

обьединенина институт лавриых исследоваиия аубна

E2-85-128
A.Galperin,' E.Ivanov, V.Ogievetsky, E.Sokatchev ${ }^{2}$

HARMONIC SUPERGRAPHS.
FEYNMAN RULES AND EXAMPLES;

Submitted to"Classical and Quantum Gravity"

[^0]This is the second part of our exposition of the quantization scheme for $N=2$ matter and $S M$ theories in harmonic superspaoe. In Green functions ${ }^{W} / 1 /$ we gave the Green functions for those theories. Here we spell out the Feynman rules and show a number of examples of their applioation. Seotion I is devoted to the matter hypermultiplats. In particular, the most general self-couplings of the hypermultiplets are given, including those with broken rigid $\mathrm{SU}(2)$ invarrlanoe. Ago, the duality relation between the hypermultiplet and the $\mathrm{M}=2$ linear multiplet is discussed x) Section II deals with $\mathrm{N}=2 \mathrm{SMM}$. We explain how to expand the action in terms of the prepotentials in order to find the infinite set of vertices in this non-polynomial theory. The rertioes are rather simple, with no derivatives at all. Section III contains many examples of supergraph calculations. They illustrate some important points like how to deal with harmonic distributions and why they do not lead to new divergences, what is the meaning of the nonlooality in the harmonic coordinates and how it disappears in the final results. Here we also present a very simple proof of the finiteness of a alas of nonlinear $N=4 \quad G$ models in two dimensions. The Appendix contains a discussion of the duality between the two forms of the hypermultiplet.

All the references to formulas from Part I are given by a couple of Pan and Arabic numerals, egg., (III.15). The formulas in Part II are marked by Arabic numerals only, eeg., (15).
I. Hypermultiplets. General couplings and Feynman rules

The kinetic part of the action for q^{+}and ω hyperwultiplets and the corresponding Green functions were considered in $/ 1 /$. Here we shall start with a disoussion of their interactions.

Consider first a hypermultiplet q^{+}in a certain representsion of a gauge group (index S). It may interact with the $S M$ superfield Va^{++}and with itself, e.8.,

$$
\begin{aligned}
& S=\left\{d z (- 4) d u \left\{\frac{1}{d}+r\left[D^{++} \delta_{r}^{s}+i g V_{a}^{++}\left(t^{a}\right)_{r}^{s}\right]_{s}^{+} q_{s}^{+}(1)\right.\right. \\
& \left.+\frac{\lambda}{4} \frac{+2}{q}+z \frac{+}{q}+s q^{+}+q_{s}^{+}\right\}
\end{aligned}
$$

X Sec. I contains our answers to some comments on harmonic superspace recently made in $/ 2 /$.

Here t^{a} are the generators of the representation of the $n /$ group． It is remarkable that this representation may be oomplex．This possi－ bility leads to an extension of the class of finite models，as disous－ sed in $/ 3 /$ ．If the representation is real，one can also add self－ gouplings of the type $/ 4 /$

$$
(q+)^{4}+h \cdot c \cdot \quad \frac{x}{q+}\left(q^{+}\right)^{3}+h \cdot c
$$

The above self－oouplings of q^{+}are the most general ones if the rigid $\mathrm{SU}(2)$ invariance of the theory is to be preserved．If one abandons this invariance（but never the $U(1)$ invarianoel），a much larger class of self－interactions is allowed，e．g．，

$$
\begin{aligned}
S & =\int d z^{(-4)} d u\left[\frac{x}{q}+D^{++} q+\cdot f\left(\gamma q+\frac{*}{q}+u_{1} u_{2}^{-}\right)+\right. \\
& \left.+g\left(x q^{+} \frac{x}{q}+u_{1}^{-} u_{2}^{-}\right) \cdot \lambda \cdot\left(\frac{\pi}{+}\right)^{2}\left(q^{+}\right)^{2}\right]
\end{aligned}
$$

etc．Here $\bar{U}_{\overline{1}, 2}$ are components of the $\operatorname{sU}(2)$ isospinor U_{i} （su（2）is broken），γ and \mathscr{X} are coupling constants of dimension －2，fand g are arbitrary functions．

Next we oonsider the ω hypermultiplet．It is most natural to assign ω to a real representation of the MX group．$(\omega$ is a real analytio superfield），e．g．，to the adjoint representation．Then the ooupling of ω to the $N=2 \mathrm{SMM}$ has the form

$$
\begin{equation*}
S=\int d z^{(-4)} d u \frac{1}{2} \cdot t z\left[\omega\left(D^{++}+i g V^{++}\right)^{2} \omega\right] \tag{3}
\end{equation*}
$$

In oontrast to the q^{\dagger} hypermultiplet，putting ω in a complex representation would mean doubling the number of physioal fields．

Concerning the self－interactions of ω ，in $/ 4 /$ ．we have
shown that they are possible only for several（not just one）ω^{\prime}＇s． Onoe again，this is so under the condition of preservation of the rigid $S O(2)$ invariance．If the latter is broken，even a single ω can self－interact，e．g．，

$$
\begin{equation*}
S=\int d z^{(-4)} d u\left[\omega\left(D^{++}\right)^{2} \omega+f(x \omega)\left(u_{1}^{+} u_{2}^{+}\right)^{2}\right] \tag{4}
\end{equation*}
$$

In the above context we would like to oomment on a claim reoent－ $l y$ made in ${ }^{127}$ ．The olaim was that q^{+}and ω have very restrioted
self－interactions，whereas the linear $\mathbb{N}=2$ multiplet $/ 5 /$ allows more general ones．First of all，the class of self－couplings of the linear multiplet considered in $/ 2 /$ corresponds to broken $\mathrm{SU}(2)$ invariance， and we saw above that in such a case the self－interactions of both $q+$ and ω are most general．Second，the $N=2$ linear multiplet is nothing but the dual to the ω hypermultiplet．Indeed，the $N=2$ linear multiplet can be described by a real analytic superfield \angle^{++} constrained by the equation

$$
\begin{equation*}
D^{+T} L^{++}=0 \tag{5}
\end{equation*}
$$

It is the $N=2$ generalization of the $N=1$ inear multiplet \angle
$\left(D^{2} \angle=\bar{D}^{2} \angle=0\right)$ and of the $N=0$ notoph $厶_{m}\left(\partial^{m} 厶_{m}=0\right)$ ．

$$
S=\int d z^{(-4)} d u L^{++} L^{++}
$$

and the Green function is $\frac{1}{\square} 17^{(2,2)}$（see（IV．26））．It should be stressed that if the $\mathrm{SU}(2)$ invariance is preserved \angle^{++}cannot self－1nteract at all．The ω multiplet which is dual to $厶^{++}$is introduced as a Lagrange multiplier for the constraint（5）：

$$
\begin{equation*}
S=\int d \delta^{(-4)} d u\left(L^{++} L^{++}+w D^{++} L^{++}+f^{(4)}\left(L^{++}, u^{t}\right)\right) \tag{6}
\end{equation*}
$$

Varying（6）with respect to L^{++}gives an expression of L^{++}in terms of ω and putting it back in（6）produces the aotion for ω ．So，the self－interactions of L^{++}are equivalent to the self－ －interaotions of W ．This situation is analogous to the oase of $N=1 \quad(N=0)$ where the inear multiplet（notoph）is dual to chiral + one（scalar field）．At the same time the $N=2$ linear multiplet L^{++} cannot be coupled to the $\mathrm{N}=2$ SMM（in contrast with hypermultiplets）． So the coupling of L^{++}are of less generality than those of ω and q^{+}．

A final comment on ref．${ }^{/ 2 /}$ concerns the truncation of the off－shell ω hypermultiplet to the relaxed hypermultiplet of ref．／6／ in $14 /$ we showed that the latter is obtained by constraining ω ，

$$
\left(D^{++}\right)^{3} \omega=0
$$

$$
\begin{align*}
& \text { In }{ }^{/ 2 /} \text { a "solution" of this constraint was proposed, } \\
& \omega=\left(D^{+}\right)^{4}\left[\left(\bar{D}^{-}\right)^{2} \psi(Z)+\left(D^{-}\right)^{2} \bar{\psi}(Z)\right] \tag{7}
\end{align*}
$$

whioh was claimed to trivialize the action for ω ．In fact，eq． （7）does not make sense since the l．h．s．has $U(I)$ oharge 0 ，and the
r.h.s. +2. Then it is obvious that inserting (7) into the action for W makes the harmonic integral vanish (recall (II.9)). This emphasizes once again how important is to keep the balance of $U(I)$ charges in any harmonio calculation.

Before proceeding to the Feymman rules we recall here the action for the Faddeev-Popor ghosts $/ 1 /$ because it resembles (3):

$$
\begin{equation*}
S_{F P}=\int d Z^{(-4)} d u \text { itz }\left[F D D^{++}\left(D^{++}+i g V^{++}\right) P\right] \tag{8}
\end{equation*}
$$

Now we give a list of Feynman rules for the $N=2$ matter theories. The rules will be formulated in momentum space, i.e., after Fourier transforming the x-dependenoe of the analjtic superfields $\phi(Z(x, 6, u), 4)$.

$$
\begin{align*}
& \text { The } \left.q^{+} \text {propagator }<\frac{\pi}{q}+r\left(p_{1}, \theta_{1}, u_{1}\right) q_{s}^{+}\left(p_{2}, \theta_{2}, u_{2}\right)\right\rangle \\
& \underset{1}{z} P_{2}-P_{1} \equiv P \quad \text { s } \frac{i}{P^{2}} \frac{\left(D_{1}^{r}\right)^{4}\left(D_{2}^{r}\right)^{4}}{\left(U_{1}^{+} U_{2}^{r}\right)^{3}} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \delta_{S}^{i} \tag{9}
\end{align*}
$$

The ω propagator $\left\langle\omega_{a}(1) \omega_{\rho}(2)\right\rangle$
is (see (III.14))
$\underset{1}{a} \quad l \quad \frac{i}{p^{2}}\left(D_{i 1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} \delta^{3}\left(Q_{1}-\theta_{2}\right) \frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}} \delta_{a l}$
The ghost propagator $\left\langle F_{a}(1) P_{f}(2)\right\rangle$ has a similar form

The vertices can be read off from (1), (3) and (8) (we gonsider only the case with unbroken $s U(2)$ invariance). The vertex $\mathcal{q} V q$ $\xrightarrow[P_{i}, s]{\text { is }} \underset{(Q, u)}{\left\{\begin{array}{l}k, a \\ P_{2,2}, \tau\end{array}\right.}$

$$
\begin{equation*}
-g\left(t^{a}\right)_{2}^{S}(2 \pi)^{4} \delta\left(p_{1}-p_{2}-k\right) \tag{12}
\end{equation*}
$$

The vertex $\left(\frac{*}{q}\right)^{2}(q)^{2}$ is

The vertex $\omega V \omega$ is

$-i g f^{a b c}\left(D_{(8)}^{++}-D_{(c)}^{++}\right)(2 \pi)^{4} \delta\left(p_{1}-p_{2}-k\right)$.

The vertex $F \vee P_{\text {is }}$

In (14) and (15) the subscripts (b) and (c) mean that the harmonio derivatives act on the corresponding lines. Finally, the vertex ω VVW is

At each vertex one integrates over all the internal momenta (with the measure $\left.(2 \pi)^{-4} d^{4} p\right)$. Besides, an integration $\int d^{4} \theta^{+} d u$ (remaining from $\int d z^{(i \alpha)} d u$ in the momentum representation) is also implied. Inspecting the propagators (9)-(1i) one can see that at eaoh analytic vertex there are factors $\left(D^{+}\right)^{4}$ coming from the propagators which can always be used to restore the full Grassmann measure $d^{\delta} \otimes$ at the vertex. This important feature of the $H=2$ supergraph teohnique will be illustrated in a number of examples in Sec. III.

1I. Feynman rules for $\mathrm{N}=2 \mathrm{SYM}$
The $N=2$ SYM action is nonpolynamial in the prepotential ∇^{++}, so there are infinitely many vertices of self-interaction of ∇^{++}. To find them one should expand the action in terms of V^{++};

$$
S=\sum_{n=0}^{\infty} \frac{g^{n}}{n!} \int d^{12} z d u_{1} \cdots d u_{n}\left[\frac{\delta^{n} S}{\delta V_{a_{1}}^{++}\left(z, u_{1}\right) \cdots \delta V_{a_{n}^{+}}^{+}\left(z, u_{n}\right)}\right]
$$

$$
V_{a_{1}}^{t+}\left(z, u_{1}\right) \ldots V_{a_{n}}^{t+}\left(z, u_{n}\right)
$$

The structure of this expansion is suggested by the first variation of S (IV.15) and the expression (IV.8) of $e^{i V^{-}}$in terms of ∇^{++} (note that in (17) and elsewhere in Part II we indioate explioitiy the gauge coupling constant g).

The problem now is how to evaluate the functional derivatives of S or, equivalently, its variations $\delta_{n}^{2} \ldots \delta_{1}^{\Omega} S^{\gamma}$. We shall first. compute the second variation and then show that the rest can easily be derived from it.

The second -order variation is obtained from (IV.15) with the help

$$
\begin{aligned}
& \delta_{2} \delta_{1} S^{2}=-\frac{i}{g} t \tau \int d^{12} z d u \delta_{1} V^{++} \delta_{2}^{2}\left(e^{i v} D^{--} e^{-i v}\right)= \\
= & \frac{i}{g} t z \int d^{12} z d u\left(d_{1} V^{++}\right)_{\tau} D^{--}\left(e^{-i v^{2}} d_{2} e^{i v}\right)=\text { (18) } \\
= & t z \int d d^{12} z d u_{1} d u_{2} \frac{\left(\delta_{1} V^{+4}\right)_{\tau}\left(z, u_{1}\right)\left(d_{2} V^{++}\right)_{i}\left(z, u_{2}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}}= \\
= & \int d^{12} z d u_{1} d u_{2} \frac{\left(\delta_{1} V_{a}^{++}\right)_{\tau}\left(d_{2} V_{a}^{++}\right)_{\tau}}{\left(u_{1}+u_{2}^{+}\right)^{2}}
\end{aligned}
$$

where $\left(d^{\prime} V^{++}\right)_{\tau}=\left(\delta_{V}^{++}\right)_{\tau} T^{a}$. Using this expression as a starting point one may oompute the higher-order variations by just varying $\left(\delta^{2} V^{++}\right)_{\tau}^{1 n}$ (18). Prom (IV.10), (IV.11) one finds

$$
\begin{aligned}
& \delta_{2}\left(\delta_{1} V^{++}\right)_{\tau}=d_{2}\left(e^{-i v} \delta_{1}^{2} V^{++} e^{i v}\right)= \\
= & -i g \int d u_{2} \frac{u_{1}^{+} u_{2}^{-}}{u_{1}+u_{2}^{+}}\left[\left(\delta_{1} v^{++}\right)_{\tau},\left(d_{2} V^{++}\right)_{\tau}\right]
\end{aligned}
$$

or, taking into account (IV.1),

$$
\begin{equation*}
\int_{2}\left(\delta_{1} V_{a}^{++}\right)_{\tau}=g f_{a b c} \int d u_{2} \frac{u_{1}^{+} u_{2}^{-}}{u_{1}^{+} u_{2}^{+}}\left(d_{1} V_{B}^{++} \gamma_{2} d_{2} V_{c}^{++}\right)_{c} \tag{19}
\end{equation*}
$$

$$
\begin{aligned}
& \text { So, the third-order variation is } \\
& \delta_{3} d_{2} \delta_{1} S^{\prime}=2 g f_{a b c} \int d^{12} z d u_{1} d u_{2} d u_{3}\left(d_{1} V_{B}^{1+}\right)_{c^{\prime}} \\
& \left.\left.\left(d_{2}^{2} V_{a}^{+}\right)_{3} \int_{3}^{2}\right)_{c}^{++}\right)_{\tau} \cdot \frac{u_{1}^{+} u_{3}^{-}}{\left(u_{1}^{+} u_{3}^{+}\right)\left(u_{1}^{+} u_{2}^{+}\right)^{2}} \cdot \frac{u_{2}^{+} u_{3}^{+}}{u_{2}^{+} u_{3}^{+}}= \\
& =g f_{a b c} \int d d^{12} z d u_{1} d u_{2} d u_{3} \frac{\left.\left(d_{1} V_{a}^{+1}\right)_{2} d_{2} V_{\theta}^{++}\right)_{2}\left(d_{3}^{L} V_{c}^{+1}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)\left(u_{1}^{+} u_{3}^{+}\right)\left(u_{2}^{+u_{3}^{+}}\right)}
\end{aligned}
$$

In the derivation the symmetry of the integrand in (18) and the antisymmetry of paba are used.

The process of variation of S shown above goes on straightforwardly. The higher-order variations. will contain a product of
$\nabla^{++1} S$, of the structure constants labe and of pairs of harmonics arranged according to the symmetry. The singularities of various factors of the denominator will not coincide. It is remarkable that there are no derivatives in the vertices obtained (unlike the case $N=1$). The harmonic nonlocalities will be shown to disappear in sunpergraph calculations (see Sec. III).

Now we are ready to formulate the Feynman rules for $\mathrm{N}=2 \mathrm{SYM}$. We prefer to work in the Permi-Feynan gauge $\mathcal{\alpha}=-1$ (IV.28). The propagator is (real III.7))

$$
\begin{equation*}
{ }_{i}^{a} \min _{2}^{b} \frac{i}{k^{2}}\left(D_{1}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \delta^{(-g, 2)}\left(u_{1}, u_{2}\right) \delta_{a b} \text {. } \tag{21}
\end{equation*}
$$

The threo-particle vertex is

$$
\begin{equation*}
\frac{i g f^{a b c}}{\left(u_{1}^{+} u_{2}^{+}\right)\left(u_{4}^{+} u_{3}^{+}\right)\left(u_{2}^{+} u_{3}^{+}\right)}(2 \pi)^{4} d\left(k_{1}+k_{2}+k_{3}\right) \tag{22}
\end{equation*}
$$

Its symmetry is evident. The usual momentum integration is implied. Note that the configuration space integral at the vertex is
$\int d^{8} \theta d u_{1} d u_{2} d k_{y_{3}}$, so the Grassmann measure is already ocmplete, in oontrast to the matter and matter-gauge vertices (Sec.I). The n-partiole gauge field vertices can be found as explained above.

III. Examples of supergraph oalculations

Above we derived a set of Feymman rules for $N=2$ matter and sin and now we may apply them to manifestly supersymmetric supergraph computations. We hope to convince the reader that it is indeed very easy to handle the quantum harmonic superfields. We shall demonstrate that no divergences related to the singularities of the harmonic distributions arise. The harmonio nonlocality will be shown to disappear when the external legs of a graph are put on-shell or their/7/ superisospins are fixed. We shall also confirm earlier oonjectures ${ }^{/ 7}$ that all the quantua oorreotions to the effective action can be written as integrals with the full $N=2$ Grassmann measure $d^{8} \theta$ (this faot is important when discussing the ultraviolet behaviour). A simple proof of the finiteness of a olass of two-dimensional $y=4$ supersymmetric σ^{σ}-models will be given.

The first example is the one-loop oorreotion to the 4-point function for a self-interaoting q^{+}hypermultiplet (Pig.1). The $^{\text {i }}$

$$
\Gamma=\lambda^{2} \int \frac{d^{4} p_{1} \cdot d^{4} p_{4} d^{4} k}{(2 \pi)^{16}} d^{4} \theta_{1}^{+} d^{\varphi} \theta_{2}^{+} d u_{1} d u_{2} d\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
$$

$$
q^{+}\left(p_{1}, \theta_{1}, u_{1}\right) q^{+}\left(p_{2}, \theta_{1}, u_{1}\right) \frac{{ }^{*}}{q^{+}}\left(p_{3}, \theta_{2}, u_{2}\right) \frac{{ }^{*}}{q^{+}}\left(p_{4}, \theta_{2}, u_{2}\right)
$$

$$
-\frac{\left(\theta_{1}^{+}\right)^{4}\left(\Delta_{2}^{+}\right)^{4}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}} \delta^{18}\left(\theta_{1}-\theta_{2}\right) \cdot \frac{\left(D_{1}^{+}\right)^{4}\left(\Delta_{2}^{+}\right)^{4}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \frac{1}{k^{2}\left(p_{1}+p_{2}-k\right)^{2}}
$$

The general rule for handing such expressions is first to do all the θ integrations but one using the Grassmann δ^{2}-functions from the propagators. For this purpose one has to restore the full measures $d^{8} \theta_{1} d^{8} \theta_{2}$. This can be achieved by taking $\left(D_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4}$ off one of the propagators and using (III.5) (note that the other propagator and the external superfields are analytio, so D_{1}^{+}, D_{2}^{+}do not aot on them). Then one can apply the identity

$$
\begin{equation*}
\delta^{8}\left(\theta_{1}-\theta_{2}\right)\left(D_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \equiv\left(u_{1}^{+} u_{2}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \tag{24}
\end{equation*}
$$

(that follows from (III.2) and the algebra of $D_{\alpha(\alpha)}^{c}$) and do the

$$
\begin{align*}
& \Gamma=\lambda^{2} \int \frac{d^{4} p_{1} \cdot d p_{4}^{4} d d^{4} k}{(2 \pi)^{16}} d^{8} \theta d u_{1} d u_{2} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \\
& \quad \frac{q^{+}\left(p_{1}, \theta, u_{1}\right) q^{+}\left(p_{2}, \theta, u_{1}\right) \frac{{ }^{*}}{q}+\left(p_{3}, \theta, u_{2}\right) \frac{*}{q}+\left(p_{4}, \theta, u_{2}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)^{2} k^{2}\left(p_{1}+p_{2}-k\right)^{2}} \tag{25}
\end{align*}
$$

In (25) we observe an important phenomenon. Although in the initial expression (23) there seemed to be a produot of two singular harmonio distributions, in the process of doing the D-algebra one of them cancelled out. The distribution remaining in (25) does not lead to new, harmonic divergences. This oan be most easily demonstrated if the external lines are put on-shell, 1.e., $=0$. In this oase (see (II.3) and (II.5))

$$
q^{+}\left(u_{1}\right) q^{+}\left(u_{1}\right)=\frac{1}{2} D_{1}^{++} D_{1}^{--}\left(q^{+}\left(u_{1}\right) q^{+}\left(u_{1}\right)\right)
$$

and the U_{2} integral oan be oomputed (see (II.18)):

$$
\begin{aligned}
& \frac{1}{2} \int d u_{1} d v_{2} D_{1}^{++} D_{1}^{--}\left(q_{1}^{+} q_{1}^{+}\right) \cdot\left(q_{2}^{*}+\frac{*}{q_{2}^{+}}\right) \frac{1}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}}= \\
= & -\frac{1}{2} \int d u_{1} d u_{2} D_{1}^{--}\left(q_{1}^{+} q_{1}^{+}\right) \cdot\left(q_{2}^{*}+\frac{*}{q_{2}^{+}}\right) D_{1}^{--} d(2,-q)\left(u_{1}, u_{2}\right)= \\
= & \frac{1}{2} \int d u\left(\frac{*}{q^{+}}+\frac{*}{q}+\right)\left(D^{--}\right)^{2}\left(q+q^{+}\right)
\end{aligned}
$$

One sees that the harmonio nonlocality present in (25) has disappeared and there are no harmonic divergences x). The momentum integral diverges logarithmically. Its divergent part is looal in x-space (and thus in superspace):

$$
\begin{aligned}
& \Gamma_{\infty}=c_{\infty} \cdot \lambda^{2} \int d^{12} z d u\left(q^{+}+\right)^{2}\left(D^{--}\right)^{2}\left(q^{+}\right)^{2}= \\
& =C_{\infty} \lambda^{2} \int d z^{(-4)} d u\left(\frac{*}{q}+\right)^{2}\left(D^{+}\right)^{4}\left(0^{--}\right)^{2}\left(q^{+}\right)^{2}= \\
& =-2 c_{\infty} \lambda^{2} \int d z^{(-4)} d u\left(\frac{*}{q}+\right)^{2} \square\left(q^{+}\right)^{2}
\end{aligned}
$$

(see (III.12)). Ooriousif, Γ_{∞} differs from the initial aotion (1) and the theory is nomrenormalizable (which is not surprising sinoe the coupling constant λ has dimension M^{-2}.

It is remarkable that in three-dimensional space-time ($d=3$) the graph in Fig. 1 is oonvergent. Moreover, in $d=2$ we may easily prove ${ }^{\text {xar }}$) that the theory of the self-interacting q^{+}hypermultiplet is pinite off-shell (the same applies to the W hypermultiplet, as well as to the more general oouplings (2), (4)). Indeed, in $d=2[\lambda]=M^{0}$, $\left[q^{+}(z, u)\right]=M^{0}, \operatorname{so}\left[q^{+}(p, G, u)\right]=M^{-2}$. The n-particle oontribution to the effective action has the generic form

$$
\Gamma_{n}=\int d^{8} \theta d u\left(d d^{2} p\right)^{n-1}[q(p, \theta, v)]^{n} I(p)
$$

The fact that the θ integral has the full measure $d^{8} \theta$ follows from the Feynman rules, as explained above. We see that the momentum integral $I(p)$ has dimension M^{-2} and hence is oonvergent. Note that on-shell the q^{+}theory is equivalent to some class of nonlinear supersymmetric,σ-models ${ }^{14}$ ($N=2$ in $d=4, N=4$ in $d=2$). The pini-, teness of some hyper-Kahlor $\mathrm{N}=4$ models in $\mathrm{d}=2$ has been proved in ${ }^{/ 8,9 /}$ by oompletely different means.

[^1]So, we have seen that on-shell the graph in Fig. 1 gives a oontribution local in harmonic space. This is so beoause the infinite set of auxiliary fields are eliminated by the equation of motion. Off-shell they contribute to the effeotive action and the latter remains nonlocal in umspace. This nonlocality is similar to the nonlocality of the effective aotion in x-space. Nevertheless, it can be remored if one fixes the superisospins of the external superfields (just as one can $P 1 x$ the momenta of the external legs), e.g.,

$$
\left.q_{(n)}^{+}(p, \theta, u)=\left(u^{+}\right)^{(n+1}\left(u^{-}\right)^{n)} q_{(i,}^{i_{n+1}}\right)(p, \theta)
$$

Then one mas write down

$$
q^{+}(n)=n^{++}\left[\left(u^{+}\right)^{(n}\left(u^{-}\right)^{n+1)}\right] q\left(i_{1} \ldots i_{2 n+1}\right) \cdot \frac{1}{n+1}
$$

So, $\mathcal{Q}_{(n)}^{-1}\left(u_{1}\right) q_{(m)}^{+}\left(u_{1}\right) \quad$ can be presented as a total harmonic derivatire 0^{++}. Integrating by parts and using (II.1B) one obtains a
 ning expression is local in u-space because the harmonios in the numerator combine to form an $S U(2)$ singlet (otherwise, the u integ-

* ral would vanish) and cancel out the denominator. No harmonio divergences ooour. Of course, the remaining u integral may al so be computed.

As an exeroise the reader can oompute the graph in Fig. 2 and show that on-shell the ultraviolet divergent part vanishes. Another exercise is the graph in Fig. 3 that describes the one-loop self-energy oorreotion for q^{+}coupled to $\mathbb{N}=2$ SYM. In the SYM propagator (21) there are too f em spinor derivatives (at least 8 are required in a loop, see (27) and the contribution of this graph vanishes.
our second example is the one-loop correction to the r^{++}selpenergy in $\mathrm{V}=2 \mathrm{SM}$. The relevant graphs are shown in Figs .4 and 5. The Yang-Mills contribution (Fig.4) is given by

$$
\Gamma_{2}^{Y M}=g^{2} \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} d{ }^{8} \theta d^{8} \eta d u_{1} d u_{2} d w_{3} d w_{1} d w_{2} d w_{3}
$$

$\frac{v^{++}\left(k, \theta, u_{i}\right) v^{++}\left(k, \eta, w_{1}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)\left(u_{1}^{+} u_{3}^{+}\right)\left(u_{2}^{+} u_{3}^{+}\right)\left(w_{1}^{+} u_{2}^{+}\right)\left(w_{1}^{+} w_{3}^{+}\right)\left(w_{2}^{+} w_{3}^{+}\right)}$

- $\left(0_{\theta}^{+}\left(u_{2}\right)\right)^{4} d^{8}(\theta-\eta) d^{(-2,2)}\left(u_{2}, w_{2}\right)\left(D_{7}^{+}\left(u_{3}\right)\right)^{4} d^{\theta}(\theta-p) \delta^{(-2,2)}\left(u_{3}, u_{3}\right)$.

Unlike the previous example (23) the Grassmann measures are already complete. So, we may start doing the D-algebra by taking the derivatives $D_{\theta}^{+}\left(u_{z}\right)$ off the first δ^{\prime}-function and integrating by parts. The result vanishes unless all of the $D_{\theta}^{+}\left(u_{2}\right)$ hit the second d^{2} 'function. Indeed, one may easily see that

$$
\begin{equation*}
\delta^{8}(\theta-\eta)(0)^{m} \delta^{8}(\theta-\eta)=0 \text {, if } m<8 \tag{27}
\end{equation*}
$$

According to (24) we get a factor of $\left(\mathcal{U}_{2}^{+} \mathcal{U}_{3}^{+}\right)^{4}$. Next we do the W_{2} and W_{3} integrals with the help of the harmonic δ^{2}-funotions. The result is

$$
\begin{aligned}
& \Gamma_{2}^{Y M}=g^{2} \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} d{ }^{8} \theta d u_{1} d u_{2} d u_{3} d w_{1} \\
& =\frac{\left(u_{2}^{+} u_{3}^{+}\right)^{2} V_{a}^{++}\left(k, \theta, u_{1}\right) V_{a}^{++}\left(k, \theta, w_{1}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)\left(u_{1}^{+} u_{3}^{+}\right)\left(w_{1}^{+} u_{2}^{+}\right)\left(w_{1}^{+} u_{3}^{+}\right)}
\end{aligned}
$$

Note the absence of coinciding harmonic singularities. To do the \mathcal{U}_{3} and W_{1} integrals, we write down

$$
\left(u_{2}^{+} u_{3}^{+}\right)^{2}={D_{2}^{++}}_{o_{3}^{++}}^{+}\left[\left(u_{2}^{-} u_{3}^{-}\right)\left(u_{2}^{+} u_{3}^{+}\right)\right]
$$

then integrate by parts and use (II.18). At the end we get (replacing w_{1} by u_{2})

$$
\Gamma_{2}^{Y M}=-2 g^{2} \int \frac{d^{4} k d^{4} p d^{8} \theta d u_{1} d u_{2}}{(2 \pi)^{8} p^{2}(k-p)^{2}} \frac{u_{1}^{-} u_{2}^{-}}{u_{1}^{+} u_{2}^{+}} V_{a}^{++}(1) V_{a}^{++}(2)
$$

The ghost contribution shown in Fig. 5 is (a factor of -2 is due to the statistics and number of ghosts)

$$
\begin{aligned}
& {\left[g^{g h}=2 g^{2} \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} d^{4} \theta_{1}^{+} d^{4} \theta_{2}^{+} d u_{1} d u_{2} V_{a}^{+t}(1) V_{a}^{+t}(2)\right.} \\
& \left(0_{1}^{+}\right)^{4}\left(\Delta_{2}^{+}\right)^{4} d^{8}\left(\theta_{1}-\theta_{2}\right) D_{1}^{++}\left(\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}}\right) \\
& \left(0_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} d^{8}\left(\theta_{1}-\theta_{2}\right) D_{2}^{++}\left(\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}}\right)
\end{aligned}
$$

The first step is to restore the measures $d^{8} \theta_{1}, d^{8} \theta_{2}$ and do the θ_{2} integration. As a result, we get $\quad\left(u_{1}^{+} u_{2}^{+}\right)^{4}$ which commutes with D_{1}^{++}, D_{2}^{++}and cancels out one of the denominators completely and the other partially. Thus, the multiplication of coinciding singularities is once again avoided. The final result is
$\Gamma_{2}^{g h}=2 g^{2} \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} d^{8} \theta d u_{1} d u_{2} \frac{\left(u_{1}^{+} u_{2}^{-}\right)\left(u_{1}^{-} u_{2}^{+}\right)}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}} V_{a}^{+1}(1) V_{a}^{++}(2)$ (29).
Putting together (28) and (29) we arrive at the total one-loop self-energy oontribution

$$
r_{2}=-2 g^{2} \int \frac{d^{4} k d^{4} p}{(z \pi)^{8} p^{2}(k-p)^{2}} \cdot d^{8} \theta d u_{1} d u_{2} \frac{V_{a}^{++}(1) V_{a}^{++}(2)(30)}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}}
$$

(recall (II.15)). The logarithmically divergent part of Γ_{2} has the form of the linearized action (see (IV. 16)), as is to be expected.

The next example is the computation of the one-loop contribution of hypermultiplet matter to the V^{++}self-energy (Fig.6). For the hypermultiplet in the adjoint representation (any other real representation is admissible) we find

$$
\begin{aligned}
& \Gamma_{2}^{\omega}=2 g^{2} \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} \cdot d^{4} \theta_{1}^{+} d^{4} \theta_{2}^{+} d u_{1} d u_{2} V_{a}^{++}(1) V_{a}^{++}(2) . \\
& \cdot\left(D_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \cdot\left(D_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} d^{8}\left(\theta_{1}-\theta_{2}\right) \\
& {\left[\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}} D_{1}^{++} D_{2}^{++}\left(\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}}\right)-D_{1}^{++}\left(\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}}\right) D_{2}^{++}\left(\frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+}+u_{2}^{+}\right)^{3}}\right)\right] .}
\end{aligned}
$$

The two terms originate from the two possible positions of the harmonic derivatives at the vertioes (recall (14)). The computation goes along the same lines as in the case of the ghost contribution. The result just canoels out $\sqrt{2}(30)$, so the total sMM and matter one--loop contribution to KM self-energy is zero $/ 7 /$. In partioular, this means the absenoe of ultraviolet divergences at this level in this particular combination of $\mathrm{H}=2 \mathrm{SMM}$ and hypermultiplet matter.

Of course, above one can racognize the well-known $N=4$ SYM theory written down in terms of $N=2$ superfields. To see this explioitly, one
mas cheok that the olassical action $S^{\prime}=S_{S Y M}^{N=2}+S_{W}^{N=2} \quad$ is invariant under the following $\mathrm{N}=4$ supersymmetry transformations

$$
\begin{aligned}
& \delta v^{+}+\varepsilon^{i \alpha} u_{i}^{+} \theta_{\alpha}^{+} \cdot \omega+() \\
& \delta \omega=\frac{1}{2}\left(D^{+}\right)^{4}\left(\varepsilon^{i \alpha} u_{i}^{-} \theta_{\alpha}^{-} e^{i v} D^{--} e^{-i v}\right)+()
\end{aligned}
$$

Another manifestation of the $H=4$ supersymetry is the fact that the graph in Fig. 3 with an W matter line vanishes, as can easily be seen. It is just the superpartner of the vanishing contribution to the V^{++}self-energy oonsidered above.

The above cancellation of $\mathrm{N}=2 \mathrm{~S} \boldsymbol{\mathrm { M }}$ and matter contributions to the r^{++}self-energy aan be extended to the oase of q^{+}matter in some (in general, complex) representation R. The oontribution of the graph in Fig. 6 with a q^{\dagger} loop is

$$
\Gamma_{Q} q=Q g^{2} T(R) \int \frac{d^{4} k d^{4} p}{(2 \pi)^{8} p^{2}(k-p)^{2}} d \theta d u_{1} d u_{2} \frac{V_{a}^{++}(1) V_{a}^{+1}(2)}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}}(31)
$$

where $\operatorname{tr}\left(T_{R}^{a} \cdot T_{R}^{b}\right) \equiv d^{a b} T(R)(T($ adjoint $)=1)$. Comparing (30) with (31) we see that cancellation occurs provided $T(R)=1$, or $1 f$ there are $1 / 3,10$ hymultiplets q_{i} in representation R_{i}, provided $\sum_{i=1}^{n} T\left(R_{i}\right)=1$

At the end we shall show an example of a graph giving a nonvanishing finite contribution (F ig.7). The evaluation is straightforward. First we restore the measures $d^{8} \theta$ at all the vertices. The D-algebra is trivial beoause only 8 D's are available. The result of the θ integration and of half of the u integrations $1 s$

$$
\begin{aligned}
& \Gamma_{4} \sim g^{4} \int \frac{d^{4} k d^{4} p_{1} \cdots d^{4} p_{4} d^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)}{k^{2}\left(k-p_{1}\right)^{2}\left(k-p_{1}-p_{2}\right)^{2}\left(k-p_{1}\right)^{2}} d{ }^{8} \theta d u_{1} d u_{2} \frac{1}{\left(u_{1}^{+} u_{2}^{+}\right)^{2}} \\
& \frac{q^{*}}{}+2\left(p_{1}^{*}, \theta, u_{1}\right) \frac{q^{*}+5}{}\left(p_{2}, \theta, u_{1}\right) q_{5}^{+}\left(p_{3}, \theta, u_{2}\right) q_{2}^{+}\left(p_{4}, \theta, u_{2}\right)
\end{aligned}
$$

Onmbell the U_{2} integral can be computed as explained in (26), and
$\left.\Gamma_{4} \sim g^{4} \int d^{8} \theta d u \frac{*}{q}+2(1) \frac{*}{q}+42\right)\left(\Delta^{--}\right)^{2}\left[q_{5}^{+}(3) q_{2}^{+}(4)\right]$
times the momentum integral which is oonvergent.

Fig. 1. One-loop correction to the 4 -point function for a self-interacting
a^{4} hypermultiplet.

Fig.3. One-loop self-energy correotion for at ooupled to $\mathrm{N}=2 \mathrm{SM}$.

Fig.5. The ghost contribution to the one-loop V^{++}self-energy.

Fig.2. An example of two-loop supergraph.

Fig.4. The Yang-Mills contribution to the one-loop V^{++}self-energy.

Fig.6. The hjpermultiplet oontribution to the one-loop v^{++}self-energy.

Fig.7. A supergraph giving
nonvanishing finite oorrection.

IV. Conolusion

In the present paper (Parts I and II) a manifestly $N=2$ siaper symmetric supergraph teohnique has been developed for the first time. This has become possible owing to the oonstructive applioation of the reoently introduced ooncept of harmonic superspace. This superspace is an adequate framework for describing both the $N=2$ matter and gauge multiplets. A complete set of Peynmann rules has been presented. The examples given above show that handling these rules is not more difficult than in the case $\mathbb{N}=1$. The crucial advantage is the preservation of manifest $N=2$ supersymetry at each step of the calculations.

Previous experience, e.go., with the quantized Kaluza-Klein theories, seemed to indioate that introduoing additional bosonio coordinates should lead to new divergenoes. This is not the case with the harmonic ooordinates, as we have show n in a number of examples above. Apparently, the reason is that the harmonio ooordinates give chse to infinite towers of auxiliary or (and) gauge degrees of freedom which do not propagate. On the oontrary, in the KaluzamKlein oontext the additional coordinates imply infinite sets of new propagating modes, i.e., the physioal oontent of the theory is muoh larger than required.

The actions for the various $N=2$ multiplets under consideration are given as integrals over either the analytic (matter ghosts) or chiral (SYM) subspaces of harmonio superspace. Nevertheless, the investigation of the Feyman rules shows that the quantum corrections oan always be written as integrals with the full Grassmann measure $d^{8} \theta$. The integrand is constructed of analytio superfields depending on the same coordinate $\hat{\theta}$ but on different harmonic ooordinates (as well as different momenta). This harmonic nonlooality is natural, it resembles the nonlocality in x-space. Moreover, if one fixes the superisospins of the external lines (e.g., by putting them on-shell) all the harmonic integrals can be computed by simple algebraic manipulations and the depemenoe on the harmonic coordinates disappears.

The fact that the effective action is an integral of the type $/ 7 / \int^{8} d^{8}$ jields a signifioant improvement in the ultraviolet behariour - Indeed, in $N=2$ theories with a dimensionless coupling constant the maximal divergenoes are logarithmic, and graphs with external matter lines are even superfiolally convergent. This situation will further improve in the $N=3$ sMm theory $/ 11 /$
where the dimensionality
of the full measure $d^{12} \theta$ automatically implies the ultraviolet finiteness. A generalization of the quantization technique developed here to the oase $N=3$ will be reported elsewhere.

Staying within the framework of the $\mathrm{N}=2$ theories one can investigate the finiteness of $\mathrm{N}=2 \mathrm{SM}$ coupled to matter by employing the powerful background field method $77,12 /$. In our approach the splitting of the gauge superfield into quantum and background parts is as simple as in the case $N=0$ due to the linear transformation law of the prepotential. The generalization of this method to the oase $N=2$ will soon be reported. It will help to study the mechanisms for soft breaking of supersymmetry and rigid $\mathrm{SU}(2)$-syrmetry.

One of the most intriguing problems ahead is the quantization of $N=2$ Einstein supergravity. In 47 we found the relevant prepotentials and their gauge group. 'The aotion.for this theory is given as an integral over the chiral $N=2$ superspace just as the $N=2$ SMA action. Above we have seen that the latter can be rewritten as an analytio integral if the integrand is expanded in terms of the analytic prepotentials by means of subsequent variations of the action. We believe that the same method will help to develop suitable perturbation expansion teohnique for $N=2$ supergravity too.

Acknowledgements. Authors are indebted to S. Kalitzin and B. Zupnik for comments and oollaboration at early stage of the work and to R.B.Kallosh, E. Nissimot, S.Paoheva, D.V.Shirkov, O.V.Tarasov for useful discussions.

Appendix: on the duality between q^{+}and W hypermultiplets
Here we shall show that any self-interaction of q^{+}hypermultiplets of the type (2) admits a dual form in terms of ω mypermultiplets. First we shall find the duality transformation for a pair of q^{+}multiplets and then apply it for a single q^{+}-multiplet.

Consider two hypermultiplets $\quad q_{i}, \quad i=1,2$ in the fundamental representation of an extra (gauge) group $\mathrm{sug}_{g}(2)$ (not to be oonfused With the proper SU(2) symmetry of the hypermultiplet). One can rrite

$$
\begin{align*}
& \text { down the following invariant Lagrangian } \\
& \qquad \mathcal{L}^{(4)}=\frac{{ }^{*}}{q}+i D^{++} q_{i}^{+}+\lambda\left(q^{+i} q_{i}^{+}\right)^{2} \tag{A,I}
\end{align*}
$$

Using the fact that $U_{i} \pm$ form a complete set in the two-dimensional doublet space one may decompose $q_{i}{ }^{+}, \dot{q}^{+i}$ as follows

$$
\begin{equation*}
q_{i}^{+}=u_{i}^{+} w+u_{i}^{-} f^{(2)}, \quad \frac{*}{q}+i=u^{+i} \frac{*}{w}+u^{-i} f^{(2)} \tag{A,2}
\end{equation*}
$$

Herell, f (2) are analytic (but not necessarily real) superfields. Substituting ($A, 2$) intc (A, I) one obtains (up to total harmonic

$$
\begin{align*}
& \mathcal{L}^{(4)}=-f^{(2)} D^{++} \frac{*}{\omega}-f^{(2)} D^{+}+\omega-f^{(2)} f^{(2)}+ \\
& +\lambda\left[\frac{*}{\omega} 2\left(f^{(2)}\right)^{2}+\omega^{2}\left(f^{(2)}\right)^{2}-q \omega \frac{*}{\omega} f^{(2)} f^{(2)}\right] . \tag{1,3}
\end{align*}
$$

Clearly, $f^{(2)}$ does not propagate and can be eliminated with the help of the equations of motion. difter that the Lagrangian ($A, 3$) is expressed onls in terms of ω, \vec{W},

$$
\begin{align*}
& \mathcal{L}^{(4)}=(1+4 \lambda \omega \stackrel{*}{\omega})^{-1}\left[(1+2 \lambda \omega \stackrel{*}{\omega}) \Delta^{++} \omega D^{++} \frac{*}{w}+\right. \\
& \left.+\lambda \omega^{2}\left(D^{++} \frac{*}{\omega}\right)^{2}+\lambda \frac{*}{\omega} 2\left(0^{++} \omega\right)^{2}\right] \tag{1,4}
\end{align*}
$$

This Lagrangian has an automorphism group $\mathrm{SU}_{A}(2)$ which is the diagonal subgroup in the direct product $\mathrm{SU}_{g}(2) \times \operatorname{SU}(2)$. Transformations from the ooset $\mathrm{SU}_{g}(2) \times \operatorname{SU}(2) / \mathrm{SU}_{A}(2)$ are realized implicitly in
($\mathrm{A}, 4$).

Now we may apply the above trick to the case of a single hypermultiplet. To this end we rewrite
subject to the reality condition q^{+}and q^{+}as a "doublet" q^{+}

$$
q^{+i}=\varepsilon^{i j} q_{j}^{+} ; \quad q^{+}=q_{1}^{+}+i q_{2}^{+}, \quad q^{*}=q_{2}^{+}+i q_{1}^{+}
$$

The kinetic term is invariant under the extra $S U(2)$ realized on the indices $1, j$:

$$
\mathcal{L}_{k}^{(\varphi)}=\frac{*}{q}+D^{++} q^{+}=\frac{*}{q}+i D^{++} q_{i}^{+}
$$

(again, this equality holds up to total harmonic derivatives).

However, this invariance is not preserved in the interaction, which is not essential.

The doublet (1.5) oan be decomposed as in (1,2). The reality oondition ($A, 5$) means

$$
\frac{*}{u}=\omega, \quad f^{(2)}=f^{(2)} .
$$

Now one can insert (1,5) into the general self-interaction Lagrangian (2) for q^{+}. Once again $f^{(2)}$ obeys an algebraio equation of motion

$$
f^{(2)}=-\frac{1}{2} D^{++} \omega+F^{(2)}\left(\omega, f^{(2)}\right)
$$

solving which one arrives at the W-representation of the q^{+} Iagrangian (2).

At the quantum level the $q^{+}-\omega$ duality manifests itself as a relation between the ω and q^{+}propagators. For instance, for the
case (1.2) one has

$$
\begin{aligned}
& \left\langle\frac{*}{w}(1) \omega(2)\right\rangle \pm-u_{1 i}^{-} u_{2}^{-j}\left\langle\dot{q}^{*}+i(1) q_{j}^{+}(2)\right\rangle \sim \\
& \sim \frac{i}{p^{2}}\left(D_{1}^{+}\right)^{4}\left(D_{2}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \frac{u_{1}^{-} u_{2}^{-}}{\left(u_{1}^{+} u_{2}^{+}\right)^{3}}
\end{aligned}
$$

which coincides with (10).

References

1. H. Galperin, E.Ivanov, V. Ogievetsky, E. Sokatchev, JINR preprint 82-85-29, Dubna (Januáry, 1985).
2. W.Siegel, Univ.of California prepr. UCB_PPH-84/25, Berkeley, (September, 1984).
3. J. P. Derendinger, S.Ferrara, A.Masiero, Phys.Lett. 143B (1984) 133.
4. A. Galperin, E.Ivanov, S.Kalitzin, V. Ogievetsky, B.Sokatchev. Class. Muantum Grav. 1 (1984) 469.
5. A. Karlhede, U. Lindstrom, M.Rodek, Stony Brook preprint, ITP-SB-84-54 (June, 1984).
6. P.S.Howe, K.S.Stelle, P.K. Townsend, Muol. Phys. B214 (1983) 519. 7. S.J.Gates, M.T.Grisaru, M. RoXek, W.Siegel, Superspaoe (Benjamin/Cumings, Reading (1983)).
B. A.Morozov, A. Perelonov, Preprint ITEP-131, Mosoow (1984).
7. Ya. Kogan, A.Morozov, A. Perelomov, Pizma ZhETP, 40 (1984) 38. 10.P.S. Howe, K. S. Stelle, P.C.West, Phys.Lett. 124B (1983) 55.
8. A.Galperin, E.Iranov, S.Kalitzin, V. Ogievetsky, E. Sokat cher. JINR preprint E2-84-441, Dubna (June, 1984).
12.M. T. Grisaru, D. Zanon, Phys. Lett. 142B (1984) 359.

Гальперин А. и др.

Эта статья завершает описание прочедуры квантования гарноническом суперпространстве. Выведены правила фейнмана для теорий $\mathrm{N}=2$ материи и Янга-Аиллса и даны различнне примеры вычисления гармонических суперграфикоө. Вычисления выглядят не намного слошнее, чем в $\mathrm{N}=1$ случае. Интегрирование по гармоническим переменным не ведет к каким-либо трудностям. Нелокальности по этим переменным исчезают на массовой оболочке. Важно, что квантовме поправки всегда записываются как интегралы по полному гармоническому супер ${ }^{-}$ пространству, несмотря на то, что исходное действие было интегралом по аналитическому подпространству. В качестве побочного результата мы получаем очень простое доказательство конечности широкого класса $\mathrm{N}=4, \mathrm{~d}=2$ нелинейннх моделей. Мы рассматриваем самне общие взаимодействия гипермульти плетов, вклочая те, которые нарушают SU(2). Установлены соотношения дуальности мешду $N=2$ линейным мультиплетом и обоими типами гипермультиплетов.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного ннститута ддеривх исследовании. Дубма 1985

Galperin A. et al.
Harmonic Supergraphs. Feynman Rules and Examples
This paper completes a description of the quantization procedure in the
This paper completes a description of the quantization procedure in the harmonic superspace approach. The Feyman rules for $\mathbf{N}=2$ matter and YangMills theories are derived and the various examples of harmonic supergraph calculations are given. Calculations appear to be not more difficult than those in the $N=1$ case. The integration over harmonic variables does not lead to any troubles, a non-locality in these disappears on-shell. The important property is that the quantum corrections are always written as integrals over the full harmonic superspace even though the initial action is an integral over the analytic subspace. As a by-product our results imply a very simple proof of finiteness of a wide class of the $N=4, d=2$ nonlinear σ-models. We consider the most general self-couplings of hypermultiplets including those with broken SU(2). The duality relations among the $N=2$ linear multipiet and both kinds of hypermultiplet are established.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Received by Publishing Department on January 29, 1985.

[^0]: I Institute of Nuclear Physics, Tashkent, USSR Institute of Nuclear Research and Nuclear Energy, Sofia, Belgaria

[^1]: x) It should be pointed out that one may go even further in (26) and compute the remaining U integral. Indeed, the equátion of motion $D^{++} q^{+}=0$ means $q^{+}(p, \theta, u)=u^{+i} q_{i}(p, \theta)$, so (26) amounts to
 $\bar{q}^{i} \tilde{q}^{j} q_{i} q_{j}$ and the harmonio dependence disappears.
 lines presented in $/ 7 / /^{n o}$.

