CODGWEHNS
OGLEAHHEHHOD
HHCTHTYTA
‘ ‘ AAEPHbIX
, |mm1puy‘ | HECABADBAHHA

AYOHA

E2-85-355

N.P.Hieva, V.N.Pervushin

TOPOLOGICAL CONFINEMENT
IN THE SCHWINGER MODEL

1985



1. INTRODUCTION

The problem of the quark confinement in its contemporary
formulation is based on the deep inelastic scattering experi-
ments. It has been found ‘1’ that the inclusive cross sections,
i.e., sums over all hadronic states, may be described with the
help of the imaginary parts of the quark (parton) diagrams *
From a field-theoretical point of view the quark hadronization
implies zero probability for the coloured-particles creation.
This statement may be considered as a model-free definition of
the confinement.

Nowadays the interpretation of the confinement problem - its
criteria and mechanisms, is rather dependent on the model
choice. The most popular criteria are the existence of a linear-
ly rising potential between the quarks and the increasing of
the Wilson loop area. In their formulation the Schwinger model-
two-dimensional massless quantum electrodynamics, played an es—
sential role/45f However, recent calculations of the coloured
particle Green functions made the confidence in their strict-
nes doubtful. It has been found that they are compatible with
the existence of poles in the quark Green function. Calculation
of these poles 1s one of the standard methods used to determine
the elementary excitation spectrum in OFT and statistical phy-
sics. The existence of a pole is interpreted as the presence
in this spectrum of a particle with quark quantum numbers. From
such a point of view the absence of a pole may be considered
as a confinement criterium (for instance, it coincides with the
model-independent one following from the experiment). Such a si-
tuation takes place in the theories with topological vacuum de-
generation 8

In the present paper we discuss the confinement problem in
the Schwinger model in this context. The fermionic sector of
the model is insufficiently studied due to some difficulties:

1) The bosonization of the theory leads to some additional
effects which have to be separated from the dynamical ones;

2) The Green functions are not gauge-invariant, that means
a dependence of the results on the gauge-condition choice;

* Quark diagram hadronization has been called the quark-hadron
duality principle which is now the QCD-phenomenology basis and
is used successfully in different sum-rules derivation/2,3/,



3) The existence of infrared divergencies requires the cor-
responding regularization scheme.

The paper is organized as follows:

Section 2 is devoted to the free-fermions bosonization in
two—dimensional space-time.

In Section 3 the quark Green function in Coulomb gauge is
considered.

In Sections 4,5 a gauge—invariant method for the Green func-
tions construction is proposed. The theory is quantized in
a finite-volume space-time.

2. BOSONIZATION OF THE FREE FERMIONS

Bosonization provides an adequate method for the description
of two-dimensional field-theoretical models with fermions '910/
However, considering the equivalent bosonic-theory properties
one usually does not distinguish bosonization effects from the
dynamical ones. To do this we shall begin with a brief review
of the free-fermions bosonization in two dimensions. In this
case the Lagrangian is

£, =19 "3, v 5

In quantum theory with such a Lagrangian there appears an
anomalous term in the current—components commutator

[ o), gy 0 ]= #aya(x—y). Py @=F@ %y, b . 2)

As 1s known, the physical reason for this anomaly is the,

filling off all negative-energy states, i.e., the Dirac abi e/
A simple substitution
P, = 229,86 (3)

vVm

transforms relation (2) into the scalar field ¢(x) commutator.
Then, the current conservation law takes the form of the mass-
less D Alembert equation

a“jw(x) =0 - d“()“cﬁ(x) 0 ¢(x) =0. (4)

lar field one £ 5 =% (d,¢)"

There is only this scalar particle in the spectrum; fermions
apparently disappeared. An analogous/si;uation in the Schwinger
model has been interpreted in papers’ — as a manifestation of
the confinement which takes place there. Following these papers,
one might conclude that the free fermions are confined too.
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Thus, the theory (1) is eguivnlont to the free massless sca-

S?Ch'a conclusion is obviously wrong, so we need a correct desc-
ription of the fermions themselves in the bosonized theory. 1In

otber words, we have to find the functional dependence of the
spinors ¥ (x) on the field ¢(x).

Th SR : . §
Canong aTifl current component Jsdx) is Proportlonal to the
lcally conjugated momentum for the field ¢ (x)

y 1 3 -
(x) = -~ r)O ¢ (%) = —ir n {R});
v \‘-'7
So, the following relations take place:

'j:»o ). f(py))l —_ltln @®). ()] =L 8 (b))
v iWrm dpx) ;

that lead to the equation on Ui (x):

IJ (x) ll’( ()5(5))1 > 2 e*
50 L i 0 l/J ( 0‘5 (.\ )) 15(}( i W ‘45 d
i\ w (;(—)(X) ) ( (yj) ).)

Its solution has the form

Ux) - expliy 7 v ¢ ' ¢ iy 7
W (x) pliy 7 5c‘:(x)i;\(x). U (x) expl-iy my, GOy (x), (5)
where §1%) is a function which does not depend on the field &(x).
An aqdltlonul requirement for reproducing the free two-point
fgrmlon Green function in this languapge may be used for de-
fining y(x): '

e =17 Ng(x—~y)

<Oy} e X0 i) - (6)

(pcrc V\ox-¥)is Green"s function of the free massless scalar
field). This task may be achieved if we put

X(x) - expliy 7y X))

DU Hx, B (7)
yhoro'Ifx) is a free massless scalar field quantized with an
indefinite metrics and x (Xx) is a free fermion field. Thus, the

fgrmlon Qroen function may be obtained from the generating func-—
tional with an action
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F i\/;}ss (q}){-},) L. ~iv';1)/5(¢§2)
+pX)e Xg ot XNo® n (x), (8)

ﬁ(x) and 7(x) being the fermion sources.

3. SCHWINGER"S MODEL IN THE COULOMB GAUGE

Let us now turn to the Schwinger model:

S“=-—2—F F,w 1 u’/(i)/#&# +ey#A“)x/:, P

o =B B, ~3 8, . (D

jng v

We shall choose the gauge A ;= 0Owhich is both the two-dimen-
sional version of axial and radiation (Coulomb) gauges. Then,
the equation of motion for A, (for instance, a constraint equa-
tion) takes the form

L5 -0 = 9A =ej. (10)

Substitution of its formal solution in (9) leads us to the
following action:

2 - 2
8. (4 xm/,y"aﬂw +£4— [ay,io@x, =y, [ig®] =
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It is this Coulomb interaction in (11) which causes the
anomalous axial current divergence. In terms of the bosonic
field ¢(x) its partial conservation law takes the form of the
massive Klein-Gordon equation @ - m2)¢(x)== 0, where m=en
is the field ¢ (%) mass. Its appearance is an entirely quantum
effect, caused by the gauge field induced "polarization" of
Dirac”s vacuum

From eqs. (3), (8), (9) we obtain the total bosonized action
of the theory

1/2
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The action (12) determines the generating functional for the
exact Green functions in the Schwinger model (in the gauge

4

A, = 0):

Z[;;, n] = <vac |Texpl-i [H dxot | vac > .

So, for the two-current correlator we find

Py

o : A P, 2
<Jg, g, @ > ~ B 5 (P + Q). (13)

T T

This result points to the existence of a massive uncharged
scalar particle in the model spectrum.

For the two-point fermions Green function with the help of
eqs.(6), (7), (12) we obtain the following expression:

- in[/\m(x— y)-A o(x—y )]
G(x - y) =G (x - y)e " (14)

where Gou-—yﬁs the free fermions Green function and A (x  y)
is the massive scalar field one. The asymptotic behaviour of
the function (14) in the momentum space is

v p : p
G(p) 1 - = G(p) < ~ — 15
P p2 p~0 (pzfi()5/4 ( )

(see Appendix and also paper'q4/). In the literature there are
contradictory opinions if such a behaviour ensures confinement
or not. Note, that in QED.4,,, there are some gauges in which
an analogous behaviour of Green function of the observable
electrons takes place. At least, function (15) has a singularity
at the point p - 0157,

4. GAUGE-INVARIANT VARIABLES
AND VACUUM TOPOLOGICAL DEGENERATION
IN THE SCHWINCGER MODEL

As is known, the choice of the gauge has an essential influ-
ence on the properties of Green functions of the coloured ob-
jects/lafSo, it would be convenient to formulate the latter
in terms of gauge—invariant quantities only.

Equation (10), without any gauge-fixing, takes the form

[5

.2 : !
9, Ay = 9,95A, +eig . (16)

So, instead of (11) we have the following Lagrangian

- 1 1 2 ,’-ll/. L W lsag S L
yrz—(f)oAl) + 1Y oy r?#u; _.g.g.-. (r.f] 10) ; (17)



where the variables Aluk),¢l(¢,A) are defined as

1 ) i
Al(A):Al-al-j-z-alA1 20, yl(p.A) = exp(-ied A DU

1
and are invariant under gauge transformations
\) g o, ENF
ALY SR - 1.5 Ava ) -ala)
e
§ (18)
(A) iA A)
TR L ¢ ™, ¢ g, ur.

The Schwinger model action in terms of the gauge-invariant
variables (18) and the sources

7! exp(—ier'i;‘Al)q, n? r-,('xp(ie{)‘-lAl) (19)
coincides with the action in the gauge
A AL =0, A A -0 A -0 (20)

The choice of the variables (18) is fixed by the dynamics
(i.e., by the constraint equation) and by the requirement of
gauge invariance. lowever, in the construction based on the ex-
plicit solution of the constraint equation (16) there is a func-
tional ambiguity: the action of the inverse operator (r?l)_2 in
(16) is determined up to a function which satisfies the D Alem—
bert equation

2 W
A 0 B T b 2
(91 - rlrn\ 0 (21)

So, the variables (18) take the form

| .\ i a3, A 1 d.A 1 A RN
@) =A a1 P a2 wh e ut, (22)
a° ) 3
1

In the gauge (20) this is the well-known Cribov gauge ambigui-
ty/17 It is caused by the existence of gauge transformations

e 1 e
that leave invariant gauge conditions (20). This is possible if
the gauge function \(x) satisfies eqgs.(21) called Gribov s equa-
tions.

In the finite-volume space-time eqs.(21) have nontrivial
solutions in the class of smooth gauge transformations, expliA(x)}.
These transformations are characterized by an integer degree
of mapping of the space-time boundary onto the group U(l) s
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o /2 R/2 P
V= e r daxg f dxlsw/F =D, +0_ (23)
7 ~1re ~R/2
1 R/2 T
n, =-—=- | dxlalA, (%, 25 =F=~)=2(0,1, 2, :..) (24)
- 27 —R/e y 2

(The number i is also called the Pontryagin index /186

The solution of egs. (21) with boundary conditions (23),
(24) takes the form

) X
z\(x)=,\(x1|N(x0))=2nN(x0)?1, (25)

where the function N(x,) takes as initial and final values the
numbers n,

N(x, + éf) = n,. (26)
The gauge field A (x)—<§~6 A(x) interpolates between purely
gauge fields at the Lﬂd\ of the time interval

A1(.v) : ‘i'ﬂl)\z (27)

. g
which are called "classical vacua'" 719/,

The existence of smooth solutions of eq.(21) represents the
vacuum topologlcal degeneration in Schw:nger s model. It is
not connected in any way with the chiral invariance broaklny
(which is the usual explanation of this phenomenon A’ y
but with rhv nontrivial topology of the gauge-field configura-
tion space /11,227 e dvnamics of this degeneration is described
by the action

, dod. A 2 T/2 L ¢ ¢
8, = %_ [ d*x (_l_:k__) Mk” dxnjé—], I %; L%; )a. (28)
(V) =148
Quantization of the action (28) is not difficult

Gl : . K 2
K = — N i Ny e 0 i - A
SN T - R/9 i

The topological momentum K spectrum is easily found by
taking into account the physical equivalence of the states

()—mN

~'p‘N> & =Ip(N +n) .

and <p N+ n .

The real state represents Bloch”s wave, which is an average
over this degeneration with a weight exp(infl)

. . . /
"Our results confirm the conclusion made in paper'21/about

nonexistence of nontrivial vacuum structure in the Schwinger
model,but in the frames of the conventional approach to it.



L/z . .

KN>=Bm 2= F oind pgmiKMm

Lo» L n=-L/2

r .

{ ~i(2 v 0

1 initabiain O 08 5
=1

0 . K#2rk 0 (29)
AR e I - R (| A

This spectrum leads to the discrete spectrum of a constant
electric field

= 2 & B
Eg -E _pik+9) 2B gLl 8
2 21 87 2 b oA,
Its minimal (in modulo) value bl = (/2 7 coincides with Co-

leman”s constant electric field he introduced *% to explain
the @#-vacuum in the Schwinger model. He considered f as

a simple additional parameter. TIn our approach f is connected
with the new topological variable, so it has a dynamical con-
tent and these constant electric fields represent the real in-
frared vacuum of the theory.

5. TOPOLOGY AND CONFINEMENT

The effective Lagrangian is modified when we take into ac-
count vacuum topological degeneration. So, replacing (16),(22),
(25) into (9), we find .

. 1 gl
L = LT(N) 1 LSch () FLS(N‘ igr A)

= = ¥ oty
! {., dx, [n(x INE) & + iy & INK],
SO (30)
S R/2 - el 0 g, =1 F=g 1
LS(N,JU. Ay dxliNal{(d1 jo)d(),\l ved (@ ig, ipgt.
-R/2
i X,
2’“”“‘0) R

7 (% vN(}\ ) = ;.,(x (x )1}(X) (%),

sch(w ) and LuﬁN)determlned by eqs.(17) and (28). It is im—
portant to notice that the additional dynamical variable N(xj,),
which takes part in the current interaction, causes a change
in the phases of coloured field sources in (30) (factor
g(x|N(xg)). Though the function g(x; N )) itself is a smooth

8

one, after taking an average over degeneration, which it desc-~
ribes, there appears a singularity

( INC )) 1 1 Lv/2 xl -
<BEINEG)> = lim = = <Ol +——>= 0, . 31
} o Lo L. n==L/2 R ";il’ 0 k)

where a%%- 8 is the Croneker symbol.

This singularity does not affect the two-current correlator
structure, because the phase factors extlngulsh each other.
There remains the pole at the point p~=e 27~1 representing the
existence of a massive scalar particle in the spectrum.

At the same time the fermion Green function vanishes:

2 ipx—y) A gx =) = Agx~y)]
6@ - lim [ a'xa®ye? e > X Gy~ y)
R, Tox )
, L2 X v,
x lim — X S <njn+s-—L><n-5+—|n>= (32)
Lo L n=-1/2 s=— R R
1 il ip(x =y ) 7 e
=lim [ d xd ye 72 OB o il aie] i
R.T'*ao (V) _l L
R'R

that means the existence of confinement in the sense of the
model-independent criterium formulated in section 1. As we have
seen, confinement is caused by the topological degeneratxon of
the gauge field vacuum. Note, that the limit procedures in (32)
(on R, T and on L ) cannot be replaced, the correct way they
are follow1n§ one another being determined as in the quantum
statistics

CONCLUSION

We have tries to analyze the reasons for confinement on the
example of Schwinger”s model. In its conventional interpreta-
tion the charged-particles confinement is problematic because
of the existence of a sinpularity in the quanrk Green function.
When theory is quantized in Lerms ol pauge-invariant variables
in finite~vulumo space-time there appears topological degene-

ration of the "coloured" field phases. After taking an average
over this degeneration the quark Green function vabishes, but

the "neutral™ current correlator (in the limit of an infinite

volumez coincides with the one in the standard approach to the
model

9



Thus, the assumptions about the topological degeneration
of the gauge field vacuum as a reason for the confinement in
two-dimensional QED becomes well motivated. We would like to
exmphasize that the topological structure of the Schwinger mo-
del coincides with the one of a non-abelian gauge theory in four
dimensions/24{60, the conclusion about the existence of confi~-
nement takes place in QCD, too’%/

The authors would like to thank Drs. B.M.Barbashov, G.V.Efi-

mov, A.V.Efremov, 0.I.Zavjalov, D.I.Kazakov, L.B.Litov and
V.P.Pavlov for discussions.

APPENDIX

Let us remind the form of the (right) fermions Creen”s
function in two-dimensional momentum space

P

- 1 1 ¢
QOR(P) O(D,)O(‘P_)~~'-*f* '(“““,)””K,)“"'——’ e )

P b e P.~ic pp_ +ie

where the "cone" components are defined as usual p, Py * P

We shall now calculate the exact Green function of the (right)
"quark" in the Schwinger model, using relation (14). As we are
going to discuss the confinement problem, we are interested
. . . . 124 .
in the behaviour of this function when p”»0.Ulith the corres-
ponding asympto?ics of prnpagnrnrs Vi) and \ yx) (entering into
eq. (14)) taken into account we find

o 1 ~ ~ l“_‘}ll',k‘ VRO (&% j 174
Gop = D= f ax 0 S =2 L IS e
B &b ix bt

5
(X _ —1.)m1 =

1 S g Teles, w34 Ry
= ——— | [dx x e Eg . ——— ¢ (A.2)
gamtR o TS SRR ! 14 ;
1 ‘4
= il S ot S x ! 4.
fdxy(-x,) e f dx. ——— @ ¥
0 - X v 1y

The integrals in the first term of (A.2) can be easily calcu~-

lated

"‘d 174 —;}”’—"4 2i 54

fdx x " e = e ) e T (=)0 (=p )
0 p_ + e
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oo x”" 'Llll X

[ AX. e @ * = (=21) (- -
8 X = de p; + e

/
) "l‘(,%)o(pg

=00

that finally gives us

2
’ P R o B R L
Qo » =080 )0(-p_ YT b.p_ +ic Y ey 1B
; . (A.3)
In an analogous way for the second term we obtain
1 . 1 L 1/4
G ®°> 0 =CoEp IIG_) ( ) ( et (A.4)

p_ - ie p,p_ +ie

Comparing (A.3), (A.4) with (A.1) we are led to the conclu-
sion that

1/4

Go(P%~ 0 =C Gop @) )

2
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Tononorweckult modihabimerr » Mopenn lepirepa

Hpoanaauauponaid apuaris KombaduMenTa na npuMepe Mopesnn
Mppmrepa, B obuenpuiaToll ¢e TPAaKTOBKe YIepKanHe 3apAaXeHHbX
HACTHIE NPODHNeMATHINO, TAK KAaK Kpapropas dyHKuma puHa umeer
otofounoe T, Hpy KepARTOBAHHKM TEOPHH B TEPMHHAX KanHOGPOBOUYHO-
WHBAPHANT IS TepeMenipiy B KOHEUYHOM NpOoCTpaHCTBe—BpeMeiH
POANHEACT TONOAOMHYECKoe BhpoxacHie dasw "userTHwx' noseit.
Hocne yepepuenys 110 3TOMY BpOMOEHHw KBapkoBas ¢yHkuus I'puHa
MeuesaerT, a HefirTpanbHhie KOPpPEJATODPH TOKOB /B mpeperne 6ecko—
Hewnoro obvema/ cosmananT € BHPAXEHHAMH, MNOIYYAEMbIMH B CTAH—
naprioM nogxone. Taxkum obpasoM, NpHUYHHON KoHdbaiiiMeHTa B Ges-—
MACCOBOIT K3ﬂ(1+1) MOXHO CUYHTATh TONOJIOTHUECKOE BbIPOX/IeHHEe
KaTHOPOBOYHOI O pHaKyyMa.

Pabora srmoisiHeHa & JlabopaTOpPHH TeOpPeTHUYEeCKO (U3HKH
OWsH .
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Topological Confinement in the Schwinger Model

The reasons for confinement are analysed on the example
of the Schwinger model. In the conventional interpretation
of this model the charged-particles confinement is problema-
tic because of the existence of a singularity in the quark
Green function. When theory is quantized in terms of gauge—
invariant variables in finite-volume space-time there appears
topological degeneration of the "coloured"-field phases.
After taking an average over this degeneration the quark
Green function vanishes but the "neutral'-current correla-
tor (in the limit of an infinite volume) coincides with
the one in the standard approach to the model. So, the to-
pological degeneration of the gauge-field vacuum appears as
a reason for confinement in QED

: A = (1+1)°
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