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1. Introduction

It is well known that the most remarkable regularity
of the -hyperon non-leptonic decays is the Al = 1/2
rule which is experimentally satisfied to a surprising
accuracy. The nonvanishing departures from this ruleare
usually attributed /1/ to the contribution of the Al=3/2
part of the weak Hamiltonian. Moreover, Gavroglu - 2/
has presented recently model dependent indications that
the electromagnetic interaction and CP violating effects
may account for these departures.

Unfortunately, the usual tests for the Al = 1/2 rule in
s decay are based on the determination of the parity vio-
lating (s-wave) and parity-conserving (p-wave) decay
amplitudes from the experimental data using some conven-
tional hypotheses. Such that the decay amplitudes are taken
to be real (CP invariance is assumed and final state inter-
actions are neglected) and their absolute signsare assign-
ed according to a convention (see ref./1/ ) which involves
for the s-wave amplitudes an approximate fit to the

Al = 1/2 rule and Lee-Sugawara relation. In conse-
quence, the departure from the exact A/ = 1/2 rule in
s decay, resulting from this analysis, depend mainly
on these additional assumptions and exclude some of the
very interesting conjectures concerning the origin of these
deviations. Therefore, it is certainly of great interest to
obtain reliable tests of the A1 - 1/2 rule for ¥ decay and
to determine the departures from this rule in a model
independent way.

The purposes of this paper are to investigate in more
detail the experimental consequences implied by a general
triangular relationship (Sect. 2) in order to obtain
(Sect. 3) certain tests of the A7 = 1/2 rulefor X decay
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and to derive (Sect. 4) the supplementary constraints
imposed on the decay experimental data when the decay
amplitudes are taken to be real.

2. Experimental Consequences of Triangular
Relationships

In order to have aunifiedtreatmentof the experimental
consequences resulting from different triangular relation-
ships, such as those derived from the AJ - 1/2 rule for
% decay modes or Lee-Sugawara relations, we start with
the following definitions. Let agy and apy » k=123
be the usual /3/ parity-violating (s-wave) and parity-con-
serving (p-wave) decay amplitudes, respectively, for three
hyperon non-leptonic decays which satisfy the sum rules:
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where ¢, are real numbers.
Let us define

/\(X,Y,Z)=X2+Y2+Z2—2Xy—2xz- 2yz, (2a)

Kij = C?C]? %(1 _é-i. ’51)0101 ’ q,-é] =1,2,3, {:k =(ak:Bk:)’k),
(2b)

K =_%(K12+K23+K13 )5 (2c)

: (1)
and denote by A(o ) ,A(&0) and A £ the following func-
tions

2 2 2
/\(o)zA(clol,czoz,caoa), (2d)

/\(ffo)=/\(c12rflol, c22rf202, c23§303), (2e)

(%) 2 2 9
Ag =ale (1t &)oy, cy(1t €y)o,, ca(lté, )0, ],(20)
where
0k=>|ask ‘!2+ Iapk 12’ (Zg)

*
a o, =2Re (askapk), Bkok=2[m (a:;(a pk)’

and

(2h)
kaak’Bk’yk’ k=1a2’3'

Then, the sum rules (1) alone imply the following set
of equalities:

K (3a)
K=Kp=Kiz=Ky,
LR PPV EY SRVCS) S R SV PRI VL (30)

| 2K+ Faco)- L (é0)|=T-2F 12 [- 2 12 @o)

1 o 1 1 1,® r_p_ 1 1/2
?{2K+-Z/\(U)"z/\({:o)'*’4‘/\é‘ I—[ K"4/\(U)] X

1. &) 172
X[—-Z/\é' ] » (3d)
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L2k + Lace * _
7 12K+ g2 (o) - farga) - LA |=[K—%A(§o)]l/2 x

w[- L3 12 (3e)

4 ¢
and the following set of inequalities
0<- I < min tc2e2(1£&)(14&) 0, o] (42)
Soogte S MR RESIE e G O
2.2 1 Z
% 1 : 2 2
KS——Z)\(O’)S?};?{CI.C]-O’I.O’].}, (4c)

valid for any éx =ax » Bk vk » k =123,

In order to prove the equalities (3a,b,c,d,e) and the
inequalities (4a,b,c ) we define the following bilinear
forms:

«&) &) t&)
M H.

ij =[ i ]* H] ’ (sa)
©) 1., €y & 1,00 )
z, =7[M,.j v MY,z =S T - (5b)
Yij=ag ap—apag; (5¢)
where
&3] . —
Hk = { a_, + apk; a . i‘zapk ;\/Z(ask, apk)}, (5d)

for ¢ =( a,B,y) respectively.
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The bilinear forms z{? are independent of the upper
indices £ since from the definitions (5a,b,d) we have

+@ (- B (B ) )
My + My =My My =Myt My (5¢)

Now, by straightforward calculus we obtain:

lMl(]i{:) ‘2 =(1zx fi)oi(li é-j)oj’ (63.)

lzlgé_) l2= _%[1 _g;g} ]O'io'j +é_i0i§j Uj > (Gb)

‘Z(i?) 12 =-1§-[1 + S’i-fﬁj ] o; 9, (6¢)
9 5>

|Y;; \ =i2[1 "‘fx‘fi Yo 0 . . (6d)

The equalities (3a) are obtained from (6d) and
c1€g ¥1p= ©1c3¥13=C2%3 Ya3 (7a)

which follow directly from the sum rules (1). Next, it is
easy to see that the sum rules (1) alone imply: '

2.2 2 2 2 2
2 H(ReN ;B =N, N 1= A (N el Ngy s g3y ) (7b)

cH o @
for any N; =M; ,Z2;,%Z; and

+ (x) _ 1/2
22 mm,s 1P LA = HI-R - dae)
s aplk- a0 a0
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N(0) =A(0, ,0_, 20, ) A(€0) =M (€0, € oL, 2£,0,), (102)

2 2 (0}, 2 -
(ImZ )] - k-l ([ ] 1/2 2
, - (23]
S : ¢l (7d) Ng ) =AL(1E € oy, (1EE )e s 201 £e)% 1, (10b)
(é-) - N 5 o
c22mz ;17 K—-}Tf\(fa)m%-i[—/\(g)] _ef[ A‘f’]‘”;? K, =301 -&E)o0 s Kig=(] —£Eg)0g0;»i=+,-  (10€)
where (7e) h and
e +) (=) _ _ = 1
Tg= Sl -AT AT ey = signi -8R =M (o) 4 A (Ea)). () K=3( Ry Koo +Ko) (10d)

where the A -function is defined by the relation (2a).

We note of cours The quantities o, , K;; which are presented in table
used the equahtlese (t:;t:;t in derivation of (7c,d,e) we have I, have been calculated uxsmg the experimental data for
N mean lives, branching ratios and the decay asymmetry
condlfzr:msusmg the equalities (7c,d,e,f) and the positivity parameters given in ref. /1/ _ Next, using these results
2 9 (+& ¢ we have estimated X and all the A -functions given in
(Ren; 17 >0, [lmN; 1" >0, N,=M. g 2 2 table II. The quantities kK, (¢£) are calculated according
1j 1j ij
to
we obtain the equaliti 3 — 1 1, 1,2 412
(4a,b,c). qualities (3b,c,d,e) and the inequalities K, (€)= -gA(0)+ ¢ Ln(fo)- Lep (5N TIRA P P
(1)
where [see definition (7f)] ¢4= ¢, = +1, eg--1. These
results should be compared with the values of K since
. the Al = 1/2 rule implies: K, (£) = K for any
3. Tests of A7 = 1/2 Rule for X Decays ¢ = a,f,y. These predictions are derived from (7d) or
. . (7e).
Let us consider the non-leptonic S decay modes Moreover, the Al = 1/2 rule for I decay predicts
St nent s+, ° 5= - that the following test quantities are all equal to zero
* S - TRtT (8) [ see the equalities (3a,b,c,d,e)}:
where the subscript on the hyperon refers to the si =
. . gn of ey L
the decayl_ng pion. The Al = 1/2 rule for the hyperon Ty (ij)=K-K; , i#Jj=+ ,0, (12a)
non-leptonic decays implies the following relation between w9 _ 172 _ 1/2
the 2 decay amplitudes: 72(@: 411_‘ NE ZAg | -[- 4K -No)l ' [4K-A(é0)] (12b)
a (3)-a (3~ 5 + R
s,p ' T4 spl(® )+ V2 as,p(20)=0. 9) _ Ly W 1/2 (=)1/2
. . Ty(€)= [2K+ 3 Mo)- (o) -[-4A¢ [- 4271
The quantities of interest for making tests of the theoreti- (12¢)
cal predictions of Al = 1/2 rule for X decay are ’
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Table I
The experimental values of o. , €.

; and K i , for
the 3 decay modes
T
D a '):
[ .1 RO
a7 modes € o« [ %
! 066
: 0.
2:'_-'. n+X*| 2.5 L 0.016 0,234 -0.97
+ 2.657 [ 0979 a1 a1
zg" p+X° e 0.016 0.1 0.17
Z.—n+X" | 2.730 e ou008 0.158 0.98
K 6.584
Keo | 8-160 ® untts: 16° (seo.mer)=L
K.o | 5.425
Table II 1 1 (D
The experimental values of - %K(O) , TAEo) - A

b

K and Kin () ,€=a,B,y estimated using the defini-

tions (2a) and (10a,b,c,d) and prediction (11).

A\ o v i -LaE
LI e I A | K| K e
o 0.284 0.166 6.745 6.749
$ 0.281 0.163 6.748 6.752 6.756 6.970
P 9.920 4.444 =0.212 6.702
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Table III

The experimental values of the test quantities (12a,b,c,d,e)
for the AI= 1/2 rule in the X decays

Test quantity Test quantity
Té=). 40,072 T¢0) ~0,001
‘[;(n): -1.404 B(—c() ~0,003
'l;(-o); 41,331 LA 40,175
) . =0.074 W ~0,002
L) +0.592 : V ~0.015
—';m ~0,047 1;(0') 40,023
L& ~0.014 1"’” ~0.010
TJ(P) +0.105 ISH -0.023
];m ~0.008 Eff’ +0.024
TM ~0,002 ;(_’) ~0,014
‘ —
Tep)| 0126
() 1/2
1, (+6)= 51 2K+ Lr@) - Lacgo)r 30 i —k- Lo
X[—%J\(i.) ]1,/2 (].Zd)
1 K+ A A(E 1 )\_) I—[I_(-——l)\(‘fo)]l/zx
Ts(iff)=—2—lZK _ZMO)_— ( 0)——— & %
x[- % A 2 (12e)



for any { =q,B,y. We note that 7,(£)=0 are all equivalent Therefore, since the sum rules (13a,b) alone imply that

to Ky (6) =K. the testquantities: T) (i,j) , i 4 j=0"+, - | Ty(&")
The values of all test quantities determined from the T,(6°) T, (% &) , Ts &%) [ obtained from (12a,b

experimental data (table II), are displayed in table III. c,d,e) by the substitution 0-05 , £¢+&4 1 areall equal
Now, from tables II and III, we see that the values of to zero, the best solution for the breaking parameters

all test quantities, except for 7, (+0), 7,(-0) and T, (B) can be obtained optimizing all the absolute values of these

are consistent with the theoretical predictions of the test functions. Here, for the determination of ¢ we have

AT=1/2 rule for I decays. The breaking effects seem to used only the equations implied by 7, (4,0°),i=+,-, which

manifest only in 3¢ decay mode since a significant are equivalent to

departure fromthe AJ = 1/2predictionsisobservedonly

for the test quantities 7, ¢0) and 7, (-0).Therefore, for K+_=K1f0 , =4, -, (16)

the determination of the breaking effects we can choose

a;(E _ )-a Ei) =y2 (1= s)aS(E ;); \/Z_a; (23), (13a) In this way we get two solutions:

Ree, = 0.101, Im € = 0.002, (17a)
- + — + 3 et (13b)
a (7)) ~af3)=v2 (l+e)ay(35) =v2 a (34) |
P _ ' P Ree, = 0.091, Ime, =—0.42. (17b)
as the most economical parametrization for these effects.
Then, using the expressions Then, from (14a,b,c,d) we obtain
=259, o =—0993, B85, =0.110, y’ =-0.031,
og={(1+]e |2 -2y4Ree)q, , (14a) 7ol “o1 Por o1 (18a)
, , 2 ’ _ ’ _ ’ _ ’ __
a000= (l_lf I )aO__ Zﬁolmf, (14b) 002 -—3.%6, a 0= 0610, 602 —0.793, )/02 = 0.019. (18b)
6(;06 =(1-1e |350+ zaolmf, (14c) Now, evaluating the A -functions and all the test quan-
tities (12a,b,c,d,e) and (11) using (18a,b) instead of o, and
ot = (1] !2) IR (144d) 50 in (10a,b) we obtain the results presented in tables
Yo% = (2 Hlel Jyg—eRhee, IV and V. These results enable us to understand that the
solution (17a) is a good candidate for the breaking parame-
(%) _ ter ¢ . However, the solution (17b) can be rejected since
we define A(o”) ,A(E0") , Ag and Kj; K , , it predicts unreasonable CP violating effects in the T de-
d,j=+,-, 0 by (10a,b,c) and ‘the substitutions £(- & = cays.
= (ags Byrvg )» 0920, . Then, for K o Wwe obtain
N 4. Consequences of Additional Constraints on Hyperon
Kj’0= (1 —{:6'6}- )UO’ Oj = Kj() + (15) l Decay Amplitudes

9 5o As we have mentioned in introduction, the traditional

o o 1lel“ (1 +EEy =2y v. )+ 2y, -y ) Ree +2(a By imel. tests of the AT = 1/2 rule (in% decay) and Lee-Sugawara
+0, 0{ l l ( j 0 yj 0 j

! relation are basedon the determination of decay amplitudes
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Table IV _
The values of—%-/\(o’) ,-%—/\(f'a') , K’
and K,;, (¢£’), estimated from (10a,b,c) ang- a 1) w1th the
substitution o, »ooi «f »f 0; = 1,2 (18a,b) respectively

? (o (&) told -
¥ [-44 | -5 | 1 008) | K| K -4Am
T
a) [0.087 0.628 64610 6,672
»
e [0.155 0.468 6,656 6,677 6.684 | 6.967
"' 9.880 4,461 =0.205 6,700
1 |4.485 1.741 3.492 6.594
oy
7" 0.268 0.060 6.625| 6.644] 6.684 | 6.789
P’z 477 2,268 3.417 6.696

from the experimental data using the following additional
hypotheses: Time-invariance is assumed and final state
interactions are neglected, so the decay amplitudes are
taken toberealand 8= 0 . Therefore, itis of great interest
to investigate in more detail the experimental consequences
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Table V
The values of the test quantities: T,(¢”) T, (£7)
T, (+¢°) and T5(+§) calculated from the experlmentai
data and (12a,b,c,d,e) by the substitution 0. - o~ ,
0 "501 using (18a) 0 o

B —
| Td) [ ow0se r.«-«:;[ =000
LU 17| s
L . ) 0. 002
| T | w0z T,0e0) -0-019
T | o0 oAl +0,007
L] ) I
O pew|  om
'cm +0.025 T d‘ﬁ:’ +0, 009
T

of the sum rules (1) when the non-leptonic decay amplitudes
satisfy the constraints:

lmask = Imapk = 0. 19)

For these purposgs , using the definitions (5d) and (5a,b), we
rewrite z(g) , and M(—f) in the explicit form:
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(0) (20a)

*

Z =a=:iasj+apiapj ’

@ (20b)
Z., =a*a +a*a_ |,

if s8I pj pt 'sJ

(20c)

Z(B)zli(a*_ a -—a*a ),

i si “pj pi  sj

W . (20d)
Z, =B T gy

+ <)

w920, (20e)

ij if ij

Now, it is easy to see thatthe constraints (19) alone imply

mz® _o (21a)
if. >
21b)
&) () (
lle.;f:O, ImM ;= =0, £ =a,y>
) (B (0) (B B 21c
Rer?':O, ReMI.jﬁzReZij ,lmM” = ilmZij ( )

for any i,j=1,2,3 . Then, the predictions (7b,q,d,e,f) of
the sum rules (1) imply that (21a,b,c) are equivalent to

Rz_.zlf)\(g), A?:)\(g), E=asBry, (22a)
- 22b)
_ S e, (
K =—4A(§a), Af -Af , €=a ,y
and 2 9 +) N
%)\(Ba):—{ BiciBjc;o,0; 1,  Ag =Ag= (o) (22¢)
16

respectively. We note that the constraints (22¢) are iden-
tically satisfied when 8, =0 are required by (19).

In order to compare the predictions (21a,b,c) with the
available experimental data for X decaYO}ve have esti(xgated
Ren, _ and |[Im N, _ | , N,_= 2 z$

for £=a,B,y using egs. (7d,e) and

+= ’

4
Re Z(i?)=( 2¢, c; ) (czkak —cizai —cjzaj )s (23a)

( -1 2 2
Re Zi?=(2cicj) (ck kak—cizfiai—cjfj a].), (23b)

where the coefficients cpg ,l=+,-,0 are determined
according to the sum rules (9). The values of these quan-
tities, as well as the values of ReN” and [ImN,_ | _cor-
responding to 01 s €01 from (18a), are shown in
table VI. We have chosen N,_ since the effects of the
Al = 1/2 breaking are expected to be small only in these
quadratic forms. However, to estimate these effects we
have calculated |lm¥N,_| using different A7l = 1/2 pre-
dictions (see the last column of table VI).

Therefore, from tables II, IIIl and VI we see that the
deviations from the predictions (21a,b,c) or equivalently
(22a,b,c) are in general higher than the values of Ty3 (&)

T45(+¢) and are up to 509 from T,(+0) and Ty (-0).
Moreover, we observe that these deviations (see the values

of |Imz@ | from table VI) are higher than: |Rez(® | -
=006 *7|Rez{ |=0353 | Re H91-039  and '[Re)tf;)’j

= 0337 . In consequence, if the decay amplitudes are taken

to be real, then the quantities comparable to A = 1/2 break-
ing effects and parity-violating (Rea +) parity-conserving
(Rea,_ ) contributions are neglected.

Next, from table VI, we remark that it is more appro-
priately to consider the constraints:

(0)
Rez, =0 and Mz -0 for £ea,y 24)

+ -

as being in reasonable agreement to experimental data.
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Table VI
The values of Re N, , ReN’_ , |Im N, |,
Hm N/ | calculated from the experimental data and
(18a) using the relations (23a, b) and the last column for
|lmN+_ | (| Im N’ _[)

N‘_ R.N’_ ‘ R‘M;_ lI. 'I.N"_l The relations for‘l‘
0.535 0.532 [‘Kr‘flmju
0.462 [_E_ %Nv,]s
Z: ~0.016 |+0.049 |0+480 ] 0.343 ‘1[“ *ﬁl,"" £+ AH]
:521 0.516 .H[-‘.A:’]”- t}\']‘l

0.467 | 0.539 &[.*1’:]%4. t[-*}‘;’r

oaos |ame | [Regee®
e il
e oo [ | | (Rl

2% (kX
w1 AERRT R
0.090 | 0.167 [E-;;w;]”‘

0.063 | 0.145 ﬂ[.*x;’]a_[_#f;)ltl

z: 2,590 | 2.565

zm ~0.353 +0.225

In this case, from

) =) 2 o 2 Rez®
1 1T - ReZ . =23 c,c.c.o;ReZ:
Tr e ?j;;{icjckfo K SyTad TR e
25)
and (23a, b) it follows that constraints such as (
f) &)

Rez) =0 (o Rez, =0) ad Imz =0
18

+) =)

[ equivalent to A -A £ = 0 , see (1d,e)] imply the
mirror symmetr
&, ==€, . (26)

Therefore, using the sum rules (9) and the constraints
(24) we prove the mirror symmetry

a,=-a_ and v, =v_ (27

which is in remarkable agreement with the experimental
data for 2,  decay modes (see table I).

5. Conclusions

In this paper we have proved (Sect. 2) that general
triangular relationships (1) on the decay amplitudes imply
the equalities (3a,b,c,d,e)in terms of experimental observ-
ables. These predictions are sufficient to obtain certain
tests for these relations when complete and accurate
experimental data for mean lives, branching ratios and
decay asymmetry parameters (a,3,y) areavailable. Then,
numerical results on the test quantities (12a,b,c,d,e),
derived from A7l = 1/2 rule for 2 decay, are presented
in Sect. 3 (see tables II and III). We find that the AT =1/2
breaking effects are of 14.3% from ag p(Z o) and equal
but of oposite sign for both the parity-violating and the
parity-conserving decay amplitudes. Unfortunately, with
the information given in ref. /Nt is impossible to obtain
a consistent treatment of the errors on the test quantities
because of the presence of off-diagonal terms in the error
matrix.

The supplementary contstraints on the experimental
data, when the decay amplitudes are taken to be real, are
given by the relations (22a,b,c) from Sect. 4. Numerical
results for a comparative study of these predictions are
presented in table VI. We have found that it is more
appropriate to consider Re Z( = 0 and lmZ(f) = 0

b



£ =a,y as additional constraints for 3 decayamplitu-
des. In this case we prove that « ,=-a_ and Vi =Y_
This mirror symmetry is in a good agreement with the
experimental data. Therefore, since the departures from
the exact predictions (21a,b,c) or (22a,b,c) are in general
higher than the values of the test quantities T, 4 (¢) and
T45 (£€)  and are up to 50% from 7, (1,0 ) ,i=+,- we
can conclude that the reliable tests and the equations for
the Al = 1/2 breaking parameters are those resulting from
the test quantities (12a,b,d,e). We note of course that more
accurate experiments with better statistics are needed.

_We remark that the results of Sect. 2 and 3 are parti-
cularly. important for testing the Lee-Sugawara re-
lations /4/ or different models suchas vector-meson do-
minance model /*_ which predicts the relation (A -»ny)-
- 2( E->Ay)=v3(Z-py) for both the parity-violating
and the parity-conserving amplitudes.

Finally, we note that our results (Sect. 2) are of great
interest for a systematic study of the breaking effects of
the isospin invariance, SU(3) -symmetry 1/ , quark mo-
dels 78/ , etc., when complete experimental data for
(01/2+0°17/2) reactions are available. If some experi-
mental data are lacking then an investigation of the const-
raints on data and amplitude analysis, resulting from the
triangular relations, can be improvized using the bounds
(see ref. 79,10/ ) derived from the inequalities of form
(4a,b,c) and their ’’integrated’’ analogous /!0/
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