg. This leads to the vanishing of terms linear
in kg in the numerator of the electron propagator because the
other k, —dependent quantities as I'" and the denominator de~
pend on k2 (for p,=0, as we have),

Expression (32) is the complete apparatus~dependent contri-
bution and we are interested in the leading behaviour for &-0.
For this reason we first substitute k_ +k,/a in the 1ntegral
in the rlght—hand side of eq,. (32). Thereby the functions FJ (k),
eq.(29), and GF , (k).eq.(30), becomes functions of the comblna—
tions of parameters (8/2n\) =(a226H)_ For (8/2mA) <<1 we get

o =0 Fy @),

F @) —em (-0 2) 15, + \/-2—':7 [(kg=ioT)VE 5, 4, ,



] 1

~(k, +ioT) \/718..11_l = igs

0] 2 =8
W[((2B+1)(k2+r‘ )+

+2ik,0T) 8, | ~(ky —i0TF VEGED 8, (33)

- (ky +io D vi-D 5, ,_, 106> D)1,

where contributions of an order of exp(-2mA/8) and smaller are
suppressed, One gets formula {33) simply by a formal expansion

of the integrands in eqs, (29) and (30) intc powers of v/ &/2mA.
In general, this is not correct because the integrands are not

analytic inv/8/2n\. However, it can be shown that this leads to
additional contributions of an order of exp(—2mA/8)which are

completely negligible to us. The reason is that the integrands
are nonanalytic for X=+%4-0, i,e,, on the surface of the mirrors
where the electron wave function 1s exponentially small due to
the assumption of the size R= veH ~1of the electron orbit to be

much smaller than 3.
Using eq.(33) we rewrite eq.(32) in the form

2 & a*, ago’e 2
28\ @m? gozs1 4sinl

‘. (‘ppc) = -ie

2 2 .
ngolz(kgu“)s“ - (k200" T%)(5 Noast *Onn _y)
i (34)
tko2myi—ZmantAgeet 8 -5 )]
V1+20A8N
G, X200 RN EB-x®) —1) 1.
LT = gade’ g i

As the next step we rotate the kg —integration by means of
k -k =ik . This is just the usual Wick-rotation in accor-—
dance with the je¢ —prescription in I' and in the electron pro-
pagator. However, because we consider an on-shell matrix-ele=

ment (i.e., in the physu:al region, Po =vVm2 +2eHN > m ) from the
Wick-rotation there arises an add1t1onal term. It comes from
the pole of the electron propagator at

kg == $-(V1+2mA8N - V1 +2nA8n +8%k2) (35)
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lying below the real axis in the complex k0 —plane This con-
tribution is present for n = 0,1, s, N-1 and k3<(2nV8)(N—n)
Denoting the rotated T by a“’(app) and that from
the pole by 5(2) (app.) we have

8, (app.) = al) (app.) +a® (app.). (36)

First we calculate a‘e\’)(app.) and consider there the terms
containing 8\1 S in the numerator of the electron propagator.
Because of n - "NZ %1 in this case the denominator of the elect-
ron-propagator can be expanded in powers of 8. Using than the
symmetry with respect to the substitutionkg-»-k, all terms
of an order of § vanish. So, there remains the contribution
containing SN.n' Here, the denominator cannot be expanded di~
rectly. We proceed as follows. Introduce polar coordinates

k4=k coB pcosd |, kazksin¢aoso. k2=k sind

with ¢=0,...27 and f=-4-...5 and using P=iy,y= \,/kz+l:2|l;g -k
we get aft._r the integration over the angles

..k_l_"'.ﬂ

(1) ) F dek” . go’e 2

8.’ (app.) =e [ 3 —

’ A% 0 (2 oo=:1 4ehk

X

V4(1+2m8N) +52k2 cos?d

Now it is possible to set & = 0 in the denominator and we ar-
rive at

(1) 5 3403
a app.) = d— ————,
o (8pp.) i oy (37)
It remains to calculate a(f) (app.).The k, —integration gives the
residium in the pole and we get
: 1~o0”
> 5 2

3(2)(app,) =—52_8__. [ _dlL‘:.ﬂ_. s pe6 %

¢ 24328 @m® oo%yr 4P snl

(38)
2a) [~k2+00° T2k 2mhy TZmABN Aol
2y 1+ 2m8(N-1) +8% k§
with
=57 [V1+2aA8 (N-1) +52T2 — V1+2mABN]
1




and kg <2nA/8. In order to obtain the leading term for §+0 we
set 8 = 0 in the integrand in the right-hand side of eq. (38)
whereby we have kj=-nA and kg <= . Introducing polar coordi-
nates kp=kcos¢ ,kg=ksing we get after the integration over
the angle ¢

ir 1-o0

dkk il ;\w(kz(é— +o0”)=a"AR)

8 app.) =221

233 0 2n ogo0=1 4T sinl" (39)
with M=y #8A2 k24 i . Due to the ie -prescription, for k°<e®A2

[ takes values above the real axis and for k®>r®A% we have

P=ivk®—#®2 . Integrating over I' instead k we rewrite eq.(39)
in the form

a(2) (app.) - a 8 '}Adrv -'"2A2 +3F2—elr (3”2A2-r2) : (40)
" 8a2)2 1 sin(I + ie)

Since we are interested in the corrections to the energy le-
vels rather than in the line width, we have to calculate the
real part of this integral. Assuming Aw ¥ 1,3,5..., (the discus~
sion for Am=1,3,5,... is given in the next section) we can
integrate by parts and get

(@) =
a'’ (app.) =

Ar
1 2803) . 1in0c02 My 1 ar.T'@1n|tgL |+ nsin ) L.
ad (1 2D, Linood 30 - L rarT @l

Together with eq.(37) this gives the complete mirror-dependent
contribution in the leading order for 8+0 to the anomalous
magnetic moment. It can be written finally in the form

41{@3) 1 2 A
—In(2 co8” —
3 1622 4 . 2 ’

ag (app.) =a 51l

1 (41)

B dz-z(31nltgi\—'2’4’—-1+ln\amsz|) 5.
0

4, DISCUSSION

The apparatus-dependent contribution to the anomalous magne-
tic moment of the electron has in the leading order for &0
the form
8, (app.) =adf(Ar), 6)
12

whereby the function f(A), calculated within the model as explai-
ned in the introduction, has the form {cf. eq.(41))

1 4148) 2)
f(,\)=k—2—1—6:2—- 11n(2cos ")-——-[dzz(slnltg |+1n|sinArmz|). (42)

This function is shown in the Figure.
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Expression (42) for the function f(A) is valid in the fol~-
lowing region of parameters. From the expansion of the functions
F‘H‘fn ,eq.(30), and 0‘;_,, » eq.(31), in powers of 8/2mA we get the
restriction

5 _ _1 R?

= -
27A  a%geH aE (43)

where R=1/yeH 1is the radius of the electron orbit. This means
that the electron is far from the mirrors. The expansion of
the electron propagator in section 3 is possible for

2e HN

2”V8N5T<<1, (44)
e

where N 1s the number of the electron state and means that the
electron is nonrelativistic, In the geonium—spectroscopy expe-
riment these restrictions are fulfilled, As can be seen from
Eq. (42), the function f(A) diverges logarithmically for A =
= 1,3,5, . This comes from the fact that for such values
of A the self energy operator Z! (P, ). eq.(13), taken in the
states ¥} (py) eq.(14) (cf. eq. (20), is not small (actually in-

13



finite) and, therefore, eq,(19) cannot be solved in perturba-
tion theory as we have done. We expect that the nonperturbative
solution of eq.(19) is finite for A = 1,3,5,... too so that
really no divergences occur, However, it remains the fact that
the function f(A) shows a resonant behaviour, Having in mind
that A, eq.(5), is the ratio of the cyclotron frequency and the
lowest eigenfrequency of stationary photon states between the
mirrors we conclude that there appear some kinds of resonances
between the cyclotron radiation and stationary photon states.

From our calculations it turns out that the apparatus—dependent
contribution to 8¢ 1is quite sensitive to changes of the magne~-
tic field H entering into a,(app.) eq. (6), through the parameter
A=aeH/mmg, see the Figure. The order of magnitude of a, (app.)
in the experimental region (& ~ 1 cm, H - 18...51 kG, so that
A~ 0.6...1.6, 8 ~10"10) is ag(app.)~10 "% - which is too small
for the explanation of the difference between the current ex-
perimental and theoretical values ofa,. However, due to the
high experimental precision the apparatus—dependent contribu-—
tion seems to be measurable by changing the magnetic field H
or by using cavities with different diameter.

The most interesting feature is the existence of the above
mentioned resonances between the cyclotron radiation and sta=
tionary photon states between the mirrors, which take place
at A = 1,3,5,... . Here, a further theoretical work is neces-
sary and it would be interesting to observe the resonances ex~
perimentally.

A remark is in order concerning the geometry. In the present
paper, the calculations are performed for the most simple case of
two plane parallel mirrors., We think that this case shows up
all interesting new features: the dependence of 3¢ on the mag-
netic field and the appearance of resonances. One can expect
that these will be present in more realistic geometries too,
although the precise form of the function f(A) will be changed.
In particular, one would expect that the resonances are connecw
ted with the zeros of the Bessel functions for a cylindrical
cavity.

Finally, we would like to point out that a further work (in
particular, calculations for the realistic geometry) is neces-—
sary to confirm the conclusion that the difference between the
current experimental and theoretical values of a, cannot be ex-
plained by the apparatus—dependent effects.

* Near the resonances higher values are possible.

14

REFERENCES

I.

Schwinberg P.B., Van Dyck R.S. (Jr.), Dehmelt H.G. Phys.
Rev.Lett., 1981, 47, p.1679; The latest value of a, has
been reported by Van Dyck R.S. (Jr.) at the Ninth Int.Conf.
on Atomic Physics. University of Washington, Seattle,

July 23-27, 1984, see also ref./2’.

Kinoshita T., Sapirstein J. CLNS-84/617, August, 1984;
Kinoshita T., Lindquist W.B. Phys.Rev., 1983, D27, p.876;
Phys.Rev.Lett., 1981, 47, p.1573.

Sokolov A.A., Ternov I,M. Relativistic Electron (in
Russian). "Nauka", M,, 1983,

Fishbach E,, Nakagawa N. Phys.Rev., 1984, D30, p.2356;
Phys.Lett., 1984, 149B, p,504; Svozil K. Phys.Rev,Lett.,
1985, 54, p.742; Barton G., Grotch H. J.Phys.A: Math,Gen.,
1977, 10, p.1201; Babiker M., Barton G. Proc.Roy.Soc.
Lond., 1972, A326, p.277.

Bordag M., Robaschik D., Wieczorek E. JINR, E2-83-488,
Dubna, 1983, to appear in Ann. of Phys.

Bogolubov N.N., Shirkov D.V. Introduction to the Theory

of Quantized Fields. Wiley-Interscience, New York, 1980.

Landau L., Lifshitz E. Quantum Mechanics. Pergamon Press,
1965.

Received by Publishing Department
on May 30, 1985.






