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The exponential-power behaviour of the proton—pro?on
elastic differential cross section |is proved by ngmer%cal
analysis. The scattering amplitude in Born approx%matlon
is obtained under the assumption for a simple guasipo-
tential to exist in relativistic relative coordinate

space.
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Let us consider a two particle system. The nonrela-
tivistic covariance (the Galilei principle of relativity)
means that in the space of the wave functions of the sys-

tem a unitary representation of the Galilei group is
realized.

We shall give a group theoretical interpretation of
certain properties of the non-relativistic wave functions
admitting a relativistic analogy. From our point of view
this analogy is essential when studying relativistic quasi-
potential amplitudes and wave functions. Because of the
complete exploitation of the kinematics an essential sim-
plification of formulae and possibly their interpretation
can be obtained.

The reduction of the representation of the translation
group 1/ leads to the usual harmonic (Fourier) analysis
with four-dimensional plane-waves. So this reduction
stands for group theoretical definition of the momentum
representation if the coordinate representation is given.

The wave function of the system when a separation of
the variables into center-of-mass and relative ones is
performed, is factorized into an exponential and an ef-
fective wave function describing the relative motion. The
effective wave function is transformed according to the
unit representation of the Galilei group (up to rotations).

The group of the boosts of the relative momenta is
isomorphic to the Galilei boost-group, but is not an
invariance group of the Schrodinger effective-motion
equation. The reduction of its unitary representation to
irreducible ones leads to Fourier-analysis with three-
dimensional plane waves and stands fer a group-theoretical
definition of the relative coordinate.

In the relativistic case the effective wave function
cannot be defined ambiguously. The development of the
quasipotential approach /2-7/* has shown that this is

*In papers /5,6/  one can find a full list of references
of the considered subject.



connected with the nonuniqueness of the otf-mass shell
continuation.

From the view point of the analogy between nonrelati-
vistic and relativistic cases it is natural to define the
effective wave-function in Lobachevsky space. This, for
example, is realized in the Kadyshevsky’s variant of the
quasipotential approach /34,7 . Since the motion group of
the Lobachevsky space is the Lorentz group, in the space
of the effective wave functions one can define its unitary
representation. The reduction of this representation to
irreducible ones leads to a ’relativistic’’ Fourier ana-
lysis and therefore determines the relativistic relative
coordinate /7/ .

In paper /8/  this harmonic analysis was studied and
some physical consequances as mentioned below were

derived.
For example, in this apparatus the rapidity
1 E -P
X=3 "E:D
replaces naturally the momentum.

Assuming that the elastic scattering amplitude can
be calculated in Born approximation a formula suitable
for the phenomenological description of the scattering
processes was obtained. Generally speaking, in order to
obtain such type of formulae it is enough in the Quantum
Mechanical Born approximation formula to replace the
transferred momentum by transferred rapidity.

It was shown, under certain assumptions about the
analytic properties of the quasipotential in the relativis-
tic r -plane, that, when t<1 ( t is the squared transfer-
red momenta) * the amplitude has an exponential
behaviour, while at t2 1 it has a power behaviour. This
result performs a qualitative description of the experi-
mental data /%1% on elastic proton-proton scattering at
high energies.

In particular the quasipotential of the proton-proton
interaction was chosen to be of the type

*We are working in the atomic system of units m=h-c= 1.

where s is the square of the invariant energy, i(s) is
the ’’complex’’ interaction constant, R(s) is the interac-
tion ’'radius’’. In Born approximation this led (in terms of
the ’relativistic’’ plave waves) to the following expression
for the amplitude

T(S,t) & e . ¢))

We would like to stress that in terms of transferred
rapidity

Xe=£fn (1-¢2 + v -t(1-¢t/4) )
the formula (1) has an extreme simplicity

T(s,x )= PPN ) S — . (2)

The normalization of the amplitude (1) is chosen in such
a manner that the differential cross section is

do__(s,0) = -L______ [T (s,0) |2 . 3
de 167 s(s-4)

Later on we can use formulae (1) and (3) for the descrip-

tion of the proton-proton elastic scattering experiments.

As long as we could not find published full experimental

data ina tableform, we used the figure N. 13 from paper /10/
to extract the data for do/dt(s,t).

The data thus obtained were used to solve an overde-
termined nonlinear system of equations

expt
do_ (s ) - 4o s =0 4)
dte dt

for s= 8, 12, 16, 25, 50, 2000 (GeV?), and 2 <t<7.(GeV ),
while do/dt (s,t) is determined from formula (3). The
preliminary numerical analysis led to a parametrization
of the unknown functions A (s) and R(s) in the following
form -



A
A(s) = Aj+is Ap(fns) 3,

R(s) = A,(fn s)A5.

System (4) has been solved by the least squares method
both for all the single curves (with respect to s ) and for
the case of simultaneous description of all curves. The
numerical analysis was held on by the method of the
regularized iterational procedures of the Gauss-New-
ton type /11/ This method performs low dependence on
the initial approximations and stability with respect to the
fluctuations of the.nonlinear operator. A standard program
COMPIL /12/ (JINR standard program library) was used.
The values of the parameters A}, A 2,A 5 turned out to be
stable for all energies under consideration A 1 = -1.25,
A2= 0.87, A5= 0.82. !

This gave a possibility of writing the interaction
’constant’’ and ’radius’’ in the form

A(s) =-1.25+ is 0.87(€n s)®

R(s) =R (fns)?82,

where g-Agand R =A, .

In table 1 are given the solutions for the parameters
a and Ry.

S & 1) 1 S
s 8 12 16 26 50 3000 all curves

a 1.34 1.11 1.28 .98 1.22 82 97

R, .54 .67 .88 .94 109 .77 .86

It can be seen from the table, that the maximal devia-
tions from the mean value of the parameters « and Ro
(for all curves) do not exceed 35%, which is within the
range of the errors of these parameters * .

* Due to the unreliability of the available experimental
data and the lack of the values of the input data errors, we
do not discuss the uniqueness of the obtained solutions as
well as the determination of their statistical errors.

The figure gives a comparison of the experimental
and theoretical curves which are obtained with the solutions

of the parameters obtained above. (The dashed lines are
the theoretical ones).
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It becomes clear from the figure that the chosen
potential performs a description of the exponential power
behaviour of the differential cross section in the given
interval of squared four-momentum transfer.

The comparison of theoretical and experimental curves
at different energies shows that there is a better agreement
with the decreasing of the ratio ¢, ,/s. Thereforewe can
consider the relativistic analogue of the condition of appli-
cability of the Born approximation to be the condition
tmax /S << 1. In table 2 are given the values of the inter-
action ’’radius’’ (which is an analogue of the diffraction
peak slope-parameter) at different energies. :

Table 2

s 8 12 16 26 50 3000
R(s):RO(Zns)aO.98 1.40 2.03 2.47 3.32 4.33

The description of the detailed structure of the expe-
rimental curves in our approach can be obtained by using
quasipotentials with pole singularity on the real axes in
the r -space. For example, a quasipotential

V(r,s) = —)\2-(-5-2———2+ A1(s)

R(s)+t Rzl(s)—r2

gives the following formula for the amplitude

2
T(s,t) = 2T [—= A 3 1(9) cos(ln (F(t)r;(s))], (5)

where F(t) =1 -t/2++/-t(1-1/4) .

In terms of rapidity

xe=In F(v)
one has ; “RG)Y
T(s,x,) = ——cc—= [A(s)e '~ (s) cos (R (S)x,)]-
t sh x,

U

N s —

We hope to compare formula (5) with experiment in
a subsequent paper.
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