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In a recent paper /1/ we have suggested a manifestly
invariant renormalization procedure for sypersymmet-
ric (ss) quantum electrodynamics. All ultraviolet infini-
ties were shown to be eliminated bya common wave func-
tion and mass renormalization of matter fields and wave
function renormalization of a gauge multiplet. Now we
extend this procedure to thes s non-abelian gauge theo-
ries/2.3/, As in the previous case, we work in a manifestly
s s gauge and show that in spite of the essentially nonlinear
character of the Lagrangian only the finite number of s s
counterterms is needed.

1. Supersymmetric Feynman Rules

In this section we briefly describe the < s generaliza-
tion of Yang Mills theory following the paper/z/ and
derive s s Feynman rules. The matter fields are combined
in chiral supermultiplets ¢,, ®_. The Yang-Mills field
A is included in a supermultiplet described by the pseudo-
sélalar hermitian matrix superfield ¥(«,)

Yix,0)=Alx) + (;)/5)\'( xX) +~;~¥5()F(x) +(7y5()(i(x) +

+5i)/V)'50A,T(x) b %(7()5)/5/\(“ + on? Bix) . 1)

L
32
The generalized gauge transformation is
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Q, are chiral superfields
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The infinitesimal transformation (2) can be written expli-
citly as
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Y0 ™ Re50 Y 1Im 5Q |V cth g|¥ |+
+ +

-1 b - -
+ VYT (Red0® W ) (g Yl L chgl)); 50-i/2250% . (3)

a 1 N a a a a -
SQ+ =expi- —40 d v, 01 u, i, )+0(u+2+iu+5 )+—i~9(l+iy5) 6(“+3+i'#6)’

the components %, are hermitian.

The Lagrangian can be written in terms ofa non-linear
vector superfield v#
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Ci§ a charge conjugation matrix and ) is a covariant
derivative “

D, =d/30, ~i/2(y,0), 8/9x" .
Under the transformation (1)
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and a gauge invariant Lagrangian looks as follows
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This Lagrgngian is degenerate, and a subsidiary condition
should ge imposed to quantize it. It was pointed out in the
papers’>3 that one can choose a gauge

A=x=F=6G=0. : (6)

In this gauge the Lagrangian (5) assumes a polynomial form
and is nothing but the usual Yang-Mills Lagrangian plus
some additional renormalizable interaction of spinor and
scalar particles. (Its explicit form may be found in the
papers 2,3/ ). Unfortunately the gauge condition (6) de-
stroys explicit supersymmetry of the theory and it is by
no means self-evident that renormalization can be
performed in a supersymmetric way, in particular, that
the renormalized coupling constants and masses are equal.

For this reason we abandon noninvariant condition (6)
and use the manifestly s s gauge.

We start from the gauge (6) in which the theory may
be quantized in a standard way /¢,5/ and the Green func-
tion generating functional can be written as follows

2N Jexplif £(x) dern L INB(A) 3302(DFOFG A ) Ap_p du.
O

Here A _p is the Faddeev-Popov determinant, the mea-
sure dp is the productoffield differentials and s.t. means
source terms.

Note that

18(A) 800 5(F) 3(6) 50y Ay) [ Ap_p (4,) -A"WI=0,

where A(Y) is a gauge invariant functional defined by the
condition

AW (A s ek Y a6 s, At do =1 (8)
X

One can pass to the other guages using G. t’ Hooft’s
trick.

Let us introduce a gauge invariant and s - functional
A defined by
4 e da-L (9)

)+

AP (11607
X

Here (‘PQ)+ means the left-handed component of v and
c, is an arbitrary chiral superfield.



o 1o . p . L .
‘I‘+ =exp} 1 6d Vs 9}[(‘1’+4 +1‘I’+1)+9(‘P+5 +1‘liz)+—4~9( 1+l)/5 )G(‘ILLGH ‘I’+3)J
and components \P+i are hermitian.
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Mutliplying the generating functional (7) by the constant
factor (9) and performing the change of variables ¥ P
one obtaines

-1
Z=N " [explif8(x) dx+s.t.§[l 8@V, —c ) AW du.

Finally, using the fact that Z does not depend on c, one
can 1ntegrate it over c+ with the measure

exp lTrf B_l (DD)? ¢ c, i,
The resultmg functional is
1 4 -
Z-N" fexp{if[s(xniﬁ (D00 oW s s iAW di. (10)

In terms of the components the gauge term looks exactly
as in quantum electrodynamics

1 -1 ) -1, 1 ) 2
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(11)
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To calculate A{¥) at the surface V¥ =c, itis sufficient

to integrate in the formula (9) in the vicinity of a unit
element

-1
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As before, du, means Hﬁi:ld“+i . The operator
M is defined by
Rk T L R A (13)
+ + + +

It follows from (12) that A{¥) can be represented as a
gaussian integral

AW = fexpl-f3 ' 0", | dxldu, di, (14)

=1%4i
where the integration variables u, and u, have commuta-
tion properties opposite to the usual one: scalars u; 3 43¢
and uj, 34,6 anticommute and spinors u3 5 and uys com-
mute. So, in addition to the usual fermion Faddeev-Popov
ghosts, here the boson ghosts are present.

The integral (14) up to the constant factor may be
written ina s s form:

A(‘P)zfexp%—g—;'l'rf(f}l))2[E+I‘]’")i+(ﬁ+)*(‘l‘“) ldxidu  du , . (15)

The formulae (10) and (15) define the manifestly « « Green

function generating functional. At first sight, this functio-

nal corresponds to nonrenormalizable theory due to highly

nonlinear character of the Lagrangian. However although
the Lagrangian (5) contains terms proportional to W™ with

arbitrary u due to theanticommutativityof ¢ only A com-

ponent may enter in an arbitrary degree. But the propa-

gator “AA defined by eqs. (10) and (15) decreases for

k>~ as k~ Therefore the addition of internal A-lines

does not spoil the convergence of the integrals. Below we

shall show that in the theory defined by the functional

(10) there exists a finite number of ’’basic’’ primitively

divergent diagrams. All other divergent diagrams can be

expressed in terms of the basic ones with the help of the.
generalized Ward identities which will be derived in Sec-

tion 3.

2. Analysis of Divergencies

Let us calculate the degree of divergency of an arbitrary
diagram. For brevity we consider a pure Yang-Mills field.
The analysis of matter field diagrams is completely iden-
tical with the case of quantum electrodynamics/1/ and

changes nothing in the result.



The free propagators defined by (5) and (11) have the
following asymptotic behaviour:
1 —

| s J L ]
DD~ 1, M~k A, A~
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AD ~ Axv~k L,xx~k
— Mo 4 (16)
AA ~FF ~ GG ~ k™7 .

e —
(In fact, the propagators FF and GG canbe madedecreas-

ing arbitrarily fast by introducing more derivatives in
eq. (11)). The explicit form of the free ghost Lagrangian is

)\au +2

u . u.ou
2,5 +H +i i=3,6 +i +i

o 90 +i/2%,
e Tn i e M i=

and therefore the ghost propagators have asymptotic beha-
viour

E— -2 = -1 =

U, 14% 1,4 k s ,5u25 k W3 636 1. Q7)

The Yang-Mills interaction Lagrangian canbe represented
symbolically as a sum of terms

2 2 2 3 2 6 3 2

Sf(ln) ~{AV((9 X +AV8x + Ay +Dx +x +xIA+d 40 A+
4 2 2,2 4 2,3

+dD+dy +8AV+DAV+X AV+X. AV+AV/\X+/\ +AV) +

ex(x20A + x9Da%x 3y AZ+a x40 2) DN +92D+9A2 + DRIAT.
(18)

(Being at present interested only in the degree of diver-
gency we omit all tensor structures, constants and also
factors F and G, as F and G propagators do not increase
the degree of divergency). _

The ghost Lagrangian may be written analogously

(n) _ — 2 4 2 2 2
ng T uyy (DeAx+A +X +A,x +0A +dx +d )+
+—ui u X 2+Ei uj(A+AVx+x3+8 x)+Ek u, + (19)

+ukujx+6j uj(x2+Av+a)}/\n : (i=1,4;j=2,5;k=3,6) .

Summarizing eqs. (16)-(19) we see that the index of
divergency of the diagram with ; external lines ofi-sort
is

m < 4-20p,-2¢ w36 -3/20y - 3/2[?1,2’5 _ e EAV (20)
(One can give more precise estimation, but eq. (20) is
sufficient for our purposes).

Only diagrams withatmosttwo D,A OTugg 5)exter-
nal lines or four A  ,uy.4 lines are superficially di-
vergent.The number of "’gauge’’ externallinesA, F, G, x is
not fixed by eq. (20) and there are primitively divergent
diagrams with arbitrary number of external gauge lines,
but as we shall see all those diagrams are expressed in
terms of the ’basic’’ diagrams (without gauge external
lines) and need not independent renormalization.

3. Generalized Ward Identities

We suppose to prove that all ultraviolet infinities can
be eliminated by a finite number of supersymmetric and
gauge invariant counterterms, namely

ef - 2 1 - - 1~ - 4
SER = Tr(DD) {128 22 Vy () V#(g)—ﬁzzu+(‘l’ (g)) % +
+hoc. +%—B—1D‘P:D‘P+}. (1)

Here g =z 11,51 g:Eﬁ;l g (matter field Lagrangian can be
treated in the same way). The counterterms z,,z, and
7. may be fixed, for example, by demanding the transverse
part of Ay propagator, 3-point A?L vertex, and u,; propa-
gator be finite. All other Green functions will be shown to
need not independent renormalization.



The generalized Ward identities for the Green func-
tions defined by the Lagrangian (21) can be derived in the
same way as it was done in our paper/ﬁ/ for the usual
Yang-Mills theory. This derivation includes, however,
explicit calculation of the Jacobian of a nonlocal gauge
transformation and in the case of supergauge transforma-
tions becomes rather tedious. To avoid this comp!ica?ion
we present in Appendix I a new simplified derivation.

The identity which allows one to express the Green
functions with the gauge (i.e., A, x, F, G, 9, A M ) exter-
nal lines in terms of other Green func#ions looks as
follows
0 ! L (DD (@ oW (0 W, (x) ] dx 1A
i .(Z)foxphf[fR(x)fiﬁ (DD ( \ +) 7}1() l()

n

1

Al ZIE“( DIV () 0xT(y) 40y, ()O¥y) +

5Q)
+ 75 (y) ‘P; )

(y) ldyldp =0, (22)
where v, =M~ 1,\4 . . The quantity , ., is as arbitrary
chiral superfield parametrized by the components | X4t iX1s
X HiXgs Xg +iX gt E ' . )

"Let us consider, for example, the identity57 /5x, =0
setting n;j=0, ni #1n A’Lz Jl‘ .

Jexp 1€ (%) « TIBT’( e ¥ S () AL (9 Tdx I A<

(23)

-1 2 d -1d d
{8 o ll’_:‘l(z) +fJu (-")[‘9,1'“11 a(y,z)+['ua(_v,z)|dy¥du:0.

: AR, MiY(2,y) is the Green function
Tquy "in the 'external 'field” ¥ . The explicit form of
f, may be found from eq. (3). It is sufficient for our pur-
pose to know that

Here gy? .9 A2
! o |
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~1da d d
DMI,I (z,y)+(9#f#a (z,y) =6 a5(z—y). 249)
This equation follows from the equality
o0 (v) 5 (v)
o(¥ )+1=3#(A# )=X+1"

Differentiating (23) with respect to JV one obtains
P | d a ~1da d
if <Tod A (DA (y)>=-<To M Ly (2y)><T [ 2.y)>.(25)

Differentiating eq. (25) with respect to y, and using
eq. (24) we get the well-known relation

iB‘1<TD8#Ag(x)avAg(y)>=—5ad5(x—y) . (26)

It means that only the transverse part of the Green func-
tion needs renormalization. The constant z3 can therefore
be chosen in such a way thatthe Green function A A v 1s
finite. The constants , 1and 7, may befixed by demand-
ing the 3-point vertex g:f and the propagator W, u; be
finite. No more independent renormalization constants are
necessary. All other diagrams are automatically finite.

Let us demonstrate it for the Agpuquy  vertexand the
four-point A% vertex. Differentiating eq. (23) withres-
pect to J# twice we have

167 <TAL (9 AY (9 9,A% (1) = <TEMy () A (y)> +

+<szc(x,z) A?}(y)>+(x<——->y,ac——)b,uc—+v). X))

Separating the structure transverse with respectto d* and

differentiating with respect to y one gets for the Fourier
transformation v

v v

tr b be t

D V._.__k (_p+k)p-r}\ayc(p,k):k_g(p+k)ya: r
I K2 (p+k)2 P K2 I

Here D, ,G are the A, and u ; propagators, [ip is the

proper vertex part of <T A#AVAP> . Due to eq. (24)

(p,k).(28)



ip, v, (p.k)is a proper vertex part of <Tuy(Duy(y)A (2)>.
Agcd‘i'ding to eq. (20)<Tu;u A > diverges at mostlinearly
therefore y may divegg’e a# most logarithmically, i.e.,
a possible dﬁlvergent structure is proportional to g#¥.But
it follows from eq. (28) that kVyth (p,k) 1is finite (because
all other factors in this equation Dy, G,I)\,, 3r€ finite
by construction). Therefore the complete y 5 is finite and

the same is true for the <Tﬁlu 1A > proper vertex part.
Differentiating eq. (23) three timeg with respectto .]# one
obtains the relation that expressesthe <lujujA, A, > vertex
in terms of the four-point A% vertex and lower Green
functions. The finiteness of {lhe four -point A# vertex
follows from the relation

-1 b d d.b
<t A‘L(x)auAV (y)apAcp(z) 3, A )\(u)>=&x—u)5(y—z)§ 5 +sym.
(29)

which is obtained by differentiating the identity (23) for
the four-point vertex. This relation states that the connect-
ed part of the four-vertex is equal to zero and, therefore,
expresses the proper four -vertex in terms of the proper
three-vertex and the Green function which are finite by
construction. It also follows from eq. (29) that if the local
part of the three-vertex is

_ab A

I;V; L 5™ 10?1 8P k- 18 (a-p) ) (30)
(this form is dictated by the symmetry properties of ')
then the local part of the four-vertex is

abcd
AuVPA(p’k’q)::P{Eeabfecd S#P SVA }, (31)

where P is the symmetrization operator with respect to
the pairs ap,bv, cp, dA. :
Analogously, one canderive relations which express the
Green functions withn external A,F, G,x lines in terms
of the Green functions with (n-1 external gauge lines.
It is simpler, however, to prove the finiteness of the
corresponding diagrams using the supersymmetry of the
effective Lagrangian rather than the identities (23).
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For this purpose let us write the Green i
' ' : functions
generating functionalin a completely supersymmetric form

-1 -
Z(n) =N [explif[€ (% +1_16_Tr(nn)2(\vn>1 dxidp,  (32)
where the source 7 is a superfield with the components

My = 20y M g Ta s 7Ty s 27 4

'fmd £ef includes the ghost Lagrangian, Z(») is evidently
invariant with respect to the s s transformation 7, -7 .
Due to the s s of the exponent one can compens&llte thlis
transformation by the s schange of variables ¥, - ¥/

‘ Therefore the generating functional for the one-lpartilcle
irreducible Green functions ' defined by a Legendre
transformation

F(R):—ifnZ(n)—él—f(_DD)z(nR) dx (33)

is invariant with respect to the s s transformation of its
arguments R; . In particular, the local part of I'(R)is
supersymmetric. Due to eqgs. (26), (30) and (31) the local
parts. of the vertices with 2,3 and 4 external vector lines
are finite and form a gauge invariant structure, i.e., the
Yang-Mills Lagrangian. The complete local part of i“( R)
should thereforebean s s generalization of the Yang-Mills
L.agrangian with finite parameters. Sucha generalization is
given by the formula (5) where the arguments ¥ should be
replaced by R .Therefore the counterterms introduced in
eq. (21)really eliminate all the divergencies. The finiteness
of the vertices including the ghost lines is proved analo-

gously if one introduces in the functional th
term for the ghosts. (32) the source

4.Discussion
Thus, we have shown that renormalization of the s s

Yang-Mills theory canbe performed preserving supersym-
metry of the theory. Only the common wave function re-

13



normalization for the whole gauge multiplet and charge
renormalization are needed. In the presence of a matter
field one more wave function and mass renormalization
appear.

Our result proves, inparticular, thatthe s s Yang-Mills
theory is asymptotically free, provided the number of the
matter field multiplets is not too large.

Appendix 1
The renormalized generating functional Z can be
written as follows

ZzN—lf(‘xr‘Z([Si)R(x) +

P2 V00N exp !T;;f'l'r(ﬁl))z De,0et] x

(A.1)
B8, —cy) d¥de, ¥ =1L G FL GA L AL DY,
X
Introduce the gauge invariant functional A{W¥)
~ o!
1=AW 8L wY Y, —e - x, 14D, (A.2)
X

where \, is infinitesimal chiral superfield. Multiplying
(A.1) by (A.2) and performing the change of variables
1

Q

y > ¥ one obtains

Z-N""expli [I€R(x + ;7 V(0 1dx 1AW «

xexp{;—ﬁ [Tr(DD)? ge,oehdx I, —c — x ) d¥ de .

The functional A'Y) at the surface ¥,o=c,+x, I8 equz.ll
to A(¥) at the surface Y, - c,. The quantity Q(.,) is
defined by the equation

14

po(v+)
( )+ =c (A.3)

at the surface Y,-c¢,+ y ,. At this surface eq. (A.3)
becomes

Mv, =x,. (A.4)
Integrating over c and setting the coefficients at
equal to zero we obtain the identity which is an exac+t_
analogue of eq. (23) in our paper /6/

5

e [ exp i€ (x)+7,(x) ¥ (x) +-4—lﬁ;Tr( DD)* (0¥, 0¥} AY)

x{f[—4—lﬁ—Tr(ElD)2(D‘l'+(x) 0XH(x) +0x, (¥ 0WH(x) ) +

!

A v,)
+n. ¥, v+(x)de}du=0.

1 1

-1 lIJSQ(V

v =M Ty Y =x, (A.5)
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