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Let us consider a two particle system. The nonrela­
tivistic covariance (the Galilei principle of relativity) 
means that in the space of the wave functions of the sys-
tem a unitary representation of the Galilei group is 
realized. 

We shall give a group theoretical interpretation of 
certain properties of the non-relativistic wave functions 
admitting a relativistic analogy. From our point of view 
this analogy is essential when studying relativistic quasi­
potential amplitudes and wave functions. Because of the 
complete exploitation of the kinematics an essential sim­
plification of formulae and possibly their interpretation 
can be obtained. 

The reduction of the representation of the translation 
group /1/ leads to the usual harmonic (Fourier) analysis 
with four-dimensional plane-waves. So this reduction 
stands for group theoretical definition of the momentum 
representation if the coordinate representation is given. 

The wave function of the system when a separation of 
the variables into center-of-mass and relative ones is 
performed, is factorized into an exponential and an ef­
fective wave fu11ction describing the relative motion. The 
effective wave function is transformed according to the 
unit representation of the Galilei group (up to rotations). 

The group of the boosts of the relative momenta is 
isomorphic to the Galilei boost-group, but is not an 
invariance group of the Schrodinger effective-motion 
equation. The reduction of its unitary representation to 
irreducible ones leads to Fourier-analysis with three­
dimensional plane waves and stands f6r a group-theoretical 
definition of the relative coordinate. 

In the relativistic case the effective wave function 
cannot be defined ambiguously. The development of th~ 
quasipotential approach /2-7/ * has shown that this is 

-------------------------* In papers /5,6/ one can find a full list of references 
of the considered subject. 
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Harmonic Analysis on the Lorentz Group, 
Quasipotential Approach and Proton-Proton 
Elastic Scattering at High Energies 

The exponential-power behaviour of the proton-proton 
elastic differential cross section is proved by numerical 
analysis. The scattering amplitude in Born approximation 
is obtained under the assumption for a simple quasipo­
tential to exist in relativistic relative coordinate 
space. 
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Let us consider a two particle system. The nonrela­
tivistic covariance (the Galilei principle of relativity) 
means that in the space of the wave functions of the sys-
tem a unitary representation of the Galilei group is 
realized. 

We shall give a group theoretical interpretation of 
certain properties of the non-relativistic wave functions 
admitting a relativistic analogy. From our point of view 
this analogy is essential when studying relativistic quasi­
potential amplitudes and wave functions. Because of the 
complete exploitation of the kinematics an essential sim­
plification of formulae and possibly their interpretation 
can be obtained. 

The reduction of the representation of the translation 
group II/ leads to the usual harmonic (Fourier) analysis 
with four-dimensional plane-waves. So this reduction 
stands for group theoretical definition of the momentum 
representation if the coordinate representation is given. 

The wave function of the system when a separation of 
the variables into center-of-mass and relative ones is 
performed, is factorized into an exponential and an ef­
fective wave fuPction describing the relative motion. The 
effective wave function is transformed according to the 
unit representation of the Galilei group (up to rotations). 

The group of the boosts of the relative momenta is 
isomorphic to the Galilei boost-group, but is not an 
invariance group of the Schrodinger effective-motion 
equation. The reduction of its unitary representation to 
irreducible ones leads to Fourier-analysis with three­
dimensional plane waves and stands f<n a group-theoretical 
definition of the relative coordinate. 

In the relativistic case the effective wave function 
cannot be defined ambiguously. The development of th~ 
quasipotential approach /2-7/ * has shown that this is 

---*-~~-p;p;;;/s~6T-~~~-~~ find a full list of references 
of the considered subject. 
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connected with the nonuniqueness of the off-mass-shell 
continuation. 

From the view point of the analogy between nonrelati­
Yistic and relativistic cases it is natural to define the 
effective wave-function in Lobachevsky space. This, for 
example, is realized in the Kadyshevsky's variant of the 
quasipotential approach /3,4,7/ . Since the motion group of 
the Lobachevsky space is the Lorentz group, in the space 
of the effective wave functions one can define its unitary 
representation. The reduction of this representation to 
irreducible ones leads to a 'relativistic" Fourier ana­
lysis and therefore determines the relativistic relative 
coordinate /7/ . 

In paper /8/ this harmonic analysis was studied and 
some physical consequances as mentioned below were 
derived. 

For example, in this apparatus the rapidity 
X = J_ f n ...!L::_f 

2 E+P 
replaces naturally the momentum. 

Assuming that the elastic scattering amplitude can 
be calculated in Born approximation a formula suitable 
for the phenomenological description of the scattering 
processes was obtained. Generally speaking, in order to 
obtain such type of formulae it is enough in the Quantum 
Mechanical Born approximation formula to replace the 
transferred momentum by transferred rapidity. 

It was shown, under certain assumptions about the 
analytic properties of the quasipotential in the relativis­
tic r -plane, that, when t «1 ( t is the squared transfer­
red momenta) * , the amplitude has an exponential 
behaviour, while at t ~ 1 it has a power behaviour. This 
result performs a qualitative description of the experi­
mental data 19•10/ on elastic proton-proton scattering at 
high energies. 

In particular the quasipotential of the proton-proton 
interaction was chosen to be of the type 

---------------------~------*we are working intheatomicsystemofunits rn=h=c= 1. 

4 

V (r ,s) 
A (s) -------------R2(s) + r 2 

where s is the square of the invariant energy,A(s) is 
the·'' complex'' interaction constant, R ( s) is the interac­
tion "radius". In Born approximation this led (in terms of 
the "relativistic" plave waves) to the following expression 
for the amplitude 

T(s,t) = 
2 

2rr A(s) 
---------- -------------------------- R(s) \;:r"{'r:rr4r < 1-t/2+v-t(1-t/4} > 

(1) 

We weuld like to stress that in terms of transferred 
rapidity ----------

X t = f n ( 1 - t/2 + y - t (1 - t/4) ) 
the formula (1) has an extreme simplicity 

-R(s) Xt 
2 e 

I (s, X ) = 2rr A(s) -------------. 
t sh Xt 

(2) 

The normalization of the amplitude (1) is chosen in such 
a manner that the differential cross section is 

4Q: __ (s,t) = _)_ ______ I T(s,t) !2 . 

dt 16rr s(s- 4) 
(3) 

Later on we can use formulae (1) and (3) for the descrip­
tion of the proton-proton elastic scattering experiments. 
As long as we could not find published full experimental 
data in a table form, we used the figure N. 13 from paper /Io/ 
to extract the data for da I d t ( s, t) . 

The data thus obtained were used to solve an overde­
termined nonlinear system of equations 

d d exp t 
__ a__ (s,t) - __ a__ (s,t) = 0 (4) 
dt dt 

~ 2 2 for s = 8, 12, 16, 25, 50, 2000 (GeV ), and.2 :s;-t:s;7 .(GeV ), 
while da/dt (s,t) is determined from formula (3). The 
preliminary numerical analysis led to a parametrization 
of the unknown functioDS A (s) and R(s) in the following 
form 
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,\(s) = AI+isA 2(ens)A 3 , 

A R(s) =A4 (ens) ~ 

System (4) has been solved bytheleastsquares method 
both for all the single curves (with respect to s ) and for 
the case of simultaneous description of all curves. The 
numerical analysis was held on by the method of the 
regularized iterational procedures of the Gauss-New­
ton type /II/. This method performs low dependence on 
the initial approximations and stability with respect to the 
fluctuations of the. nonlinear operator. A standard program 
COMPIL /12/ (JINR standard program library) was used. 
The values of the parameters A1,A 2, A 5 turned out to be 
stable for all energies under consideration A 

1 
= -1.25, 

A2= 0.87, As=0.82. 
This gave a possibility of writing the interaction 

"constant" and "radius'' in the form 

,\ ( s) = -1.25 + is 0.87 ( e n s ) (l 

R(s) = R (ens) 0.82 , 

where a= A3 and R = A4 • 

In table 1 are given the solutions for the parameters 
a and Ro-

Table 1 -----------------------------------------
8 8 12 16 26 '50 3000 all curves 
a 1.3'4 l.ll 1.28 .98 1.22 82 97 
Ro .54 .67 .88 .94 1.09 . 77 .86 
-----------------------------------------

It can be seen from the table, that the maximal devia­
tions from the mean value of the parameters a and Ro 
(for all curves) do not exceed 35%, which is within the 
range of the errors of these parameters * . 
------------------------------* Due to the unreliability of the available experimental 
data and the lack of the valuesofthe input data errors, we 
do not discuss the uniqueness of the obtained solutions as 
well as the determination of their statistical errors. 
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The figure gives a comparison of the experimental 
and theoretical curves which are obtained with the solutions 
of the parameters obtained above. (The dashed lines are 
the theoretical ones). 
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It becomes clear from the figure that the chosen 
potential performs a description of the exponential power 
behaviour of the differential cross section in the given 
interval of squared four-momentum transfer. 

The comparison of theoretical and experimental curves 
at different energies shows that there is a better agreement 
with the decreasing of the ratio t rna/ s. Therefore we can 
consider the relativistic analogue of the condition of appli­
cability of the Born approximation to be the condition 
tmax /s « 1. In table 2 are given the values of the inter­

action ''radius'' (which is an analogue of the diffraction 
peak slope-parameter) at different energies. 

Table 2 

s 8 12 16 26 50 3000 
R(s)=R (fn s)a 0.98 1.40 2.03 2.47 3.32 4.33 

0 ---------------------------------------------------
The description of the detailed structure of the expe­

rimental curves in our approach can be obtained by using 
quasipotentials with pole singularity on the real axes in 
the r -space. For example, a quasipotential 

.\(s) AI (s) 
V ( r, s) = -~----- + ----------

R ( s) + r 2 R~ (s) - r 2 

gives the following formula for the amplitude 

2rr 2 .\(s) R(s) (5) T(s,t)=------ [-------- -.\ 1(s)cos(£n(F(t) )], 
v =ra::=r;4 F( t) R < s > 

1 

where F(t)= 1-t/2+y-t(l-r/4) 

In terms of rapidity 
Xt=fn F(t) 

one has 

T(s,xt) = 
2rr 

sh Xt 

8 

-R(s)Xt 
[.\(s)e -.\ 1(s)cos(R

1
(s)xt)]. 

r 
~ 

We hope to compare formula (5) with experiment in 
a subsequent paper. 
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