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I. INTRODUCTION 

It is well known that the ground-state energy of a quantum 
mechanical system depends in a nontrivial manner on external 
parameters. This leads to observable effects, especially, to 
the Casimir effect in QEDili.It has been studied extensively 
in several situations, ~ostly for static boundary conditions 
of different geometry 1 2 · 3~ Furthermore, there were seve-..·al at
tempts to treat the problem of one or two moving mirrors in 
(I+ I) dimensions / 2,4/ . 

Here we consider a comparatively simple example of Quantum 
Field Theory with nonstatic boundary conditions in (3+I) dimen
sipns. We assume two neutral ideal-conducting infinite parallel 
plates to move relatively to each other with a constant veloci
ty and calculate the CasiMir energy as well as the vacuum ex
pectation values of the corresponding energy-momentum tensor. 
This generalize our previous result for the scalar theory/51. 
In that case it was possible to construct the scalar Green func
tions using the reflection principle. As a physical result, it 
turned out that the plates attract each other with a velocity
dependent force leading to the classical Casimir force in the 
nonrelativistic (quasi-static) limit. 

Here we derive an analogous result for a physically more 
interesting case of the electromagnetic field. Again, we con
struct the Green functions by applying the refl~ction prin
ciple. This can be done in two independent ways, both presented 
here. In the first one, we construct the Green functions for 
the electromagnetic field strength directly and calculate the 
physically interesting quantities. 

The second way consists in reducing our problem to the sca
lar case: He introduce potentials which allow separation of the 
boundary conditions so that one component of the potential has 
to satisfy the Dirichlet boundary condition, whereas the other -
the Neumann one. This is the mathematical reason for the fact 
that the Casimir force is not twice the scalar one (as it was 
the case for static plates). 

Our main result is explicit expression for the vacuum ex
pectation values of the energy-momentum tensor. Surprisingly, 
the expressions obtained are much simpler than those for the 
scalar case. 

Similarly to the two-dimensional case we observe a nontri-
vial distance and veloc;it~e:adenee- a& u&ll as the appea-
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t Fig,l. Straight world lines of 
the points between the two mirrors. 

ranee of an energy flux parallel 
to the direction of motion of the 
plates. 

A clear physical interpreta
tion can be obtained if one con
siders the motion of each point in 
between the two mirror system as 
described by a straight world line 
(see fig.l). 

Then it turns out that in each local rest frame locally at 
the considered point the energy-mome~tum tensor has the same 
structure as for the standard Casimir problem with static plates. 

2. GREEN FUNCTIONS FOR THE ELECTROMAGNETIC 
FIELD STRENGTH 

The most direct way to solve our problem is to construct the 
Green functions & ~Ap~.y) of the electromagnetic field strength 
in the presence o~ two conducting plates moving with the velo
city v relative to each other, 1 so that the momentary distance 
is a= vt. The Green functions defined as 
a 
D (x, y) = <OITF (x)F (y)IO> 
a~Ap a a~ Ap a 

(2. I) 

depend on the parameter a through the distance-dependent vacuum 
state IO>a. From eq.(2.1) it follows immediately that they obey 
the symmetry relations 

a a 
D (x,y)=D (y,x), 
a~Ap AfXl~ 

~2. 2) 

a a 
D a~Ap(x, y) = -D ~Ap (x, y). (2.3) 

Our aim is to construct the Green functions in the kinematical 
situation where the two plates K(-) and K(+) hav~ the normal vec
tors o<-) = (0,0,0,-1) and o<+) = __ l __ (v, 0, 0, -1) (The velocity 

P. P. yl-v2 
of light is assumed to be equal to 1). The boundary conditions 
for the field strength n<±> ( p.va~ F ~ 1 = 0 lead to the condi-
tions P. at-' K(±) 

(+) n- (p.va~ 
p. 

,. 
Da~Ap (x, Y)l x ~KI±) = 0 (2.4) 
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for the Green functions, Moreover, they have to respect the 
classical equations of motion 

a aa D x a~Ap (x, Y) = 0 (x f. y) (2 .5) 

and 

a; ( p.va~ o a~Ap ex. y) = o·; X, y q, K (±) • (2.6) 

In what follows, we show that the Green functions satisfying 
eqs. (2.2)-(2.6) can be constructed with the help of the reflec
tion principle and give explicit expressions for them. For a gi
ven point x p. = (t, -x.l,-z) we construct the images 

m !actors 
,---J'----.. . 

x±m=S ••• s,.s±x S ±m X (m = 0, 1, ... ), 

where the matrices 

s ('I I) (2. 7) 

and 

s+ L - 1 S L = 0 I 0 

( 

chs 0 shs ) 

(2.8) 

- sh s 0 - ch s 

with s = 1n..!..!.!. describe the reflections at the plane K(-) and 
1-v 

K(+) respectively. (The matrix L stands for a Lorentz boost 
from K(-) to K(+); we assume that all matrices transform cova
riant vectors into covariant ones). Exploiting the property 
(S+) 2 = I and the addition theorems for hyperbolic functions, 
the matrices Sm can be represented in the form 

0 shns 

S 2n 
2n- 1 ( 

chns 

± sh(}ns 

0 ) (n=O,±l, ... ). (2. 9) 

0 ±chns 

Note- that s;nl-1 = S 2n- 1 but s 2-1 = s 2 • 
n - n 
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Before giving the explicit expression for the Green func
tions.da~Ap' we introduce the standard boundary free Green 
funct1ons 

Da~Ap (x, y) = <OjTF a~ (x)F Ap (y)jO> = 

(J!,a>.a~a; + g~/:a ~-gap a;a~ -g~><a;ap'D<x. y) 

with 

~ 1 1 
D(x,y) =- --

4772 (x- y) 2 

(2. 10) 

(2. II) 

being the free scalar Green function. The free Green functions 
obviously obey the relations (2.2), (2.3), (2.5) and (2.6) 
(with "a'~ . substituted by "~" ) . Furthermore, as a consequence 
of translational invariance and homogeneity, they have the pro
perty 

Da~Ap(x, y) = Da~Ap (y, x) = Da~Ap(x -y, 0). 

Then it can be shown that the Green functions we are interested 
in look as follows 

00 a' f3'oo 
Da~Ap(x,y)-(S±Ja (S±1)~ Da'W>.p (S±1 x,y) 

outside the plate K(~ (2. 12) a 
D a~Ap (x, y) = 

+; [(S )a' (S )~''f) (S- 1 x,y)-(2n ... 2n-l)] 
n=-~ 2n a 2n ~ . a '~'>.p 2n 

between the two mirrors 
(2. 13) 

Here the action of the reflection matrices S0 on the arguments 
of the functions Da~AR is in analogy with the scalar case where
as the action on the 1ndices is necessary to euarantee the sym
metry relations and the fulfillment of the boundary conditions. 
The proof of these properties can be done using the explicit 
expression (2.9). 

3. CASllHR FORCE AliD ENERGY UOUENTUM TENSOR 

Now it is possible to calculate physical quantities. To 
begin with, let us consider the energy density ~(x) at a given 
point x defined as 

4 
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a 
·~(x) 

1 a 
- l: D tJ_ a (x, x l . 
4 a,/3 aJJU,_, 

(3. I) 

Using the eqs. (2.9)-(2.13), we obtain (some details of the cal
culation ~re presented in the appendix) 

., outside the 2-mirror-system 

00 

~ + azi+tl! l:(v) (3. 2) 
a 

·~(x) = 

00 

g17 2(z2-t2)3 

between the mirrors 

(l:(v) = i (sh.!!!...)-
4 ). 

n= 1 2 

Here ·~ is the infinite energy density of the free vacuum resul
ting from the Green functions f)af3!..p (x, x). 

Amusingly the obtained result is much simpler than the scalar 
one: 15~ After subtracting the free vacuum energy density the ob
tained expression is finite. Furthermore, outside the two mirror 
system the vacuum density does not feel the existence of the 
mirrors at all. Both properties are in opposite to the scalar 
case. 

Let us analyse the obtained result in more detail. Introdu-

cing A= ~~[0,1.] and t=.!... with v ~[0,1) (we suppose from now 
a v 

on a> 0 and v ~ 0) we get for the energy density between the 
two mirrors 

:l(x) - :~ =- 1+3(v>.)2 v4l:(v). 
8773 a4(1-(v>.)2 )3 

(3.3) 

From (3.3) we see that the energy shift is always negative and 
reaches its minimum value at the moving plate. For a given non
zero velocity v and distance a it behaves as shown in fig.2. 
a Using eq. (3.2), it is now easy to find the attractive force 

F (per unit area) between the two plates 

rev> =- ...<!.. r c &ex> - :; )dz = - -Lv 4 l:<v> 
da o 817 2a 4 (1 - v 2 ) 2 

(3.4) 

Expanding l:(v) in a power series in v, we recover the static 
Casimir force and find the first relativistic correction 

a 

F(v) I v"'o =-~[1 +V 2 (_g_ -..lit)+ O(v 4)]. 
240a 4 3 172 

~3 .5) 
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~(x)-(; z.lioa.lll f(v) I 
3'( a. 2. 

i{~~o :::o.!/1.~ 
1 = 9 

0 1 v 

Fig.2. Behaviour of the ener
gy density. 

Fig.3. VeZocity dependence of 
the Casimir force. 

Similarly~ it is possible to treat the ultrarelativistic limit 

& 

F(v) I 
v .. l 

=--3-[1 + (1-v2)2 +0((1-v2)4)]. 
8tr2a 4 16 

(3.6) 

Moreover a numerical calculation gives the surprising re
sult that the force "lt(v) is within 10~~ accuracy velocity inde
pendent (see fifl.3). 

The vacuum expectation values of the other components of 
the energy momentum tensor can be considered analogously: we 
define 

a jLKV 1 IW .1!: KO - D (x, x) + _ g u (x, x) • 
K 4 KO 

¥v (x) (3.7) 

After subtracting the distance independent divergent TIW 
we find that outside the two mirror system all matrix ele~ents 
are zero whereas in the in between region one has 

TIW = TIW·(x) _ TIW = I(v) 
8tr 2 

3z2+ t2 

(z2-t2)3 

0 

4zt 
(z2 _ t2)3 

0 

J --... 
(z2_ t2)2 

0 

As expected, the trace condition is fulfilled. Of 
energy momentum tensor is form -invariant 

6 

4zt 

(z2 -t2)3 

0 (3 

3t 2+ z2 

(z2-t2)3 
(3. 8) 

course the 

• 

r 

TJLV (x) -= L JL , L v , TIL 'v, (x ') = T ,W (x ') 
JL v 

under transformations which respect the symmetry of the prob
lem (for example rotations in the x,y plane), surprisingly 
this is true for Lorentz transformations in the z-direction 
too: 

.r; ... z' = 
.r:-wt 

' t ... t, = 
t-w.r: 

..; 1- w2 
(3. 9) 

v1-w2 
For further considerations it is convenient to introduce 

the parametrization z = gt , 0< g < v. In this way all points 
between the mirrors are para;et;ized. Note that points having 
the same value of g lay on one and the same straight world 
line (see fig.l). _ 

From the form invariance of TJLv it is clear now that, in 
terms of g, the energy-momentum tensor has the structure (3.8) 
even in a more general situation where the mirrors move with 
constant velocities v and v : 

+ -

0 ~ 
(1- gs)s 

TJLV ( I(v) x) =- ( 0 J 0 
I . (3. 10) 

8tr2 t 4 -
c1-e~2 

0 
2...:!:...!2 

(1 -e 2> s 

with V-=(v+-v_)/(1-v-tv_) and g .. ~It running now from v_ to v+. 
In fact, this situat10n is just our initial problem (v -=O,v =V}, 
as it is seen in an arbitrary Lorentz frame. - + 

As interesting result we obtain: At the point g = 0 the 
tensor is proportional to the well-known energy momentum ten
sor of the classical Casimir effect with static plates, the 
non-diagonal matrix elements vanish, there is no energy flux. 
The equation z., gt describes the world lines of the points in 
between the two mirrors in the choosen Lorentz frame. g = 0 
corresponds to the point at rest. In other words: From. eq. 
(3. 10) it follows that in the local rest frame of an arbitrary 
point inside the two mirror system locally at this point: TJLV 
is proportional to T~v= 0 : 

TJLV (t, xl. ,0) =- I(v)/8tr2t 4. diag(1,-1, -1, 3). (3. II) 

(And vice versa: From eq.(3.11), valid in all local rest frames, 
eq.(3.10) can be reconstructed). 
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4. FORMULATION WITH THE HELP 
OF THE ELECTROMAGNETIC POTENTIAL 

In this last section we will offer another possibility of 
treating the generalized Casimir problem based on the electro
magnetic potential A~. Again, here we restrict our considera
tions to the free electromagnetic field with boundary condi
tions. In classical ·electrodynamics it has been shown that the 
source free electro-magnetic field with boundary conditions 
on cylindric surfaces can be completely described with two spe
cially chosen Hertz vectors, an electric one and a magnetic 
one/6/, This means that the potential can be described by the 
following two modes (corresponding essentially to the two in
dependent Hertz vectors). 

0 a;ax3 

A "'_1_ ( -ii/iJ.2 1 0 
~ - at+-==::. I a2, 

.J-A2 a/ax 1 .J-Ao 
0 

0 a;ax0 I (4. I) 

Ao = (~) 2 - (,.1_) 2 a 2 a 2 

' 
A2=(-. -) +(-. -) 

ax 0 ax 3 ax 1 ax2 

With the help of this representation the boundary conditions 
n(±) a E ~vaf3 AaiK (±) =0 reduce in standard way to boundary con
dfti6ns for t~e independent field modes 

a
1 

(x) = 0, X I; K(±) 

(n(±)_j_) 32 (x) =O,x ~K(±) 
~ ax~ .J-A 0 

(4. 2) 

(4 .3) 

Taking into account the representation (4.1) the standard ac
tion of the classical electromagnetic field 

1 4 8=--(dxF 
4 11.11 

F ~v 

can be rewritten as 

1 4 S = - - ( d x(a 
1 

o a 
1 

+ a 2 o a2 ) . 2 

(4 .4) 

(4. 5) 

So we end up with a Lagrangian density which consists of two 
independent free massless scalar fields satisfying different 
boundary conditions (4.2), (4.3). 

8 

An independent quantization ot these two free fields solves 
our problem. For our purposes we need the two point Green func
tions of the field operators only, Defining 

a. 
D (x,y)-= <OITaJ(x)aJ(Y)IO> , J=1,2 

j a a. 
(4.6) 

these Green functions satisfy 

a 
oD

1 
(x,y) =- i8(x- y), O(x,y)l ~;K<±l 

1 x or Y 
=0 (4. 7) 

· 1 a. ) 1 o (n t±l a~ )-D2(x,y rK(±)"' • 
, """"A'" x or Y• · ,. .J - ·u 2 

a. 
oD2 (x,y) =-i8(x-y), (4 .8) 

Both Green functions can be constructed with the help of the 
re:lection principle. For example, let us discuss the case when 
both points x and y are inside of the two mirror system. For 
the Green functions we find 

a. 
D (x, y) 

1 

+oo n ... 
~ (-1) D (Sn X - y) , 

n=-"" 

+oc oo 

d (x, y) = ~ D (S x- y) • 
2 n n=-oo 

a 
Obviously, D1 satisfies the relations (4.7), whereas 
cond Green function satisfies the boundary condition 

( . ~ a. (+) . ~ a. 
(n ±)a )D2 (x, y) I ( ,= (n .~ ay)D2(x, y) I (+) = 0 

~ X xi; K ± ,.. Y I; K -

which is not exactly the boundary condition (4.8). 

(4. 9) 

(4.10) 

the· se-

(4. II) 

However in the sum (4.10) each Green function satisfies the 
Klein-Gordon equation. Therefore for all points x .J y the action 
of the operator Ao on solutions of the Klein Gordon equation 
is equal to that one of the operator A2. On the other hand the 
operator A2 applied to functions on the boundary acts only in
side the boundary, so that it commutes with (n(±) a~) and the 
boundary conditions (4.8) and (4.11) are equi~alent. 

As an example, we discuss now the calculation of the energy 
density of the electromagnetic field. This can be done directly, 
starting from the known energy density of the electromagnetic 
field, or starting from the energy density expression for the 
two scalar fields. In both cases we end up with the same ex-
pression . . . . . . . (4. 12) 
a.1a a a a a a a a a. a. ·~ = -<- ...- +- ~ + ~-+- ....--)[D

1 
(x,y) +D2 (x, y))l 

2 axo axo ax1 ay 1 ax2 ay2 ax 3 ay3 x-.y. 
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Here we see: the energy density is the sum of the energy den
sities of the two scalar fields, which however satisfy different 
boundary conditions, one the Dirichlet boundary condition, the 
other the Neumann one. Taking into account the construction of 
the Green functions ~4.9), (4.10), we see again that in the fi
nal result (4. 12) the odd reflections drop out (in opposite to 
the case of one scalar field only). 

APPENDIX 

l-le gi~ here some details of the calculation of the energy 
density 'G,(x). Consider, at first, the free Green functions D {JA • 
Performing the differentiation in eq.(2.10) yields a P 

D (x, y) = _1_1 ~ gPe - ~p 8 (3>.. + .L [g !l !l + 
a,B>..p "2 !J.4 tJ.6 ap '/3 >.. 

(A. I) 

+ g /3>.. !l a !l p - g aA !l /3 !l p - g f3p !l a !l >..]I ' !l ,.., x - Y • 

To determine t{x) via eq. (3. I), we have to calculate f> (x, x) 
which in turn (through eqs. ~2.12) and (2.13)) are expres~ 
in terms of l>a,B>..p (Smx-x,O).Using eq.(2.9), we find 

(S2n x-x)ll=(ll 2n )ll '.,(t(chns-1}-zshns,O,O, +tshns+z(1+chns)). 
2n-1 2n-1 (A. 2) 

Combining eqs. (A. I) and (A.2), we find three types of contribu
ting terms 

00 00 ) 1 1 
( A 0) 0 (!l 0 = - -Am =00803 ulll' = . 1212 m' "2 (!l )4 

m 
00 00 00 

Bm = 00101(!lm,O)"' 00202 (!l m,O) "'01813 (!lm ,0) = 

00 1 (!lm) ~ + (!l m)~ 
"' 0 2323 (!l • O) "" -

m "2 (!l ) 6 
m 

... oo 1 2(!l m>o (!l m> 3 
Cm= 0 ot31(!lm,O)=Oo232(!lm,O)=-;;; (!l )6 

m 
Using now again eqs. (2.9), (2.12), and (2.13), we find- for 

example, in the region between the plates - the following ex
pressions for the Green functions: 
a a +• 
00101 (x, x) ""00202 (x, x) = n=:oo [ (82n- B2n-1) chns- (C2n+ C 2n-l ) shns] ' 
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