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1. Introduction 

It is well known that the most remarkable regularity 
of the ·hyperon non-leptonic decays is the ;\I = 1/2 
rule which is experimentally satisfied to a surprising 
accuracy. The non vanishing departures from this rule are 
usually attributed /I/ to the contribution of the /\I= 3/2 
part of the weak Hamiltonian. Moreover, Gavroglu 12 1 
has presented recently model dependent indications that 
the electromagnetic interaction and CP violating effects 
may account for these departures. 

Unfortunately, the usual tests for the i\ I ·~ 1/2 rule in 
I decay are based on the determination of the parity vio­

lating (s-wave) and parity-conserving (r-wave) decay 
amplitudes from the experimental data using some conven­
tional hypotheses. Such that the decay amplitudes are taken 
to be real (CP in variance is assumed and final state inter­
actions are neglected) and their absolute signs are assign­
ed according to a convention (see ref. /I/ ) which involves 
for the s -wave amplitudes an approximate fit to the 
tl I 1/2 rule and Lee-Sugawara relation. In conse-

quence, the departure from the exact ;\ 1 == 1/2 rule in 
I decay, resulting from this analysis, depend mainly 
on these additional assumptions and exclude some of the 
very interesting conjectures concerning the origin of these 
deviations. Therefore, it is certainly of great interest to 
obtain reliable tests of the !\ 1 = 1/2 rule for I decay and 
to determine the departures from this rule in a model 
independent way. 

The purposes of this paper are to investigate in more 
detail the experimental consequences implied by a general 
triangular relationship (Sect. 2) in order to obtain 
(Sect. 3) certain tests of the 6.1 = 1/2 rule for ~ decay 
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and to derive (Sect. 4) the supplementary constraints 
imposed on the decay experimental data when the decay 
amplitudes are taken to be real. 

2. Experimental Consequences of Triangular 
Relationships 

In order to have a unified treatment of the experimental 
consequences resulting from different triangular relation­
ships, such as those derived from the SI = 1/2 rule for 
L decay modes or Lee-Sugawara relations, we start with 
the following definitions. Let ask and apk , k = 1,2,3 
be the usual /3/ parity-violating (s -wave) and parity-con­
serving (p-wave) decay amplitudes, respectively, for three 
hyperon non-leptonic decays which satisfy the sum rules: 

3 
! ck(a )k = 0, 

k= I s, P 
(1) 

where c k are real numbers. 
Let us define 

A (x,y, z)= x 2 + y 2 +z 2 - 2xy- 2 xz- 2y~, (2a) 

221 .......... 
K .. = c.c. -n-e.·~.)a.a., 1~1 =1,2,3, ~k =(ak,f3k,yk), 

IJ I J 2 I J I J 

(2b) 

K = ~ ( K I 2 + K 23 + K 13 ) ' (2c) 

(±) 
and denote by ,\ (a ) , ,\ (~a) and ,\ ~ the following func-
tions 

2 2 2 
A(a)=A(clal, c2a2, c3a3), (2d) 
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2 2c 2c 
A (~a)= A(ci ~I al' c2"'2a2, c3s3a3)' (2e) 

(±) 2 2 2 
A~ =A[ci(l±~I)ai, c 2(1±~2 )a2 , c 3 (1±~ 3 )a3 ],(2f) 

where 

ak=lask 1
2

+ lapk ~~ (2g) 

* * apk=2Re (askapk), f3kak=21m (aska pk), 

2 2 
Y.a =Ia I -Ia I• k k sk pk 

and 

~k =ak ,f3k,yk, k = 1,2,3. 
(2h) 

Then, the sum rules (1) alone imply the following set 
of equalities: 

K = KI2 = K 13 = K 23 ' 
(3a) 

1 (+) (-) · - I· 4IA~ -A~ 1=[- 4K -A(a)]i2 [4K-A(~a)]I~2 (3b) 

I2K+ -J-,\raJ- ~Ar~aJ 1 =[-;},\~> ]112 [- .~ ,\(> i 1; (3c) 

1 - 1 1 1 (±) - 1 I 12 
-I 2K +-A (a)-.,.- ,\([a)+ -Ac I= [-K- .,-,\(a)] x 2 1 4 4 ~ 4., 4 

X [ - 1 A(±) I/2 
4 ~ ] (3d) 
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1 - 1 1 1 (+) 1 I / 2 
--12K+ -,-A(a) --A(~a)-...,.....A/: i=LK--A(~a)] x 
2 4 4 4 s 4 

x [- .~A~±) ]I/2 (3e) 

and the following set of inequalities 

(±) 
0<-

4
1At: <min I c.2c~(1±f.)(1 ±~.)a. a.l, 

- s - (ij) 1 J 1 J 1 J 
(4a) 

maxl-c?c~~·~· a.a.l < lA (~a)< K, 
(ij) 1 J 1 1 1 J - 4 -

(4b) 

K < - _l A( a ) < min I c ~ c~ a . a. l , 4 - ( ij) 1 J 1 J (4c) 

valid for any ~k = ak , f3k, Yk, k = 1,2,3. 
In order to prove the equalities (3a,b,c,d,e) and the 

inequalities (4a,b,c ) we define the following bilinear 
forms: 

(±~) (±~) (±t'> 
M .. =[H. ]*H.·, 

1 J 1 J 

l~) = 21 [M ::~>+ ~,l-j>]' i~>= _21 [M:~> -.~./-!>]' 
1] 1] 1] 1] 1] 1] 

Yij = asi apj- apiasj ' 

where 

(±~) 
Hk =I ask ± apk; ask± iapk ;y2(ask' apk)l, 

for ~ = ( a, f3,y) respectively. 
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(5a) 

(5b) 

(5c) 

(5d) 

The bilinear forms z }<y are independent of the upper 
indices ~ since from the definitions (5a,b,d) we have 

M ::a)+ M :-:z> = i:/3>+ MC-:(3> = M ~:y~ M :~y). 
1] 1] 1] 1] 1] 1] 

(5c) 

Now, by straightforward calculus we obtain: 

(±~) 12- (1+ t:.)a. (1 ± ~j)aj' IM .. - - s 1 1 
1] 

(6a) 

.{: ~ ~ 

I z ij"' ) I 2 = t [ 1 -~ i ~ j ) ai a j + ~ i a i ~ j a j ' (6b) 

(O)I2 1[1 + P .• {.]a.a
1
., I z ij = 2 c; 1 . J 1 

(6c) 

I Yi i 
2 1.. [ 1 I = 2 

~ ... 
-~t~j]aiaj. .. (6d) 

The equalities (3a) are obtained from (6d) and 

c I c 2 y 12 = c I c 3 y I3 = c 2c 3 y 23 ' (7a) 

which follow directly from the sum rules (1). Next, it is 
easy to see that the sum rules (1) alone imply: 

ci2ci2[(ReNii )2 -NiiNjj]= tA(c~Nll ,c~N22 'c32N33 ), (7b) 

('± ~) (c) (~) 
for any Nii = M ii , zii 'Zii and 

2 2 {±~) 2 1 (±) - 1 I/2 
c.c. [ImM.. ] =- -

4
At: =I[-K--4 A(a)] ± 

I J I J ':, 

± 11~ (K- l_A (~a) li/2 12 
4 ' 

(7c) 
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2 2 (0).2 - 1 1 (+) 1/2 (-) 1/2 2 
c.c. [ImZ .. J =- K-.,......A(a)="17"""1[-,\ 1:] + E~:[-A~:] I, 

r 1 11 4 1o s s s 

(7d) 

(1:,) 2 - 1 1 (+) 1/2 (-)1/2 2 
clc7[ImZ 1 j ] = K- 4 ,\(l:,a)=lbl[-,\1:, ] -t:~:,[-,\1:,] I, 

where (7e) 

. I \ < +> \ <->I . -TJ~:, = s1gn -1\e +1\e , (e = s1gnl -BK- ,\(a J + ,\ (l:.aJ 1. (7f) 

We note of course that in derivation of (7c,d,e) we have 
used the equalities (3a). 

Now, using the equalities (7c,d,e,f) and the positivity 
conditions: 

2 2 (±I:,) (0) (1:,) 
[ Re N .. ] > 0, [ lmN .. ] > 0, N .. = M .. , Z.. , Z .. 

l] - l] - l] l] l] l] 

we obtain the equalities (3b,c,d,e) and the inequalities 
(4a,b,c). 

3. Tests of ~ 1 = 1/2 Rule for 2 Decays 

Let us consider the non-1eptonic 2 decay modes 

~+ + ~+ 0 
~+-+ n+TT , ~ 0 -+ P+TT , ~--+n+TT-, (8) 

where the subscript on the hyperon refers to the sign of 
the decaying pion. The M = 1/2 rule for the hyperon 
non-leptonic decays implies the following relation between 
the 2 decay amplitudes: 

+ - - + 
a (~ ) -a (~ ) + y2 a (~ oJ = 0. s, p + ·s,p - s,p (9) 

The quantities of interest for making tests of the theoreti­
cal predictions of M = 1/2 rule for 2 decay are 
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,, 

,\(a)=A(a ,a ,2a )•A(I:,a)=A(I;a ,I; a, 2t0 a 0 ), 
+- + ++--

,\~) =A[(l± l:,+)a+, (l±l;_)a_, 2(1±1;0 )a0 ], 

1 -+-+ ........ 
K = -(1-t;·t:,ja a , K. 0 =(1 -1:,.·1;0 )a0 a., ·i=+,-
+- 2 + + - l l l 

and 
- 1 
K = "3( K+- +K+o +K-(J) 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

where the ,\ -function is defined by the relation (2a). 
The quantities a 

1 
, K 1 j which are presented in table 

I, have been calculated using the experimental data for 
mean lives, branching ratios and the decay asymmetry 
parameters given in ref. I 1 I . Next, using these results 
we have estimated K. and all the ,\ -functions given in 
table II. The quantities Kth (e) are calculated according 
to 
- 1 1 1 1 (+) 112 1 (-) 

l '2 
l ·, 

K th (I;)= - S ,\ (a) + SA (I; a) - 2 (I; (- 4 ,\ I; 1 ( - 4 \; 
(11) 

where [see definition (7f)l (a= (Y = +L ((i~-1._ These 
results should be compared with tne values of K since 
the .~ 1 = 1/2 rule implies: Kth (I:,) = K. for any 
I; = a , {3, y. These predictions are derived from (7d) or 
(7e). 

Moreover, the ~I = 1/2 rule for 2 decay predicts 
that the followin~ test quantities are all equal to zero 
( see the equalities (3a,b,c,d,e)1 : 

-
T1 (ij)=K-K 1j, i~ j=+•- ,0, (12a) 

1 (+) H - 1. 12 - 112 
T

2
(1;J=-;riAI; '-At;\-[- 4K-,\(a)1 [4K-A(I;a)1 , (12b) 

- 1 1 1 (+) Jl2 t (-) l/2 
T 3 (e)= 12 K + 4 A( a ) - 4,\ (I; a ) I - [ - 4 A t J (- ,\ e 1 ' - (12c) 
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Table I 
The experimental values of a i , ( i 

the I decay modes 
and K ij , for 

!Deoq aodes .Oi -'! ... IIi ~-I, ·• • ~- l 0.066 + 
L.,.~ n.+x+ 2.,J 

~ o.OJ.6 o.2J4 -o.97 

-I:.:-. p+ .. 2.657 r- 0.979 O.ll.J 0.17 
~ 0.016 

1-----

1::--..n+x- r- 0.069 
2.7JO It o.ooa 0.158 o.9a j 

I<.- 6.:684 
1--·--

1<.,.. 8.160 •> UDits: 108 (seo.•ev)-.1. 

1(_. 5.425 

Table II 
1 1 

(±) 

~he expe_!'imental values of -:!-A (a) , 4 A ((a) , -
4 

A{' 
K and Kth (() , (=a ,{:3, y estimated using the defim-
tions (2a) and (lOa,b,c,d) and prediction (11) . 

• l. ... -.1.>1' _i<~ - -!ltr: ~· J -~j ___ * "'Jr} K - .. " -- - t----=:---- ~·----~---
o( 0.284 0.166 6.745 6.749 

------~·--- -----·- ..__ ___ 
-·--

t 0.281 O.l6J 6.748 6.752 6.756 6.970 
~·--- ~- -, 9.920 4.444 ..0.212 6.702 

10 

Table III 
The experimental values of the test quantities (12a,b,c,d,e) 

for the !!..I = 1/2 rule in the I decays 

Test quantit;r Test quantit;r 

~------------
..0.001 

-o.oo2 

..0.015 

l;lf)l +0.126 

1 - 1 1 1 ( + ) - 1 1/2 
[T

4 
(± ()= 2 1 2K + 4 A (a)- 4 .\((a)+ 4 A i 1-[-K- 4 A (a)] x 

X(-+(±) ) 1; 2 (12d) 

1 - 1 1 1 (+) 
T (±()=-12K+ -A(a)--A((a)-~Ai 

5 2 4 4 4 s 

- 1 1/2 I- [K- "4A((a)] x 

1 (±) 1/2 
x[- 4 A( ] (12e) 
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for _!lDY ( =f!:.,f3,y. We note tb.at 1
3

(()=0 are all equivalent 
to K th ( () = K • 

The values of all test quanti ties determined from the 
experimental data (table II), are displayed in table III. 

Now, from tables II and III, we see that the values of 
all test quantities, except for II ( +0) , 1I (-0) and 12 ({3) 
are consistent with the theoretical predictions of the 
!\I= 1/2 rule for ~ decays. The breaking effects seem to 
manifest only in ~(') decay mode since a significant 
departure from the M = 1/2 predictions is observed only 
for the test quanti ties 1 I (+0) and 12 (-OJ.Therefore, for 
the determination of the breaking effects we can choose 

. - +- +- + 
as(I_)-a/I+)= v20-das(IoJ=v2 a:(Io), (13a) 

+ - + - + (13b) 
ap(I-_) - aJI~) = v2 ( 1 + ( )aP(I0 ) = v 2 a~ (! 0 ) 

as the most economical parametrization for these effects. 
Then, using the expressions 

a 0=(1+\E\ 2 -2y
0

Ref)a
0

, 

a0a 0 = ( 1 -IE !2Ja0- 2[30Imc, 

p~a~ = ( 1-l E I )[30+ 2a01mE, 

y~a~= (l+\E\
2
)y0 -2ReE, 

(14a) 

(14b) 

(14c) 

(14d) 

(±) 
we define A(a') ,A(('a') , A(,' and Kji ,_J( .... , 
•i,j =+,-, 0 by (10a,b,c) and thesubstitutions(0 .... ( 0 ~ 
~(a~, {3~, y~ ), a

0 
.... a~ . Then, for K ;o we obtain 

K J 0 = ( 1 - { 0·( ) a 0 ai = K i 0 + (15) 

2 .... -+ 
+aia

0
l!<\ (1 +(/(0 -2yi y0 )+ 2(yi -yoYReE+2(alo"4:P/Imt"l. 
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l 

Therefore, since the sum rules (13a,b) alone imply that 
the testquantities: 1I ('i,j) • ·i.;, i= 0', +, - , 12((') , 
13 ( (') , 14 (± (') , 15 (± (') ~ obtftined from (12a,b 

c,d,e) by the substitution a->a0 , ( 0 .... ( 0 ] areallequal 
to zero, the best solution for the breaking parameters 
can be obtained optimizing all the absolute values of these 
test functions. Here, for the determination of f we have 
used only the equations implied by 1I (·i,O' )>i=+,-, which 
are equivalent to 

K = K ~ , ·i = + , - , +- tO 

In this way we get two solutions: 

Re E 1 = 0.101 , lm f I = 0.002 , 

Ref 2 = 0.091, 1m E 2 = -0.42. 

Then, from (14a,b,c,d) we obtain 

a 0I = 2.593, a'
01 

= -0.993, [301 = 0.110, y~l 

a ~2 =3. <Yl6, a'02 = -0.610, {3~2 =0.793, y~2 

=-0.031' 

= 0.019. 

(16) 

(17a) 

(17b) 

(18a) 

(18b) 

Now, evaluating the A -functions and all the test quan­
tities (12a,b,c,d,e) and (11) using (18a,b) instead of a0 and 
( 0 in (10a,b) we obtain the results presented in tables 
IV and V. These results enable us to understand that the 
solution (17a) is a good candidate for the breaking parame­
ter f • Howev~r, the solution (17b) can be rejected since 
it predicts unreasonable CP violating effects in the ~ de­
cays. 

4. Consequences of Additional Constraints on Hyperon 
Decay Amplitudes 

As we have mentioned in introduction, the traditional 
tests of the L'\1 = 1/2 rule (in~ decay) and Lee-Sugawara 
relation are based on the determination of decay amplitudes 
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Table IV (±) _ 

The !alues of- t..\(a') ,1-..\(c;-'a') ,-f\7' , K' 
and Kth (e '), estimated from (10a,b,c) and (11) with the 
substitution ao--> a~i , eo ---e~i ,'i = 1,2 (18a,b) respectively 

------..-· 
)' -•X: -lt~ * l.lft} K~CJ'J 

-, 
- tl.Ct"J K 

1-·- t--- ~._...;_ ------1--· 

ac: 0.087 0.628 6.610 6.672 

r-·--
' 
~ 0.155 0.468 6.656 6.677 6.684 6.967 

1-·- ------·-1-· ,. 9.880 4.461 -0.205 6.700 

, 4.485 1.741 J.492 6.594 
".a --1-----

t.' 0.268 0.060 6.625 6.644 6.684 6.789 
1 

1- -r--

~ !4.477 2.268 J.417 6.696 __ ._ _______ 
·-

from the experimental data using the following additional 
hypotheses: Time-invariance is assumed and final state 
interactions are neglected, so the decay amplitudes are 
taken to be real and {3= 0 . Therefore, it is of great interest 
to investigate in more detail the experimental consequences 
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Table V 
The values of the test quantities: T2 (g' J , T

3 
(e 'J , 

T 4 (± e') and T5 (±e'J calculated from the experimental 
data and (12a,b,c,d,e) by the substitution a

0 
.... a;

1 e 0 -+ e ~I Using (18a) 

Teet quantit7 

+0.041 

-0.002 

-0.019 
I 

+0.007 

-0.016 

rsc-.;11 -0.001 

·--t----
Ts(-,;) __ t ____ _ 

lSC-~J 

of the sum rules (1) when the non-leptonic decay amplitudes 
satisfy the constraints: 

lma = lma = 0. 
sk pk (19) 

For these purposes, using the definitions (5d) and (5a,b), we 
rewrite z <.~) , Z ~~ J and M (~e) in the explicit form: 

1} 1} Q 
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z\~)=a*.a .+a*.a.' 
I] Sl S] PI PJ 

(20a) 

z~~) =a* .a . +a*. a . ' 
I] Sl p] PI SJ 

(20b) 

z({3)=·i(a*. a. -a*.a .), 
ij Sl PJ PI SJ 

(20c) 

Z (y)_ ci"' a . -a*. apj , 
- • SJ pi ij Sl 

(20d) 

(.!:: ~) (0) (~) 
M =Z ±Z • 

ij ij ij 
(20e) 

Now, it is easy to see that the constraints (19) alone imply 

(0) 
lmZij =0, 

(~) 
lmZij =0, 

({3) 
Re Z ij =0, 

(21a) 

(~) 
lmM .. =0, ~ =a, y' 

I] 

(21b) 

(±{3) (0) (±{3) ({3) 
ReMii = ReZii , lmM;i = ±lmZ;i 

(21c) 

for any ·i, j = 1, 2, 3 . Then, the predictions (7b,c,d,e,f) of 
the sum rules (1) imply that (21a,b,c) are equivalent to 

- 1 (+) (-) 
K=--::rA(a), A~=A~, ~=a•f3•Y• (22a) 

- 1 (+) (-) 
K ="4A(~a), X~ =A~= 0, ~=a ,y 

(22b) 

and 
1 2 2 4A ({3a)=-l f3;c;f3jcj ai aj I, 

(+) (-) 
Af3 =A f3 =A( a) (22c) 
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respectively. We note that the constraints (22c) are iden­
tically satisfied when f3k = 0 are required by (19). 

In order to compare the predictions (21a,b,c) with the 
available experimental data for I ~ecafofe have esti~ated 
ReN+- and limN+- 1 , N+- = z+- , z+- , 
for ~ = a,f3, y using eqs. (7d,e) and 

( 0) -l Re Z . . = ( 2 c. c . ) 
1] I ] 

2 2 2 ) ( c k a k -cia i - c j a j , (23a) 

(~ -I 2 2 2 
Re Z i j = ( 2 c i c j ) ( c k~ k a k - ci'l; i a i - cj ~j a j), (23b) 

where the coefficients c £ , £ = + ,-, 0 are determined 
according to the sum rules (9). The values of these quan­
tities, as well as the values of ReN;_ and I lmN;_ I . cor­
responding to a ~I , ~~I from (18a), are shown in 
table VI. We have chosen N +- since the effects of the 
!!../ = 1/2 breaking are expected to be small only in these 
quadratic forms. However, to estimate these effects we 
have calculated I lmN +-I using different 11/ = 1/2 pre­
dictions (see the last column of table VI). 

Therefore, from tables II, III and VI we see that the 
deviations from the predictions (21a,b,c) or equivalently 
(22a,b,c) are in general higher than the values of T2 ,3 (~) 

T 4 ,5 (±() and are up to 50% from TI(+O) and T1 (-0). 
Moreover, we observe that these deviations (see the values 
of pmz<o) I from table VI) are higher than: IReZ~0LI = 
= 0.016 +;IRez<y) 1=0.353 , IRe M(+y)l=0 . .36) ,and IReAfY~ +- +- +-

= 0.337 . In consequence, if the decay amplitudes are taken 

to be real, then the quantities comparable to 111 = 1/2 break­
ing effects and parity-violating (Rea s+J parity-conserving 
(ReaP_ ) contributions are neglected. 

Next, from table VI, we remark that it is more appro­
priately to consider the constraints: 

(0) 
ReZ+- = 0 and 1m z <(> = 0 

+- for (=a,y (24) 

as being in reasonable agreement to experimental data. 
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Table VI 
The values of Re N +- , Re N'+- , I Im N+- I , 
limN;__ 1 calculated from the experimental data and 

(18a) using the relations (23a,b) and the last column for 
limN I (I lmN' \J. +- +-

f-·N.- I-R.N.:_ ~~(.J.!~~J!.·~ The relations !or\la~ 
0·"5 0 5J2 [-J4.-,,\~· . ~.___ __ _.... ___ __...... 
o.462 [-R- J.~c.Jj• ..__ .. 

~ -o.m6 .o.o49 ~-:~54) i[-!~It!+i[-.f;i.i.J' 
~521 0.516 il[-!~1'- - [-4-'~.1'1 
0.467 0.5J9 i[-.~]\+ t[--4-~f 

~-~-----~-~---------~---------~--~ 0.105 o.212 [ R- t)(lll)]' 
""+- 2.590 2.565 1---- -----t---·--·-------

..... _ ....... _ 0.062 0.249 il~t~J'- [-t~11 
2.640 [ i( ·~]fi -

0.214 0.229 2.624 ~·--- -

z! 2.626 -- [ 1<.--t~,.,~ 
2.629 2.628 t[-~~]ik+ ftl~]" 

f----f---·-1-----1-- f---- -----------

M 0.090 0.167 l K- -4N~rtl" 
z;: -o.J5J +0.225 -·-----·-·------

0.06) 0.145 il[-t~J'-[-·).~)J'l 

In this case, from 
1 (+) 1 (-) 2 (0) 2 re) 
-:r A c -

7 
A 1: = 2 ! c i c. c ke. a. Re Z . k= 2 ! c c . c a- ReZ 

q <, q <, i I J I k 1 I 1 1 f/= i'1 ki } k i j k' 

and (23a,b) it follows that constraints such as 
(25) 

<o> <e> <e> Re Z.. = 0 ( a- Re Z .. = 0) and ImZ = 0 
l} l} ij 
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. (+) (-) 
[ e_qmvalent to A c -,\ e = 0 
m1rror symmetry 

, see (7d,e)] imply the 

e i =-e 1 • (26) 

Therefore, using the sum rules (9) and the constraints 
(24) we prove the mirror symmetry 

a =-a 
+ - and y+ =-y_ (27) 

which is ip remarkable agreement with the experimental 
data for I± decay modes (see table I). 

5. Conclusions 

In this paper we have proved (Sect. 2) that general 
triangular relationships (1) on the decay amplitudes imply 
the equalities (3a,b,c,d,e) in terms of experimental observ­
ables. These predictions are sufficient to obtain certain 
tests for these relations when complete and accurate 
experimental data for mean lives, branching ratios and 
decay asymmetry parameters (a,f3,y) are available. Then, 
numerical results on the test quantities (12a,b,c,d,e), 
derived from ~I = 1/2 rule for! decay, are presented 
in Sect. 3 (see tables II and III). We find that the~~= 1/2 
breaking effects are of 14.3% from 8 s,p (ItJ and equal 
but of oposite sign for both the parity-violating and the 
parity-conserving decay amplitudes. Unfortunately, with 
the information given in ref. /l/ it is impossible to obtain 
a consistent treatment of the errors on the test quantities 
because of the presence of off-diagonal terms in the error 
matrix. 

The supplementary contstraints on the experimental 
data, when the decay amplitudes are taken to be real, are 
given by the relations (22a,b,c) from Sect. 4. Numerical 
results for a comparative study of these predictions are 
presented in table VI. We have found that it is more 
appropriate to consider Re z !~ = 0 and 1m zl{.> = 0 
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~ =a, y as additional constraints for I decay amplitu­
des. In this case we prove that a+=- a_ and y + =-y _ . 
This mirror symmetry is in a good agreement with the 
experimental data. Therefore, since the departures from 
the exact predictions (21a,b,c) or (22a,b,c) are in general 
higher than the values of the test quantities r

2 3 
(~) and 

T4 5 (± ~) and are up to 50% from r 1 ('i ,0 J ,i:, +,- we 
can conclude that the reliable tests and the equations for 
the ~I = 1/2 breaking parameters are those resulting from 
the test quantities (12a,b,d,e). We note of course that more 
accurate experiments with better statistics are needed. 

, We remark that the results of Sect. 2 and 3 are parti­
cularly. important for testing the Lee-Sugawara re­
lations / 4,5 / or different modelssuchasvector-mesondo­
minance model /6~ which predicts the relation (A .... ny )­
- 2 ( 2 .... Ay) =vi 3 o: .... p y) for both the parity-violating 
and the parity-conserving amplitudes. 

Finally, we note that our results (Sect. 2) are of great 
interest for a systematic study of the breaking effects of 
the isospin invariance, su (3) -symmetry / 7 I , quark mo­
dels /B/ , etc., when complete experimental data for 
(0 l/2 .... 0'1 '/ 2) reactions are available. If some experi­
mental data are lacking then an investigation of the const­
raints on data and amplitude analysis, resulting from the 
triangular relations, can be improvized using the bounds 
(see ref. 19• IO/ ) derived from the inequalities of form 
(4a,b,c) and their "integrated" analogous /10/. 
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