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where
1
Sy =1-550U,, (2.2)

Ug=U;;UjUygUp;  and the gauge field Uj; = Uy is defined on the
link L =, j) outgomg from the site i and ending on the site
j- The second term in (2.1) is the sum over all links and Sy,
has the form

5, =48 0te, 1 a@r0)®) + @0, —ReoU, | TR ¢ =

The Higgs field ®; is defined in each site i and ®; is the co-
lumn of two rows. It is convenient to represent the field @,

by a pair of variables (R, ¢,), where R, =v®7®, and ¢; is the
unitary matrix 2x2:
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Then the action 8 can be rewritten as
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Now we use the Higgs "polar" variables (R;:¢ ;) to determine the
partition function
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where dU; and d¢, are the Haar measures on group SU(2), and the
radial measure du(R) is chosen in the form du(R) ~ R3dR. In our
paper we calculated the following order parameters:
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If m®+% or A .=, the radial fluctuations of the Higgs field
become negligible and we are left with a pure SUR) gauge theory
with a crossover in the order parameter <1 -po> at B 228




3. THE EFFECTIVE POTENTIAL METHOD

An approach developed in this section for investigating phg—
se transitions by the strong coupling expansion for an effective
potential of the Coleman-Weinberg-type turns out to bg a useful
supplement to the numerical Monte-Carlo method. In spite of ’
a narrow region of applicability of this expansion, the effecti-
ve potential method provides an elegant interpretation of the
specific features of the behaviour of order parameters obser-
ved in the numerical modeling, and in particular, understanding
of the nature of phase transition in the so-called end point.

Let us represent the partition function as

Z - (1l u(R)ZIR,}, (2.7)
i
where
ESRi k= e_S{Ri} = [ 11 de; {I duy, - s (2.8)
i

and the action S is defined by (2.1)-(2.3). Now.we expand the
quantity in powers of B (strong coupling expansion):

L ~ oo
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whose coefficients S,, 8, ,gl, are related with Z by
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Using (2.9) and definition (2.8) we get the quantities
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wherel, are the modified Bassel functions, Xxp=R R, = ZE(LﬁL
R 3

Now we apply to S8{R;} a standard procedure for obtaining an ef-

fective potential of the Coleman-Weinberg-type 78:8/. For our

purpose it is sufficient to use only the lowest order approxi-

mation for the effective potential Vg which is defined as

R) = -1 § - gk y® & :
Vere (R):N—LS{R,H ' = LBV, ®), (2.11)
where

% +ARY o

©) ,= 2
Ve B =01 +E‘8_R = =3 -2_1nR
=8
& 14 (R
W - Sty
11 (R?)
(2.12}
N o
- 15(R
ve® ®) - --355-22—1[1 - 9—(_—-)-] - 38—;2—(3—:)-—
13&®) R*I,(R ®)
o — et
I(R 1.(R , I.(R
+36[:—-3-(—_)——]2 - 96 [= 2(_1_]3 + 96 T-%( _) A
RQII(RE) R2]1(R2) R211(R2)

The last term in V;ﬁkﬁ) allows for the structure of the measure

of integration over R ;:du(R;)=R3dR, in (2.5). In further cal-

culations we shall use only the first three terms of expansion

(2.11) for V.. defined in (2.12). The region of applicability

in B of an approximate expression for Vi -is rather small

(18] <0.3) that follows from the estimate of a relative contri-
bution of corrections (2.12) to the expansion (2.11). However,

this turns out to be sufficient for our aims.

The shape of the effective potential for different values of
B.m2and A helps us to understand the nature of the phase transi-
tions with the change of these parameters. Figure | shows the
typical behaviour of the effective potential for different va-
lues of m? and fixed B and A. For small values of m? the
effective potential has only one minimum (fig.la). With increa-
sing Im (mz<())vefr acquires a second minimum (see fig.lh)
lying above the first and then the values of Vege in both minima
become equal (fig.lc). With further increasing |m°| the value
of the effective potential in the right minimum becomes less
than in the left (fig.ld) and eventually the left minimum va-
nishes at all (fig.le). The left minimum of Vegr in £ig.lb cor=
responds to a stable phase wvhereas the ‘right to a metastable
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and the situation is reversed in fig.ld). At m2=m?, where the
minima become equal (fig.lc), there occurs a phase ‘transition
of the first order. With the help of V4 one can recover the
B —dependence of m® for not very large values of 8. The depen-
dence of m?, on B at different values of A is shown in fig.2. We
see that the effective potential predicts a shift with increa-
sing A of the lines of fase transitions to the right and upward.
The circles indicate that the lines of the first order phase
transitions have end points (at least for not very small A ).
Near the end point mg(/\) B (A) of the 1line of the first order
phase transitions the minima of the effective potential move
nearer to each other and the local maximum between them disap-—
pears. Figure 3 exemplifies the behaviour of the effective po-
tent1a1 near an end p01nt (B = B ) for different values of m =
--mc_ .At some values of |m®|<|m? near the end point the ef-
fective potential has, in dddltlon to the minimum at some relati-
vely small value of R2 also an inflection point to the right of
the minimum (see fig.3a). With increasing |m® the minimum and
the inflection point approach each other and at some value of
m2=m§ "coincide" (fig.2c). With further increasing |m® the
inflection point shifts to the left of the minimum (fig.3d).
and with further increasing |m?| the minimum shifts to the right
towards large values of R? (fig.3e).

It is obvious that at m®= m% the derivative of the order

<R%(m®)has a singularity. Indeed, let be the

d
arameter
param 3P
solution of the equation
d - 2
TV eff (R,m ) =0, (2~]3)
R
5108 O R (mz) is the value of the order parameter at a given va-
lue of mz By differentiating eq. (2.13) with respect to m?, we

get
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(the solid line in fig.4).
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Fig.1. Behaviour of the effective potential as a function
of R at fixed X and B around the point of the phase tran—
sition of first order. Curves a-e correspond to growing
values of |m?2|
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Fig.3. Dependence of the effective potential on R at
diff evwnf; values of m2 and fixed X and B=B,.Circles de-
note the mintmum and point of inflexion of Vg -

The sxngulanty of the derivative of the order parameter
<R®*>(m®) with respect to m® at the end point allows one to as—



Fig.4. Behaviour of R(m®) at

‘:E\ B =B, (solid curve) and for
& B < B, (dotted curve).
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Fig.5. The level lines of the y

function R(B;m?) for A= 0,12. et .

sert that it is a point of the second order phase transition.

To the left of this poinpt, i.e., at ﬁ<:ﬁp, we observe a change
of regime (crossover) without singularities in the behaviour

of the derivative of the order parameter <R2>(m?) (see the
dashed line in fig.4). The lines of the level of the order pa-
rameter <R%> in the plane (m? B) at A = 0,12 are shown in fig.5.
There occurs a discontinuity, i.e., the first order phase
transition, where two lines of the level almost coincide. At the
end point Unf:ﬁc) the level lines diverge (in fig.5 these are
lines with the values of the order parameter 1,8 and 2,6), ho-
wever, they are still at a relatively short distance from each
other. This proximity of two different lines of the level in-
dicates a sharp change of regime. We may say that the "line" of
crossovers is thetrail of the end point. Obviously, an analogous
situation occurs in the phase plane (8.8, ) in the pure SU(2)
gauge theory with mixed action ? A

4. RESULTS OF THE MONTE-CARLO CALCULATIONS

The model (2.1)-(2.3) has been numerically investigated by
the Monte-Carlo method with the use of the Metropolis algorithm
4-5 updates of the field variables in each site and on each link
of the lattice have been optimised. To update the gauge field va-
variables which are the elements of the SU(2) grou;, the old_wa-
lue of the field variable has been multiplied by a random U
element of the group SU(R) which is close to unity. The ¢; field
has been updated in two stages. First, an attempt was made to
update the radial variable R; and then the angulag variable &,.
The degree of proximity of a random group element U to the unit
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one and the interval RjtAR of the new value of the radial va-
riable R; have been choosen so as to provide the probability
of updating ~50%Z. The sequence of renewing of variables on
links and at sites was chosen in a random way (stochastic swe-
eps). We have employed the Monte-Carlo method to calculate the
following order parameters <1 -D> and <R®>, defined by (2.6).
The behaviour of the order parameters near the phase transition
points has been studied by two different methods:

i) Thermal cycles

One of the parameters (B or m?) was being slowly changed in
a given interval, first in one direction and then back. At each
point the final configuration from the preceding point is used
as an initial configuration. 7-10 iterations were made at each
step and the averaging was performed over the last 4 iterations.
The typical step of changing B(m?) was equal to 0.05-0.1. At

the beginning of the thermal cycle ~100 iterations were made
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Fig.6. The results of thermal ..,#-
cucles in m® for order parame- ’ ot
ter <R%> at point B=2,2 for s
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tions OJ variables U,¢ and R. haviour of order pam
Dashed tines are calculated by <1- o>, Verticas
formula (2.13). the domain of slow con

at constant values of g and m® to equilibrate the system. The
appearance of a hysteresis loop (see, for instance, fig.6) may
indicate a possible phase transition.

ii) The choice of different initial configurations (starts)
both of the radial field variables {R,l and the field
{U pl.

As in the previous papers’ we used mainly two types of
starts: "hot", when all the values of field variables are chosen
at random, and "cgld", for which the initial distribution was
chosen to be Up=1,R,=0.1,¢, =1. The typical picture at the
point of the first order tramnsition (at A = 0,05,8 = 0, m2=-2,86)
is shown in fig.7 and in terms of the effective potential V g
it corresponds to the situation when the values V
ma coincide (flg 1e).

In the previous section we have already mentioned a strong
dependence of the shape of phase transitions on A (see fig.Qj,
which has been established by the effective potential. This fact
is confirmed by the Monte-Carlo analysis. Thus, a sequence of
Lhermal cycles at different A at the point f»:v 2 (at the "cros-
sover' point of a pure SU(2) gauge theory) indicates a sharp
narrowing of the hysteresis loop with increasing A from 0.1 to
0.7. A similar picture is observed for the order parameter
<1-D> which has a strong correlation with<R2>, This fact is in
agreement with a qualitative behaviour of an end point of first
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order phase transitions (fig.2), which is shifted to the right-
upward with increasing A.

The vanishing of the radial fluctuations of the Higgs field
(<R®>.0) at A > or m?s=has already been given in sec.2.
One can easily observe a first order phase transition at A= 0.1
and B=2.2 by the method of different starts (fig.7) which indi-
cates the existence'of two long-living configurations with
highly different <R, The Monte~Carlo analysis of the behaviour
of the order parameter <1 - D>(fi .8a) provides a quantitative
picture of such a "dying out" at fixed A and with increasing m®
Already at m? =10 the dependence <1 -0 > on 8 in the model (2.1)-
(2.3) does mnot dlffer from that in the pure SU(R) gauge theory.
By decreasing gradually m™ up to zero and then passing to the
region of negative, the Higgs fields effect actively the be-—
haviour of an average plaquette <l -n> (fig.8b) even at small
Ké The behaviour of the order parameter <R®>with respect to
m~ at A =0.1,8=0and B=1 is shown in fig.9; it indicates
the existence of an end point of the line of the first order
phase transition in the interval 0< 8<l. This is in complete cor-
respondence with the picture obtained by the effective potential
method in Sec.3. On the other hand, as has been pointed out in
ref. . at fixed A and increasing B a discontinuity of <R*> at
the point of the first order phase transition as a function of
m® decreases gradually up to zero (within B, «» ) and there is
no first order phase transition at B (fig.10). Thus for the
lattice SU(2) gauge-Higgs theory the typical picture of the li-
nes of a phase transition in the (8,m?) plane (phase diagram)
is shown in fig.1l corresponding to A= 0,1. With increasing A
this line of phase transitions shifts to the right and upward.

11



2 Fig.10. The dependence of order
o ..'°' parameter <R%> on m® for B=w
4 ) Fi and A = 0.1.
3
2 .o.. m 2
‘ 4 .o... = 3 _1\ i
s oconsoe svssassdesc®® 2 \I\{

~
-1 0 1 m? . {\{\
=3

Fig.11. Phase diagram in the
plane (B.m®) at A=0.1, calou-

lated by the lMonte-Carlo me- } s 1 " 1
thod. The solid line repre- 0,25 025 %arct A
sents the phase transition of 0 S

firet order; the thin dashed line denotes the region where the
type of phase transition is not yet established. Errors in the
deteyrmination of transition points are indicated.

How far the lines of the first order phase transitions extend

to the region of large f is not yet clear and should be further
investigated.

CONCLUSION

Thus, we have investigated the phase structure of the lat-
tice SU(Z) gauge-Higgs theory. For the construction of phase
diagrams we have used both the numerical approach, the Monte-
Carlo method, and an approximate analytical method based on the
use of an effective potential of the Coleman-Weinberg-type. In
both approaches the radial mode of the Higgs field was thought
to be frozen out. We have detected the lines of first order
phase transitions in the (8. m?® plane at fixed A. which have
end points corresponding to second order phase transitions. This
result follows from the numerical as well as from the analytical
analysis which show a good qualitative and quantitative agree-
ment. At first sight, our results do not agree with the result
of ref. in which only second order phase transitions have
been observed. A more thorough investigation shows that the
discrepancy of our results with those of ref.’* 1is only seeming,
caused by a different choice of the model parameters ‘!!'. The
comparison of the formulae (2.3)-(2.4) with analogous from
12

ref. * leads to the following relations between the parameters
B3N, aq§.p2 in our paper and_those of paper %, which are deno-
ted by B.A, andk B=8, A=A/4k®,, m®=(1-2V-8k)/k.

To define the type of a phase transition the authors of pa-
per %' have studied the region of parameters B,A, and k, which
is beyond the region of parametric space studied. In particular,
they studied in detail the point A =0.5, B = 2.25,k =0.27 which
corresponds to A =1.715, B = 2.25, and m %= -8.

Our investigation shows however that at A >1 both minima of
the model effective potential are so close to each other that
become indistinguishable in the Monte-Carlo analysis. This is
the reason for the conclusion on the second order phase transi-
tion made in ref. ™

The existence of an end point on the line of the first order
phase transition, we have established, testifies to the comple-
mentarity principle suggested in refs. 197 This end point is
a critical point analogous to a phase diagram of the type "gas-
liquid-ice"; in the phase diagram the crossover line is the
"trail" of this end point. In particular, the existence of this
line explains a crossover in the pure gauge SU(2) theory at
=23,
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