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1. INTRODUCTION 

The measurement of the anomalous magnetic moment of the elect
ron is one of the basic tests of quantum electrodynamics (QED). 

As is well known the free Dirac equation gives a gyromap,
netic factor ge = 2 for the electron and the anomalyae=(ge-2)!2 
arises if one includes radiation corrections. Its measurement 
in the latest Geonium spectroscopy experiment 111 gives 

ae(exp.) '" 1 159662 193 (4) x 10
-12

• (I) 

The current theoretical value is 12/ 

a e (fheor.) '" 1159 662 460 (127) (43) x 10 -12 (2) 

where the f irst error ari ses from the uncertainty in the fine 
structure constant a and the second is due to theory. The dif 
f erence of about 2 standard deviations between (1) and (2) is 
an open question and has s t imulated a more detailed study of 
various higher order corrections to ae . 

In this paper we consider the magnetic moment as of an elect
ron movi ng in a homogeneous magnetic field H between two paral
lel, i nfinitely large superconducting mirrors with distance a 
between them. This is a simple model for tlw exrerimenta1 si 
tuation in the Geonium spectroscopy experiment I ~ n,ere are two 
sources for additional contributions to the magnetic moment. 
The first is the magnetic f ield which gives rorreCLions of the 
order /a / 

a e (magn. ) - a (e~ f. (3) 
me 

For the used in the experiment magnelic field of some ten kG 
t hey are completely negligible. 

The second sour ce is the mirrors whjch modify the photon
propagator entering the radiation correclions. To have an image 
from t he order of these contributions we consider the dimensio 
nal constants H , a , and me which are present in this case. 
In t he f ol lowing we use 

8 = _l_ (4 )ame 

and 
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A = E.. = aeH (5) 
cu 1711'e 

as dimensionless combinations of them. Here n'" ~ is the 
cyclotron frequency of the electron in the magnetfc field and 
cu=17/a is the lowest eigen-fre~ucncy of n photon between the 
mirrors. In the experiment 111 the cyclotron frequencies used 
are n = 51,89, 142 GHz. Thl! cl('crroll mnV('fl there inside 
a cavity ("Penning" trap) of about I em d illllll'ter, which gives 
(U _ 90 GHz so that the parOlnell'r X {oj 01 /III ord('(" of one. The 
other parameter ,0, is very small lind lvr n I cm equals 
7..4 ' 10-1.° 

From these parameters we expl'('1 Inr II .. 0 an nrpnrnluR-depen
dent contribution 

a e (app.) = ao r(A ). (6) 

where t(A) is sone function to be ('III elll nl :I·,1. II Ihl n (unction 
is of an order o~ one we get a a (apII.) - In II' wh i ell i 8 by two 
orders smaller than the uncertainly III U) IIl\cl tll llll' Rame or
der as the uncertainty in (I) and nil wUllltlllti lind Imd \! contri
butions (they are listed in ref .'2/. J Of' I xl1l11pl .. ). flo J t i s of 
interest t o calculate the apparntuo-dl·pluld .. lll (·nrr clr t ions to ae 
in order t o exclude them from til!' ('xplnllllllnl1 nl' 1111' (liffe'" 
r enee between (1) and (7.). FurthcrmOl'l' if Ilw 11l1I( (i('ln t( .\ ) 
in (6) is not much smaller than OOt', lhl'lIl' CC'H"~l~lf tmll could 
be measurable . 

Her".'!, a remark is in order conccrninr. till' I nlL' of I he magnet" 
t ic field. At the first sight hav lng l n mlnd lIw MH Imolion (3) 
it seems to be negligible so that the llppl\r{\l\lu-dep('nd~nt con
tribution can be calculated for a Cree eleclron. Thill W(lS done 
already i n r ef / 41 However , in the experiment 111 mainly the 
magnetic f ield ensures that the electron moves insldl' a cavity 
("Penning" t rap) whereby the radius R- lIveH of the electron or 
bit is much smaller than the diameter of the cavity. So wha t 
is measured is the magnetic moment in a stationary electron 
state. Now the que stion arising is: will this be the same mag
net ic moment as t hat of a free electron, The answer we get is 
no. Namely, from our calculations it turns out that the f unc
tion t(X) in (6) depends on a nontrivial manner on both Hand a. 
Therefore, i t is necessary to calculate the appara tus-depen
dent contribution to for a stationary elec t r on-state ina e 
the magnetic fi eld. 

We use t he following model. The magnet ic f i el d H i s d irec
ted a l ong the th ird axis and homogeneous . The mi rrors are or i
ented perpendicular t o the first axis, intersecting them ~t 
the points xl = ±T' They are assumed to be plane. infini t el y 
large and superconducting. So we have for t he electromagnetic 

field the usual superconductor boundary conditions and can use 
the representation of the photon-propagator developed earl i er 
in ref. /5/ . For the elec tron in a homogeneous magnetic field con
served quantities are (besides the energy, the spin projection 
to the magnetic field and others the xl-and x 2 -coordinates of 
t he centre of motion (see, e.g . , ref.I?/). We use a representa
tion of the electron state which is the eigenfunction of the 
operator for the xl-coordinate of the centre of motion with 
zero eigenvalue . This state is localized i n the 
xl-direction and therefore, the e lectron moves in some region 
in the middle between the mirrors. In the x2 _ as well as in the 
xS - directions the position of the electron is not fixed but in 
t hose directions the mirrors are infinitely large. 

As concerns the dimensionless parameters, 0 eq . (4), and .\, 
eq.(5), we assume.\ to be of an order of one and 0 to be small. 
We calculate the leading contribution for 8~O. 

The paper is organized as follows. In the next section we 
introduce the formalism for handling the electron in a homoge
neous magnetic field. The third section contains the calcula
tion of the mirror-dependent contribution to the magnetic mo
ment. The results are discussed in the last section. 

2. THE ELECTRON IN A HOMOGENEOUS UAGNETIC FIELD 

In this section we introduce the formalism needed for hand
ling the electron in a homogeneous magnetic field. It is well 
known and can be f ound in standard textbooks * .However, the 
representation used in this paper is not standard so we will 
explain it here in some detail. 

The start i ng point is the generalized Dirac equation (i.e., 
including radiative corrections) in an external field A';t(x)/6i' 
The corresponding action reads at the one-loop level 

S = 4 4 - - extr ~ x d y", (x) [(tox - m+ eA (x)) S(x-y) 
~ 

- I (x,y)] '" (y). (7) 

Here I(~y) is tbe self-energy operator of the electron 

-.i (:IS) = -ie2 ytSO(x,y) Y'O;v(X,y), (8) 

SC(x,y) is the electron propagator in the external field A~xt(x) 
obeying the equation 

A A ext c
{ lax - m+ e A (x) ] s (x,y) ",- 8 (x-y) , (9) 

and D~(x.Y) is the photon propagator which wi ll be specified in 

* A detailed representation is given in the book of Sokolov 
and Ternov 18/. 
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the next section. Terms conta1n1ng the vacuum-polarization are 
suppressed in eq. (7) and will not be discussed in this pa per. 
The potent ial Aut (x) f or the magnetic field H is chosen in 
t he f orm A8.l: t (x)P.~H8 ex1 . 

The s e l f -energy o':>erator i(x,y) conta i ns ultravio l et d iver
gences. They are not influenced by t he mirrors. We assume t hat 
they are removed in a standard manner. 

To handle the ac tion (7) it i s convenient to take Fourier 
atransform with respect to x (a - 0,2.3) and to expand the x l 

dependence in the Hermite polynomials. For this reason we ex
pand 

d8 _ -iPasa 

'" (x) :: r -=:..h v' eH l: e "n (7]P ) '" (p ) (10)(211')8 n~O s n a 

D -1/2 2with 7]P ::v'eRx l +v'ii1f-~ and Un(I1) - (2 nlVi) H ('1)8%p(- i- I1 )'
It 	 2 n

H (7]) are the Hermi t e polynomials. The functions u ('I) are ortho
n DO n 

gonal r U s(I1)U n(,,)d,,=8sD 
' In terms of "'n(Pa ) the action (7) reads 


8
d P _ 	 AA 

s .. r---i-v'eH l: "' s(Pa } [Ks,n(Pa) -l:II.n(pa»)"'n(Po)' (11)
(2,,) S.D~O 

where 

Ks,o (Pa ) = (p -m ) 8s.D + l: i p. y(p.) v' 2eH(8 + *) 8 • _ p.8 D ( 12) 
1L=±1 

1S the kernel of 	the free act ion and 
o 

8 iPaz vi (p ) = ( d z e eH f dx 1 ( dy1u (~ UD(~Y ) i (x,y) I a a..... a ( 13)S, o a . a 	 S It - Y - II 

is the self-energy operator in t his representat i on. Here the 
fol lowing abbreviations are used 

P:E Po yO + P8 y 8. y _..L(yl+ij.ly!) ( /t=±1). 
(JL) 2 

Furthermor e we have assumed that i (x,y) is translational inva
rian t in t he 0,2,3-direct ions. In fact, translational inva
r ianc e is broken by t he mirrors as well as by Aelt~x) in the 
first d i r ec tion only. IL 

The wave f unc tion of the free electron in the magnetic field 
( i . e., wi thout radia tive corrections) obeys the equation 

l: K (p) IjJ (p ) - O. 
n~ 0 8. 0 a n a 
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It has solutions for po=(v'me+p~+2eHN. These are the well 
known energy levels of the electron in a homogeneous magnetic 
field whereby N denotes the number of the state and ( distin
guish between electrons and positrons. For every N and (, this 
equation has two solutions with different spin projection (v=±l) 
on the magnetic field. For E '= +1 they are 

o 
o 

(po+m) 

(Po+m)
.1. Y-+ (p ) = 1 V=-l
¥'s a -p 8 1-1r. 1/1 8 CP.)= -iv'2eHN8 8,N-l 	 a 11 ' 

i v' 2eHN eSII,N ( 14)P8 eS B.N 

:n ~v'2p (p +m) . o 0 

Later on we need the following formulae, which can be checked 

easily 


v 12 v' m 	 .."'8 (1 +j.lCT ) 1/1 = 8.n.'(- +/tv) 88N_~u t N-~ 
t ~~ Po • 2 • 2 

-	 v' m 
I/Iv y ° (1+j.lCT 12 )I/I 	 = 0 ,(1+-lLv)8 N 1-<... _..!tiL 

S ,vv Po s, - e 8 tN. 2 (15) 

,,' ,,"YI.. 1/1 = eS ,(lv'2eHN / 2po ) jl8 8 N-~ t N- I-j.I
B \]A) t VV 	 • 2 • 2 

They are valid for Ps 0 andj.le±1. The conjugated spinor is
iii = 1/1 '" T. yO • 

The solutionsl/l(x) given by eqs. (14) and (10) describe an 

e lect:ron state with fixed energy Po= v'm2 + pi + 2eHN , spin pro
jection v =~I to the magnetic field, impulse component P8' 
and xl-coordinate of the centr e of motion whose eigenvalue is 
Pe/eH. In all of the following considerations we set P2 "" PS=O 
and get the representation of the electron state which has been 
explained in the introduction. 

For the calculation of the self-energy operator of the elect
ron we need the electron-propagator in the magnetic field . It is. 
as usual in field theory. the inverse kernel of the free action. 
'~e de f ine S~.t (Pa ) by 

A c 
~ Ksn(Pa)Snt(Pa)=-eSst' 	 (16)

D ~ O' , • 
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This equat:LOn can be solved exactly wlth the result 
"1+,m12 . 1+1' 

C (p+m)-r-- 8s t + 11'>'( )V21H(1 +.,--) 8 8 ,t-IL 

S ~) = ~ 'I' . (17)


8,t /l S'=t:l _p2~p2+m2+2eH(n+ 1+1' ) -il 

o 1 • 2 

Here a l2 =1;,1;,2 The l. ( -prescription in the denominator is taken 
in such a way that S;,t (Pa) 1.S the causal propagator and for va
nishing magnetic field coincides with the usual causal propaga
tor. The corresponding representation in coordinate space is 

-Ip 	(zel _ya) cc dSp_
S (a,Y) '" f -+..; eH ~ e a U (17P ) u ('1P ) 8 B t (Pa ) • (18) 

p t> 0 a 1( t y .(2fT) 

Obviously, S c(a,y) given by U8), satisfies eq. (9) 
Now we consider the corrections to the energy coming from 

the self-energy operator. For this reason we use the action 
(II). The corresponding equation of motion for'" (P ) is 

9 a 

:E [KBt(P ) -1 (Pa)]t/r,(Pa)"O. 	 (19)
a st,~ 0' , • 

In 	t he sense of standard perturbation theory for quantum mec ha
nical systems (see ref.l71 for example) the corr~ction to the 
free value for Po is given by the perturbation ::Ell t (Pel) taken 
in 	 the unperturbed s tates t/rv(P ) eq. (14): ' 

s 	 a 

t\Po=::E "'~(Pa) ie t (Pa)t/r;(Pa) I p _ 0 	 (20) 
!f,t~o' 2- PS'" 


~---
Po" ";m2 +2eHN 

The unperturbed energy levels are degenerated with respect 
to the spin projection and therefore one has to be carefull with 

perturbation theory. However, the self-energy operatQ~ Is ,(P ) 
. . b d' ff . .. 11t- d I: adoes not mlX states Wit l erent spln-prO]ectlon an tnere

fore trouble does no t occur. 
The correction t\po to the energy is a function of the num

ber N of the electron state and of the spin projection v. So, 
it 	can be expressed in the form 

t\Po~ C +j.lBHvae ' 	 (21) 

where ltD ~e/2me is the Bohr magneton, as is the anomaly of 
the magneti c moment, and C is independent of v. 

* This can be seen explicitly in the next section, where ~nly 
~verages of the form (15) occur. 
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3. 	THE MIRROR-DEPENDENT CONTRIBUTION 

TO THE MAGNETIC tfOMENT 


As we have s een in the foregoing section the corrections to 
the energy levels are given by eq. (20), and especially the cor
rections to the anomaly of the magnet i c moment by eq.(21),They 
can be written in the form 

1 v -;-'" v a e ", - ~ - ::E rp:E t/r •
2 .-= d "'BH 8,'~O 8 8,t C 	 (22) 

Now we must fix the photon-propagator, entering 8 .eq.(22),e 
via the electron self-energy, eq.(8). As is explained in the 
introduction we have for the electromagnetic field superconduc
tor boundary conditions at ~1= ±a/2 and use the representation 

of the photon-propagator with such boundary conditions given

in ref. /r./ It reads 


8D;'(a,Y)_D~ (x -y) + D~(l,Y), (23) 

where 8D~ (z,y) is the full photon-propagator consisting of the 
free (i.e., without boundary conditions) part 

~ tk(z-y)
0:V (a-y) '" 8j.1v f d k _e--:-__ 


(217)4 -It 2 -i( 


and of the mirror-contribution 

3 


- c d ka 	 0'0'D (z,y) = f -(k) ~ __ 

lUI (217) S lUI 0' ,a ' '" t1 4f' sin f'a 


(24) 
x exp[ilta(aa -ya)+ir(lxl_ ; 0'1 + Iy 1_ ; 0"1- ; (l +uu,»1. 

Here the following notat i on is used. The index a takes values 

a '" 0,2,3, 1" is given by 1"~"; k~-k~-t:+i(. where the iE -pre
scription ensures that Im1">o. It origlnates from the usual j( _ 

prescription of the causal propagator . The vector-structure 
is given by 

g/W-~ (or I' • v '" 0,2.31"2 
(It) /tv '" 

{ (25)o (or I' :s 1 or v., 1 . 

The free part ~(x-y)of the photon-propagator, if inserting 
them into eq.(22) gives rise to correc t i09s independent of the 
mirrors, whereas the mirror-con tribution 0l'~ (ll,y) tosnc/W (as) 
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gives rise to mirror-dependent contributions ae(mttr.). This is a t1_:£ ( + ')
gaQY !lY()Y -, /l /l Y( , ) t hat we are interested in. The corresponding part of t he s e l f- ,.. /l 1L=±1 /.L 


energy-operator :£ s .t eq. (13), is a B I p.-/l' (31 ) 

ga l gt11Y ILY, .. ) y- = , -2- Y (/L') 

.... !l '" 1; 1- ip za 

Is,t '" _le2 r dSzayeH rdx1dy1e a UB(~)U, (l'1~ ) x 


which can be checked by the standard rules for manipulations 

x DC (:IS) IsO (:I,y) yV I a a a' 
(26) 

jlJI J[ -Y "'I'. I 
At this place i t i s useful to replace the vector-structure ~)~ • 
eq. (25), of '0;' (:I,y). eq. (24), by 

- 1 a 1 a
(k)I-Lv= g/.LV+ g/LICVl (1+ 8g1l(:I -2"u)SgD(Y - 2"0"». (27) 

The propagator occurring in this way is denote by D~(~y) . We 
sta te, that the di ffe rence between (It) IW ' eq . (25), a~d (Ii)/.LV 

eq . (27), being inser ted into the mirror-dependent part of the 
pho ton-propagator, gives no contribution to the magnetic mo
ment . The proof of this s tatement will not be given here be
cause it is rather lengthing than different. 

Th~refore , inser t ing (i) /.LV ' eq . (27), i ns tead of (k)/.LV ,eq . (25) , 
i n t o D;'(x,y), eq . (24), we get t he mirror-ciependent con t ribution 
t o the electron s elf-energy in the f orm 

_1f'a 1-tOU' 
~jJ. c v:£ (p)' = - le2 J d\a :£ ou'e 2 :£ y S , (Pa+lta) Y 

s.t a (21T)Sa,a~ ±l 4r8inf'a D,n '~ O \l,U 

a a' a a' 

x [(g/.LV + gj.tl8vl) Fa,n(k) Fe,D' (k) + gill gvl 0s,n(lt) 0t,D (It) ] (28) 


with the nota t ion 

u - - - 1 a 
F (1t)=veH Jdxus(veHx ) un(yeH:I - y eH k2)exp(iI') lx-~2 j) (29) 
BI D """""" 

and 

O:D (It) =veH7 dxu (veH x) u (yeH :I_yeH-
1 

1t ) sgn(x - ~o)exp(if'lx- ':'0'1). 
, -<>0 I n 2 2 i(. 

(30) 

For handling the y -matrices we use t he fo llowi ng formulae (J,t=±l): 

a 1 + ll a12 (3 1 ' 1+ '0'12 
~Q)' (poyo +m) Y = ,:£ 2 (m -PoYo ~2 ) ~2:1:./L~
~ 2 w= ± 1 

a (p ° 1 + /.Lu ll! Q l ' 12Ib l~lY o Y + m)-2--Y~ = :£ (Po yO-m) - /.LIl l +/l'u 
/l '= ±1 0 2 2 
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with Y -matrices. 
Here a remark is in order concerning the spin structure. 

As it can be seen from eq.(17) all Y -matrices occurring i n 

t he self-energy operator is ceq. (28), have a s tructure gi ven 
by eq .(31) and therefore, ha~ing in mind the averages (15), do 
not mix states with different spin project ions v. 

Next we insert :£s.t eq. (28) , into ae ,eq. (22). Using formu
lae (31) and (15) we get the following expression for the appa 
ratu s-dependent part of the anomalous magnetic moment: 

-if'a. l+QU' 
uq'e 2&B(app.) = -1e2 m f dSka I 


PooH (2")S a.u'''''±l 4r sinf'a 


, a a~ 

,I '\'" ( ~ F (k) F . (k) 
/.L,J.t "" ± l """0 2 1+,, ' '..I... 1+/.L' 1..1. .. n ,D...:; N---= D-...... N--- D-~

'2' 2 e 

, ,
a+ko~.L(Fa , (t)F , (k) 

Po 2 2 N-~ n-~ N-..!±1L. D- ill.. 
2' 2 £' 2 

a ' -2 2 £
xO 1+/l' l+u (k»] (-{PO +k r +k + m +2eHn-id . 

N---n--'=- 0 S 
2 ' 2 

Here we have used the invariance of the i ntegral over ks with 
re spect to ks-+-ks' Thi s leads to the vanishing of t erms linear 
in ks in the numerator of the electron propagator because t he 
other It S -dependent quant ities as [' and t he denominator de 
pend on k: (for Ps =0. as we have) , 

Expression (32) is t he complete apparatu s-dependent cont ri 
bu t ion and we are interest ed in the leading behaviour f or B~O. 
For this reason we f i rs t substitute ka-+ka/a in the integral 
in the r i ght-hand side of eq. (32). Thereby t he funct i ons Fsan(k), 
eq . (2 9). and O~,D (It) ,eq, (30), become s f unction s of t he combi~a
t i ons of parameters (B/2"A) =(a22em-1• For (B/2"'>" ) «1 we ge t 

U 0 
08.n (It) = u Fs . (It),n 

8F- (k) = exp (-if' 2 ) I Bs +y __B ( k o - io r)rs Bs n+ 1 
s, n ,n 2"A" • 

2 

(32) 
_ Ou, (k)x 

N- ..!±E!.....n_.!±lL 
22 

-1 
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- 1 8 2 2
-(Ito +10[') ..joB. 1] - -2 -- [«28+1)(ko+r ) + 

.. ,0- 2"'\ ... 

+21k2 uf') 8 -(1t -iurf ..j8(6-1) I) 2
B,D 2 8,0+ (33) 

- (~ + 10n2
..jn(n-l) 1)8,n_2 ]+ O(I)S/~ I, 

where contributions of an order of 6Xp(-2I1''\/~ and smaller are 
suppressed. One gets formula (33) simply by a formal expansion 

of the integrands in eqs. (29) and (30) into powers of..j~ 
In general. this is not correct because the integrands are not 

analytic in..j 1)/211''>.. However, it can be shown that this leads to 
additional contributions o f an order of esp(-211'A/8»1hich are 
completely negligible to us. The reason is that the integrands 
are nonanalytic for x= : 0, i.e., on the surface of the mirrors 
where the electron wave function is exponentially small due to 
the assumption of the size R=..jeH -1 0 f the electron orbit to be 
much smaller than a. 

Using eq.(33) we rewrite eq.(32) in the form 

lr~dSk. 21) f __a (10' e 2( ) - -1e -- )8 1:&e &Pp· - 2 II'S ,\ (2 11' 4r 6in ru.u ~ i1 

1: (2(k~+rJ!)1) _(1t 2 -ou'rJ!)(1) N 1 +8 1}
040 '" N,n 2 ,n+ N,0 

(34) 
-----1 l-ou (8 -8 )]

+t.021T1\..j1 - 211''\8N -r-N.n-l N.n+l 

(-2k ..j1 +2rr'>.8 N I) 2 2 -1 o ---=--'--- +o-N- --(.k -k ) -it·) . 
2.,'>. 2rr'>. 0 S 

As the next step we rotate the to -integration by means of 

k '" k4 = ik ' This is just the usual ~1ick-rotation in accor
o o
dance witli the it" -prescription in r and in the electron pro
pagator. However, because we consider an on-shell matrix-ele

ment (i. e., in the physical regi:on. Po -vm2 +2eHN > m ) from the 
Wick-rotation there arises an additional term. It comes from 
the pole of the electron propagator at 

kO = -!-(..jl ~2rr>'BN - ..jl + 217Al)n+S2k~) (35) 
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lying below the real axis in the c omplex Ito -plane. This con
tribution is present fo r n = 0,1, ... , N-l and k~S(211'A/8)(N-n). 
Denoting the rotated contribution by a~l~app.) and that from e 
the pole by a(2) (app.) we have 

o 

at Capp.) ... a(;) (app.) +a(~) (app.). (36) 

First we calculate a~1) (app.) ann consider there the terms 
containing 8 = i 1 in the numerator of the electron propagator.

N
Because of n .-:DN= ±l in this case the denominator of the elect
ron-propagator call be expanded in powers of 8 _ Using than the 
synnnetry 'With respeet to the subst itution k... -11: 4 all terms 
of an order of /) vanish. So, there remains the conrribution 
containing 8N. • He r e. the denominator cannot be expanded di n
rectly. We procped as follows. Introduce polar eoordinates 

k4 =k COS ¢> cosO • k S = " 8in ¢ C08 0 , "2'"' k sinO 

with cP= 0 • . .• 2 i1 and O",,-~ ...~ and usinAr... i)r,y=..jk2+k 2 ,k2."k 
. .G;::; hI. 2 3 we get a f ter the ~ntegrat~on over t e ang es 

-k l-au' 
0(1'0 2a~l)(app.) =e2 _8_ r.Ak 1. 


rr2 X2 0 (2 rr) 8 (1.U~i 1 4ehlt 


211'2 x-==============..j 4(1+2TT'AON) +/)2k2 co82 0 

Now it i s possible to set 5 = 0 in the denominator and we ar~ 
rive at 

a(;) (app.) = d~ 3 (3) (37)
A2 4rr2 

It remains to calculate a<;> (app., .The ko -integration gives the 
residium in the pole and we get 

~1-«T' 
dk 2dks ~ uo'e -22 _0_ ra(2)(app.) = -6 211'SXSe (2rr)S U.u~tl 4fsinr 

(38) 

2rrX 2-:-:=========_ [_k-2..jl+ 211'1\S(N-l) +S2 ,,2S 2+uu' r2- ko2TTX..j 1-2 rr'>. SN - 1 1-0'0']- , 

wi t h 


ko = 5-
1 r ..jl+2I1'X8 (N- l) +82rS2 - ..j1+2rr>'8N) 
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and k~ ;;;.2"A/8. In order to obtain the l eading term for 8 .. 0 we 
set 8 .. 0 in the integrand in the right-hand s i de of eq. (38) 
whereby we have Ito ..-".,\ and It: ::; ..,. Introducing polar coordi
nates ke = kc08tP , ItS=ksintP we get after the integration over 
the angle tP 

Ir 1-017' 
au'e ---s

a~2)(app.) ~-e22:S,\8 ! ~0'.0"=±1 4rsinr '\1T(k2C1 +00')_.,2,\2) (39) 
00 dick l: 

with r=v'rr2,\2-k 2+:it. Due to the it -prescription, for k2 .:;;:.,2,\2, 

r takes val ues above the real axis and for k2>~A2 we have 

roo iv't2 -1T2>,.2 Integrating over r instead It we rewrite eq. (39) 
in the form 

2a~) (app.) "" a _8_7 dr _1T2>,.2 + sr2 - elr (317 A2 - n (40)
srr2,\2 1... siner + if) 

Since we are interested in the corrections to the energy le
vels rather than in the line width, we have to calculate the 
real part of this integral. Assuming,\1T 4 1,3,5 ..• , (the discus
sion for AfT= 1.3.5 ••.. is given in t he next section) we can 
i ntegrate by parts and get 

a(2) (app.) 
e 

=>a8 I.!... 29«3) + lln(2co/~.) - -1-Tdr.r(31o Itg r2 I+ In ISiD rI) I. 
A2 161T 2 4 2 U 211' 2 0 

Toge t her with eq.(37) this gives the complete mirror-dependent 
contr i bution in the leading order for 8 .. 0 to the anomalous 
magnetic moment. I t can be written finally in the form 

1 2 >"rra (app.) ==a 81.1.. 41,(3) .~ -1n(2 COB -)e ).2 1611 n 4 2 

(4 1 ) 
1

_.l.. ( dz.z (310 Itg~ I+ In I81nhz I) I. 

4 0 2 


4. DI SCUSSION 

The apparatus-dependent contribution to the anomalous magne
tic moment of the e lectron ha s in the leading ord er f or B -+ 0 
t he f orm 
Be (app.) =a 8f(A), ( 6 ) 

whereby the funct i ont('\ ) , calcul ated within t he model as explai~ 
ned in the introduct i on , has the f orm (cf. eq . (41» 

!(A) =L 41 '~) +!.. In (2cos2k )_1- fdz Z(Slnltg'\J7Z 1+1o l sinXrr z l) . (42 ) ,\2 16,,2 4 2" 0 2 

This f unct ion i s shown i n t he Figure . 

Expr essi on (42) for t he f unc t i on f('\) is val id i n t he fol 
l owing regi on of parameters . From t he expansion of the f unc tions 
Fao D , eq. ( 30), and 0 to ' eq. (31 ), i n powers of 8/217). we get the 
r e s t ric t i on 

/) 1 &2 
a22 H _ -a 2 « 1 (43)2 IT). e 

where R=I/v'eH is the r adi us of the e lectron or bit . This means 
t hat the electron is far f r om the mirrors . The expansion o f 
the electron propagator i n sec tion 3 i s poss i ble for 

2rr v8N = 2eHN- « 1, (44)m2 

e 


where N is the number of the e l ec t r on state and means tha t the 
electron is nonrelat ivis tic. In t he geoni um-spect r oscopy expe 
r iment t hese restrict i ons are f ulf i l l ed. As can be seen f rom 
Eq . (42) , the function ( A) div erges l ogarithmically f or ,\ = 

~ 1,3.5, .... This comes from t he fact that for such val ues 
of A the self-energy operator ie r Cpa)' eq. (1 3) . taken in the 
.t4testP~(Pa) eq.(14) (cL eq.(iO), i s not small (actually in
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f ini te) and, therefore. eq.(19) cannot be solved in perturba
tion theory as we have done. We expect that the nonperturbative 
solution of eq.(19) is finite for X = 1.3.5•••. t oo so that 
really no divergences occur. However, it remains the fac t that 
the function r~) shows a resonant behaviour. Having in mind 
that X. eq. (5), is the ratio of the cyclotron frequency and the 
lowest eigenfrequency of stationary photon states between the 
mirrors we conclude that there appear some kinds of resonances 
between the cyclotron radiation and stationary photon states. 

From our calculations it turns out that the apparatus-dependent 
contr i bution to ae is quite sensitive to changes of the magne
t ic field H entering into ae(aPP.) eq. (6), through the parameter 
X ",aeH/lrln e. see the Figure . The order of magnitude of a e (app.) 
in the experimental re§ion (a - I cm, H. 18 ..• 51 kG. so that 
X- 0 . 6 . .• 1.6,5_10-1 ) iS8e(app.)-10-12.which is too small 
for the explanation of the difference between the current ex~ 
perimental and theoretical values of Ie' However. due to the 
high experimental precision the apparatus.,..(}ependent contribu"'" 
tion seems to be measurable by changing the magnetic field H 
or by using cavities with different drameter. 

The most interesting feature is the existence of the above 
mentioned resonances oetween the cyclotron ra~iation anf! ata .... 
tionary photon states between the mirrors, which take place 
at X = 1,3,5, .... Here, a further theoretical work is neces
sary and it would be interesting to observe the resonances ex~ 
per imentally . 

A remark is in order concerning the geometry. In the present 
paper. the calculations are performed f or t he most simple case of 
two plane parallel mirrors. t~e t hink that this case sho'NS up 
all interesting new features: the dependence of Be on the mag
netic fi eld and the appearance of resonances. One can expect 
that these will be present in more realistic geometries too, 
although the precise form of the function r(A) will be changed . 
In particular, one would expect that the resonances are connec~ 
ted with the zeros of the Bessel functions for a cylindrical 
cavity. 

Finally, we would like to point out that a further work (in 
particular, calculations for the realistic geometry) is neces 
sary to confirm the conclusion that the difference between the 
current experimental and theoretical values of ae cannot be ex
plained by the apparatus-dependent effects. 

* Near the r esonances higher values are possible. 
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6opAar H. 
MarHHTHWH MOMBHT 3nBKTpoHa B OAHOpoAHOM MarHHTHOM none 
MeiiiAY 3BPKanaMH 

E2-85-409 

8W4HCnReTCR 8HOManbHWH MarHHTHWH MOMeHT 3neKTPOHa a 8 , H8XOAR~er0CR 

B OAHOpoAHOM MarHHTHOM none H Me*AY ABYMR napannenbHWMH 3epKanaMH, OTcTOR
~HMH Ha paCCTORHHH a APYr OT APYra. 3epKana BMeCTe C MarHHTHWM noneM 
MOryT CnY*HTb npoCTOH MOAenbQ npH Y4eTe BKn8A8 npH6opa npH H3MepeHHH &

0 
B 3KCnepHMBHTB C reOHHYMOM. 0Ka3waaeTCR, 4TO 38BHCR~HH OT npH6opa BKnaA 
B a8 HeTPHBH8nbHWM o6pa30M 38BHCHT OT o6ektX aenH4HH: H H l, 8 48CTHOCTH, 
AJU1 T8KHX 3H84BHHH H H a, KOrAa OTHOWeHHe ~HKOOTPOHHOH 4aCTOTbl 3neKTPoH8 
K HH3WeH 4aCTOTB ¢oTOHOB MeiiiAY 3epKanaMH npHHHMae~ 3Ha4eHHR 1,3,5, •.. , 
TeOpHR B03M~BHHH no KOHCTaHTe TOHKOH CTPYKTYPW HenpHHeHHMa H B03HHKaQT 
pe30H8HCW MBIIIAY ~HKOOTpoHHWM H3ny4eHHeM H CT8~HOHapHWMH ¢oTOHHWMH COCTOR
HHRMH Me*AY aepKanaMH, 

Pa6oTa awnonHeHa B fla6apaTOPHH TeOpeTH4eCKOH ~H3HKH OH~H. 

Coo6~eHHB O~nMHeHHoro HHCTHTYTa RAepHYX HCCReAOBaHHA, nyeHa 1985 

Bordag H. 
The Magnetic Moment of an Electron between Mirrors 
in a Homogeneous ~1agnetlc Field 

E2-85-409 

The anomaly a8 of the electron magnetic moment is calculated for sta
tionary electron states in a homogeneous magnetic field H between two 
parallel mirrors with distance a between them in order to have a simple 
model for the apparatus-dependent contribution to the measurement of a9 
in the Geonium spectroscopy experiment. It turns out that the mirror
dependent contribution to a depends in a nontrivial manner on both H 
and a. Especially for such ~alues of H and a that the quotient of the 
cyclotron frequency of the electron and the lowest eigenfrequency of the 
photon between the mirrors take values 1 ,3,5, ••• , perturbation theory in 
the fine structure constant a breaks down and resonances between the 
cyclotron radiation and the stationary photon states between the mirrors 
appear. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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