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2. COLOUR DIPOLES IN hd SCATTERING.
CLASSICAL CASE

In a previous letter’%/ we have suggested a new mechanism -
for backward nucleon production off nuclei at high energies,
based on diffractive excitation of colour dipole on- deuteron.

' The contribution of this mechanism is calculated below in
detail for the case of the deuteron and some errors of ref.”5/
are corrected. s

In our calculations we shall use the colour flux tube mo-
del/1~8/, In this model the process is assumed to be adiabatic,
i.e., hard gluon radiation is neglected and the colour field,
being longitudinal, carries only energy but not momentum. The
tension of the tube is found from the hadronic mass spectrum:
K=(2nak)“1 = 1 GeV/fm, where a} is the slope parameter of
Regge trajectories. The effective tension of the colour tube
in hadron-hadron collisions could appreciable differ from this
value, since in these processes colour octets, not triplets fly
away, and besides, the adiabatic approximation may turn to be
quite crude. The second parameter of the model will also be
used: the probability W of the quark-pair production in the co-
lour field of the tube in unit time and per unit length of the
‘tube. This value could be estimated by Schwinger's formula
or from the width of heavy resonances /2:3/, both giving W =
= 2 fm™®. One can also estimate these parameters from the mo-
mentum distribution of protons in the reaction pp-pX. If the
detected proton is in the target fragmentation region, its mo-
mentum is” approximately equal to that acquired by the target
proton under the influence of the tube tension for time inter-
valr from the collision until the first breaking of the tube.
This momentum is P=k7. The average time is determined by the
condition 2 w/2=1. On the other hand, P is connected with
Feynman”s X variable of the leading proton by p=m(l - x%)/2x
Since <x> = 0.5, we have <p> =1 GeV/c and w=2/r2 = 22/p® =2 fii2
Of course, these are only very approximate Values, and they
should be confronted with experiments in many possible ways.

Let”s consider now the interaction of a high energy hadron
with a pair of nucleons as described by the space-time picture
of fig.l. The dashed lines represent trajectories of white par-
ticles; the solid 1lines, those of coloured particles. At
point 1| the incident hadron exchanges colour with the
first nucleon of the deuteron and a colour flux tube is
stretched between them. The coloured nucleon of mass m starts
to accelerate with acceleration x/m. Note, that as the velocity
of the coloured nucleon approaches the velocity of light, the
length of the tube stops to increase, approaching the limit
m/k=1 fm. At point 2 the coloured hadron exchanges its colour
with the second nucleon_and becomes colourless. The nucleon it-
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self starts to accelerate withiacceleration x/m in the direc-
tion opposite to the momentum of the incident hadron. This nuc-
leon reaches its maximal momentum pgy at point 3, where the third
colour exchange occurs, after which the two nucleons fly away
in colourless state.

Generally speaking, the tube could be broken by this time,
and the probability of this is near to unity, if the distance
between the nucleons in the deuteron is large. This possibili-
ty will be considered later; first we discuss the pionless pro-
cess hd-»pghn.

The momentum of the backward proton is easily calculated
from conditions Apy =~AE; =«L for the incident hadron (assu-
ming that its momentum is large p,>»m, «xL ). From these condi-
tions we obtain -

2(E—m)'=KL . : (1)
2m—PL-E m :

where E=(m2 +pi+ P%)l/2 is the energy, and pp is the longi-
tudinal momentum of the backward proton. As is seen from this
expression, the backward momentum p, grows with distance L
between the nucleons and tends to tge kinematic bound, which
is p™aX = 3/4 for O = 180°.

e note that this increase of significant distances with pg
does not contradict the principles of quantum-mechanics. Larger
Py “s are ‘due to production of colour dipoles of a larger': mass,
hence of a larger relative radius. Nevertheless, in section 4
it will be shown that quantum effects may change this relation
between p, and significant distances.

3. THE REACTION hd-pgX ' :

As will be explained below, the contribution of the colour
dipole production to the cross section for the reaction hd »pghn
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can be written in the following form:

do B, B 5. s . dL
om(-Bp) (0)? ¥y )17 DLy -

(2)

B

The crogs section for the colour exchange on the first nuc-
leon is oy ' . The probabilitx of the colour exchange on the se-
cond nucleon is given by ati‘n ¥ (L) |%2dL. (This factor corresponds
to Glauber correction for screening). Note, that the length of
the colour tube is less than the distance between the centers
of the nucleons; hence we took L’=L+Ry in the argument of
the deuteron wave function in (2), where Ry = 0.5 fm is the ra-
dius of the nucleon repulsive core. :

The probability that no quark pair is created in the colour-
electric field of the tube during this process is given in (2)
by a factor

D(L) = exp (-w[dl dt), : ' (3)

where fdfdt is the shaded-region in fig.1. Note, that for L >>m/k
we have D(L) ~ exp(-wLm/x) .

The factor 1/8 stands for the relative probability to have
all three particles in a colourless state after the three co-
lour exchanges. Since the first two colour exchanges have chosen
a deuteron configuration with the nucleons having the same im-
pact parameters, the probability of the third colour exchange
contains no additional small factors of the Glauber correction
type; it gives only the factor Bag,where a s=g28/4ﬂ is the QCD
coupling constant and the numerical coefficient B is estimated
below.

The dependence of the cross section (2) on the transversal
momentum Pr of the backward proton is written in a normalized
Gaussian form with the slope parameter B,

In order to estimate the parameters R and B, let us consider
the Feynman diagram shown in fig.2 corresponding to the given
process, where the colour transfer is due to one gluon ex-
change. Naturally, this diagram does not reflect the effects
of confinement forces. However, it seems reasonable to assume
that these soft forces do not affect the total cross section
of reaction, only change the momentum distribution of particles
involved. Hence the contribution of the diagram in fig.2 to the
cross section hd - hpn can be compared with the integral of (2)
(with the factor D(L) omitted in it), giving the parameters S
and B, '

In the Appendix A we have calculated the contribution of the
three~gluon diagram and found the values B= 13 (GeV/c)"g,
B=0.17. Fig.3 shows the backward proton spectrum in the re-
action pd»pgpn  at 180° calculated from (2). We have used the
Hamada-Jonston wave function of ref./8/,
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1g. 3. Cross section for
pd»pgX. Data points are
taken from ref./10/pyap =
= 8.9 GeV/e; the dashed—-dotted
line denotes the result of
(2), calculated for k =

=1 GeV/fm and w= 2 ™% ;
the thick solid line shows

the contribution of (35} at
an angle 6 = 180°; the thin
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tator mechanism 7/,

£a36,/d3p(mb/ Gev?)
1

llllll
~

| ] ]
400 500 600
P_(MevV/c)

As is seen from fig.3, expression (2) gives a maximum at
pg ~ 500 MeV/c. ;

Note, that one should add the contribution.of other mecha-
nisms to this one: that of the spectator mechanism 7/ domina-
ting for low backward momenta, of isobar mechanism/8” domina-
ting at low energies of the incident hadron, etc.

High energy data are available only for the inclusive pro-
cess pd»py X/9/ Since the process under consideration is diffrac-
tive, the excitation of the incident hadron does not affect the
spectrum of backward protons and can be taken into account by
multiplying (2) by a factor C, = 1+a;‘i‘:r/olgg . For incident pro-
tons C =~ 1.4, for pions C, = 1.6.

The main decay mode of the colour dipole is due to qq pro-—
duction in the field of the tube, i.e., several dipoles of
smaller mass are produced resulting in significantly smaller
backward proton momenta. By our estimates these events do not
strongly affect the spectrum for p_32 500 MeV/c.

One can see from/fig.3 that in the region of small momenta
Pps 400 MeV/c the main contribution is given by the Fermi-

_ motion of nucleons in the deuteron’?’. Experimental results .
for pd»pgX obtained at the incident momentum 8.9 GeV/c are
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also shown here. The comparison with the data shows that the
mechanism suggested gives the right order of magnitude for mo-
menta Pg2 500 MeV/c.

4. QUANTUM-MECHANICAL APPROACH

First we study the corresponding one-dimensional nonrela-
tivistic problem. In section 4.3 the results will be generali-
zed to a realistic case.

4.1, Two-Particle Scattering. Dibaryon Resonances

To begin with, let us consider a system of two particles
both having two states: "white" and "“colour" denoted by vec-

tors (?) and ((1) ), respectively. We write the Hamiltonian as

2
H=-§'—;-+§-%-+HIH2V(XI-12)"'“1‘72"(!1 ~X,) . (4)

Here I =(ég)i is the projection operator to the colour state

of the i ~th particle; V(x)is the confinement potential for
colour particles with a relative distance x. Note that for the
colour string V(x) =«|x|. o, =(2(1))i is the colour changing ope-
rator. The last term in (4) corresponds to colour exchange bet-—
ween the particles. For simplicity we take

v(x, —x,) =ad(x, ~x,). (5)

-

The sum of the first two terms (Hg) acts in two orthogonal
subspaces: i) a system of two noninteracting white particles;

"ii) a system of two colour particles interacting via the po-

tential V(x; - x,). The last term in (4) mixes these subspaces.
We shall consider it perturbatively.

The T -matrix for the scattering
of two white particles, shown in
Fig.4, is

v e
U= PO+ XK+

Fig.4. The elastic scat-
tering amplitude of two  T=vGuv+vGyvGyvGyV+.. (6)
colourless objects.
Here Gg=Gy(E+i0),where & is the
total energy of the two-particle
system, Gg(z) =(2-Hy)~! 1is the resolvent of Hy. Gop is the
sum of two resolvents acting in two orthogonal subspaces:



Go=(1—ﬂ1H2?Gf+H1H2Gc- (7)
Here Gy is the resolvent for the free motion, and

dP |P > <P.n| : - (A
2r  &-P2/2M-E_

|P,n> ° is an eigenstate of H§°"' —p?/2m+p§/2m+ V(x, - %5)
with total momentum P and c.m.s. energy E,; the total mass of
‘the system: M=2m. .

The matrix elements of Gy(& are reduced as

G, (& = Ef

<x;, xz'lG &) lxx' x> = f%ﬂg- expliP(X’- X) ]gc(E; xf x), 9)

. 2
where X=x; - Xp; X=(x;+%)/2 E=6-P/2M; and g, is the
resolvent for the relative motion:

¢, (x) L)

coeaN iO
&JErxsﬂ § E-E, (10)
The corresponding free resolvent is
g, (E; X% %) =— — exp(u/szlx-xl). - (@RD)

\/2uE :

where p=m/2 is the reduced mass.

The series

’ 12

VgV + VE VE VB V... i (12)

cén’ be summed up easily and it gives the following reflection
amplitude

aug,

: (13)
ik—azugc\ :

where k is the momentum of the particles in c.m.s. and

g2 16, ©) I®
g -g(—§#~+100 0) = n KE/2u_E, +10

By inspecting the poles of (13) the two-particle system can be
shown to have one bound state with negative energy and a spect-
rum of "dibaryon'" resonances in the N N, system with energies
E=E, - iF:t/.?, where -

It - a2 6,0 [2/k. (14)

7

The width F:! is due to the possibility to exchange colour and
decay in the NN channel.

In the case of the linear potential V(%) =«|x| the wave func-
tions of the resonances are (see Appendix B):

¢ ® =¢§‘T_,'. Ai(elx] - 22) / Ai(-a]) , ‘ (15)
7

where €= (2ux) 1/3 ; Ai(y)is the Airy function; -a; are the zeros
of Ai’(y).The corresponding energy spectrum is given by

iy (" zyYs, L - (16)

The possibility of qq production in the tube can be taken
into account by introducing an 1mag1nary part of the potentlal
by replacement «-+x-—iw/2, where w is the probability for qq
production introduced in section 2. In this way we obtain for
the total width of the multiparticle decays
in 2w }

r ) E_ . . (17)
E, in (10) should also be replaced by E, ~il} /2. However, the
expression obtained for 8¢ is a good approximation only if

I, <E,;;y ~E,., which is not true for largen values. This
condltlon means that the life-time of the resonance should be
larger than the period of motion on the classical orbit. How-

.ever, for high excitations the tube breaks with a large probab1—v

lity, and the notion of resonance loses sense.
Nevertheless, in the linear potential one can derive an
exact expression for the propagator

g, (E; x, 0) =-§-Ai(e (18)

By using the asymptotlc form of the A1ry function/1%/,one can

show that at high energies this expression tends to the free
propagator (11) with a damping factor for breaking of the string
(cf. Appendix B). Of course, this result is more general and
valid for a large class of potentials,

4.2. Duality of the Scattering Amplitude

The amplitude (12) is dual in the follbwing sense. As it
has been pointed out, at high energies the propagator g, could
be replaced by the free one. This corresponds to the Pomeron
exchange in the simplified model discussed above. On the other
hand, the amplitude at 16w energies has a resonance behaviour
as is clear from expression (10) for &,. 9



It is interesting to note, that duality holds in average
as well. The contribution of dibaryon resonances to the imagi-
nary part of the NN elastic scattering amplitude, averaged
over an energy interval AE is:°
of ¢
S (lEn —l.de T It
(E-E_ YEHTY/2P

By using the asymptotic form of 8,» i.e., the free propagator,

?\/—2—“-=m2(—&,—) a@1% (19)

we obtain: - -
A ,
ImA = a™V == . (20)

Expressions (19) and (20) coincide if the f0110w1ng relation
holds true:

s

¢2 © n( )“ \/——-= : : (21)

This relation is fulfilled approximately for different confine-
ment potentials and has a clear phy51ca1 1nterpretat10n. Using
the quas1—c1assxca1 relations

dE 2E,
BT Il
dn Top - "

where Vg¢0(x) and T are the velocity and the period of motion
on the classical trajectory, one can rewrite (21) in the fol-
lowing form:

dx/V (0
¢:(0) dx:..f.._7l...)_.

This relation means the equality of quantum—mechanical and clas-
sical probabilities to find the particle in the interval dx.

One ‘can hope, that the duality between the Pomeron and di-
baryon resonances remains valid for a more realistic case as
well. Note, that in the meson-nucleon scattering the Pomeron
corresponds to 5-quark resonances with separated colour.

4.3 Scattering of Three Particles

The Hamiltonian (4) is easily generalized to several par-
ticles:

2 ¥
P «
H=§§E—+i§jﬂiﬂjV(x —x)+<2:‘a‘av(x -xj). . (22)

10

Fig.5. The elastic scattering amplitude .

g 5 1 s

of three colourless particles in the S~ 5
lowest order. 2.- \\2;
/’ ~. g

Consider the scattering amplitude for three white particles:
1+2+3->1"4+ 2"+ 3", The Hamiltonian Hp consisting of the
first two terms of (22) does not mix the different orthogonal
subspaces: when all three particles are white, and when,e.g.,
particle 3 is white and free, 1 and 2 are in a colour state
and interact via V(x ;-Xp). The last term in (22) will be con-
sidered again as perturbation.

In the lowest order the scattering amplitude for three par-
ticles is shown in fig.5. This corresponds to the dlagram in
fig.2, considered above.

We have to derive the three-particle resolvent acting in

.the subspace where particles 1 and 2 are coloured while par-—

ticle 3 is white. The matrix elements of this resolvents are
simply expressed by g, defined in (10):

<xixE.ox] IG(12)(E+i0) Ix ,;x x, > i

12 G0 vy 0 1 2’
dpg dP, . i ; '
= f——27- —é-;—exp[ips(x:;—x 2 ~|-1P12 X 12—-X1}g c(E +i0, x12 X 12),

o ! - 2 2 g
where X12=(x1+x2)/2, Xo=% =X, Elz,"E—ps/zm —P12/2M, (M= 2m)

is the energy of the relatlve motion in the system (1-2). (Pi,
Py,Pg are the momenta of partlcles, ‘and P12 py + Pg ). The am—
plitude corresponding to fig.5 is written as

A=<pi,p; P TP Py, Pg> =
o ymy
=<p{,Pa,Pg Iv,(m)G 812)(E+10) v(ls)G(ga)(E+xO)v( )“’1’ ?2, Py>

(12) ’ 3 3
where Vv = V(X = Xp) =a8(x1-—x2); 2mE = 3 p =3 pi".

= ii=1 i=1
After simple calculations one obtains in the coordinate re-
presentation:

A=adf dxexp[xx(p s Py Vg (Epy: 0,x)g (B, x0). (23)

11



From this we get the scattering amplitude for the case when
particle 1 is scattered by a resting "deuteron" - a bound state °
of two white particles 2 and 3:

Ad = <pi’p£9 ps'l Tlpl » d> =
e dxw @ emlix(a - p{)/21g, B .0, )¢, (Byp5 5.0, (24

where p g=q, pp =—q and ¥, (q) is the wave function of the "deute-
ron" in the momentum representation. We make some approximations
in (24). The incident particle is assumed to be very fast:
Py >>4q, Pz A 93 >py- pl Then one has p§ =-p2 = -pg. The last
factor in (24) can be replaced by the asymptotic expression
(B3).

Then one obtains:

g
= - e VB g2
Ad_ 3 f dx\I' x)g (Egs, 0, x) exp(: 7 X5 (25)
10 1

where Ejg=py/m. This expression has a clear physical meaning:
the potential accelerates the particles 2,3 from their original
distance x till O, transferring momenta #pgzto them.

Inserting the sum over resonances (10) into (25) one gets
overlap integrals between the wave functions of the resonances
and the deuteron. It does not mean, of course, that colour se-
parated states are assumed in thlie deuteron. The colour is trans-
ferred by the incident hadron, and the amplitude for creating
a cdolour dipole of size X is proportional to the deuteron wave
function ‘l’ .

The maln difference between expression (25) and the classi-
cal expression (2) is that in (25) there is no one-to-one rela-
tion between the backward momentum py (i.e., energy Ejg ) and
the "prepared" distance x in the deuteron.

We shall investigate the dependence of relevant longitudinal
distances x on pg. If the momentum pgy is large ehough, one can
use the quasi-classical approximation:

7 i ; o T
g, (Egq: 0,x) = —0_ expli fo(Y) dy — —;— fwWiy@®ldt}, (26)
2v q(0) q(x) 0 0
where
® = Vpi- oV . (27)

The second term in the exponent takes into account the possibi-
lity of breaking of the tube described by a complex potential

12

«

V(x) ~-iW(x)/2. The function y(t) is the solution of classical
equation of motion

& _LlyueE;, -vo)
dt ©®

with the boundary condition y(0) =x, The time interval T = T(x)
is given by y(T) =0. For the string with-the potential (x- iw/2)|x|

=T ‘ 1/2 8/2
31 Wole - 2T
0

Let us estimate the integral (25) by the stationary-phase
method

, . ' ~-1/2 1/2

T s - I RCT R
Pr 2vaq®) a( 5

where the value x -L(pB) given by the stationary phase condition

=0 is just the classu:al dlstance correspon-

(28)

x=L(p g’

ding to the expression (1).

The function D(X) in (28) includes exponential factors from
(25) and (26) taking into account breaking of the tube.

D(x) coincides with the classical expression (3) for the
nonrelativistic case.

Further we have

- -1
Mo gy T ey
dx x=L dp, ==L dp_ ap

Inserting this into (28) we finally get

VL \P(LNE i (29)

"1 B : B

.Ad=

This approximation of (25) corresponds to expression (2).

In the quasiclassical approximation the significant distances
grow with Py- However it is obvious from (25) and (26) that this
increase is limited because of rapid decrease of the wave func-
tion ¥4 (x)and the factor Dl%x at large % values. At realistic
values of parameters the integration in (25) is cut off at
X ~k/(Wm) = 122 fm corresponding to p g=~ 0.5 GeV/c. At larger

"values of Pg the quasiclassical approach does not work, and the

physical meaning of expression (25) is as follows. The energy

5 Of the colour dipole comes from work done by colour forces
% 32/(mw)md the kinetic energy of the nucleon "prepared" in the
deuteron. However, if E‘_ becomes too large, the two-nucleon
interpretation of the deuteron wave function loses sense and it

13



s necessary to take into account the quark structure of the
deuteron.

Note that in the spectator mechanism /1 the total backward
momentum should be prepared in the deuteron. Hence the present
mechanism remains valid at much larger values of Eés than the
spectator one.

4.4, Generalization to a Realistic Case

The ‘problem above contains all the main features of the quan-
tum-mechanical approach. However, it has been formulated in one-
dimensions, nonrelativistic case, for the & -type colour ex-
change potential ¥(X) and for a very simplified colour structure.
We generalize the problem to a more realistic case.

We assume that the colour state has 8 components (colour
octet). The colour exchange potential in Hamiltonian (4) 1s
replaced by 1/V8) Sap V), where a,b=1,,..,8.

The wave functions (15) of dibaryon resonances in the § -
state are modified in the following way:

altn . Lty @ 2L o SEG)
V8 ’ Ve

, (30)
47 pi‘(-a))-r

where a, = 2.3; 4.1, 5.5... are the zero’s of the Airy func-
tion: Ai(—an) =0

Note that a more realistic potential can be used instead of -
the potential V() =«r

c if l'(RO

x(r—-Ro) if r> Ro 5

V() = {

Here Ry =0.5 fm is the radius of the repulsive core., The cor-
responding modification of the wave function is very simple:
it is enough to replace r by r -R, in the argument of the Airy
function and take ¢n=0 for r<Ry. The masses of the cotres-
ponding resonances are

My - ea )0 @)

It is seen that already the first dibaryon resonance with se-
patated colour has a large mass of about 3 GeV/c % Their width
l"“ is still given by expression (17), and for the first re-
sonance it is about 200 MeV/c. Note that values for masses and
widths have to be considered as rough estimates only since be-

side other approx1mat10ns the values of x and w are not well
determined.

14 .

- angles 180° and |40° We have used here the value F'fl

Expression (14) giving the decay width to two nucleons is-
replaced by

ref _

n

"’2”“ | fa%v@ ¢, @ exptia, DI (32)

where Q, \/2M -4m?/2 is thegm omentum of outgoing nucleons in
the c.m.8. Tac us estimate I' . We take W) of the form

V() = v(0) exp(~t ¥4B). (33)

The parameters W0) and B can be found from the NN scatteting.
The parameter B turns to be equal to the slope parameter in
the elastic NN scattering, B = 10 (GeV/c)™%, and

\/20““ 2 *
v(@0) = ———— = 0.1 GeV. (34)
47B

We have taken into account the fact that the colour exchange
is vector like and not scalar; this yields a constant cross
section. Then from (32) we obtain for the first resonance I

~ 10 MeV. It”s obvious that I'® <« T''®  Note that Iel has been
calculated much less reliably ‘than ll"' since the decay to two
nucleons is due to the colour exchange within the resonance and
its quark structure is important.

It has also to be noted that the parameters of V() depend
on energy. The estimate (34) corresponds to large energies. At
lower energies besides gluon exchange quark exchanges are also
important, they can increase v 2(0) by a factor =2.

The cross section for dd -»thn acquires the form (cfU(25)):

3 2(o N)2 vre
a%q. B 3 [dz¥, (2) ¢ (2) D2 (2)|%. (35)
dspB Q n M—Mn+ﬂ"n‘/2

Here Q =m{a ~1)/va(2~a) is the relative momentum of two out-

going nucleons in their c.m.s.; M= 2m/ya(2~a) is their effec-
tive mass; a=(E+pL)/m is the light cone variable (we have
neglected the transverse momentum of the outgoing hadron h ).

A combinatorical factor 4 is included, it takes into account
permutation of nucleons.

The results of calculations using formula (35) multiplied
by the factor Cy = 1. 4 (see sec.3) are shown in fig.3 for
= 30 MeV.
Expression (35) has the following scaling property: at a fixed
value of a the cross section does not depend on the backward
angle. It is easy to verify that the spectator mechanism has
the same feature, hence their relative contribution does not
depend on the production angle. 15




One has to note that the real location of structures in back-
ward spectrum may be different from that in fig.4 because the
masses and widths of resonances are calculated only approxima-
tely. 4 :

The normalization of the cross section is also uncertain.
because the parameters of the model are not well known. Never-
theless fig.3 shows that the results of calculations agree in
order of magnitude with experimental data for pg > 550 MeV/c.

As it has already been mentioned, the contribution of the
present mechanism to the cross section of backward proton pro-
duction at large energies does not depend on the incident ener-
gy. However at intermediate energies of about several GeV there
is a specific energy dependence. Really, the amplitude (23)
contains g,(E;, ), the propagator function of the system consis-
ting of the incident hadron and the target nucleon after the
first colour exchange. At high energies we replaced it by free
propagator (26). However, as is shown by (10), at intermediate

energies g (E,,Jhas resonant dependence on E;, =v2mTy; + 4m? ,
where T.;, is the kinetic energy of the incident hadron. With
the first resonance having 3 GeV/c® mass, for the fixed
value of py one expects a maximum in the cross section at Ty '~
= 2.6 GeV. The present mechanism starts to give considerable
contribution only from these incident energies. In the cdse of
the incident pion the resonances of g, (E,;) are 5-quark pion-
nucleon resonances with a separated colour. In our approxima-
tion the excitation spectrum of these resonances is close to
that of dibaryon resonances.

5. ELASTIC pd BACKWARD SCATTERING

In the pionless process pd »p_pn at intermediate energies
the proton and the neutron flying forward can have comparable
momenta and form a deuteron. Hence the mechanism of colour
forces contributes to the pd backward scattering, as is shown
by the diagram in fig.6. The corresponding amplitude is:

pd- dp = >, e na s lien 5 =
A = [ ¥, @Iv(x)g (Bl ; x°, ) v(x-9)g (By: ¥, X) x

b -2 e A - - d - =» =l Rl d (36)
x v(®) ¥ (9 explix’q;, ~ _iz(-%-l’s'2 =D +iy(—é—P12~p1') +ixqldo ,
where

Taking g, as a sum over the resonances, and‘neglecting the
momenta- of the nucleons inside the deuteron, one gets for the
cross section in c.m.s.:

4 el ~of > 2, :
T 25|%, (0)] ; vy Y Fo.- @.D) J‘e ’ (37)
4Q ors 182 o0’ (M-M, +ilL/DM=M> +il,./2)

where
> -
! g s .37 i £ ‘1.’—’.5__._'1—*'4!—‘-
F .. ®.p")= fd%rd°r ¢n(§3 v(r—r')¢n'/(r’)exp[1(-2~p+p’)2 1(-2-{) +p)2 1.

7= Q3
Here M? = 4m?+ 2mT ; Q%= mT,, /2, where T, is the kinetic
i in in
energy of the 1nc13znp proton in the laboratory system; p
and p° are the initial and final momenta of the proton in the
c.m.s. The combinatorical factor 25 comes from different per-
mutations of the nucleons. :

1

d_  Fig.6. The diagram for pd back-

ward elastic scattering.
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Fig.7. The cross section ~— V[ 3

for the reaction pd - dp & £ E

at 6 = 180°; the data e .

points are from vef.’'*. ©nql =

the 8olid line shows the ) o E s
contribution of (37). 5 ' :

37 ¢ 5 E7

The expression *(37) has a clear interpretation (cf.fig.6).
The incident proton hitting the target nucleon forms a diba-
ryon resonance with probability proportional to I'®*°. Then this
resonance scatters backward on the second target nucleon by.

a colour-nucleon—-exchange. The amplitude of the last process

17
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is described by expression (38). It is interesting to noti’that
this scattering process takes place at c.m.s. momentum ~p/2.

Let us estimate (38) for scattering angles near to 180 at
n=n’=1, using in (30) the following approximation for the
Airy function:

Ai(x - a,) = 0.70.x.exp(-0.20x%), %20,
where 8, =2.34 is the first zero of Ai(-x). From (38) we find
2 9p12
’ 4 s/2 o P o T ], (39)
Fpapt s VO Bl Gt i

where A =2:0.29+ /B (cf. (15) and (33)). ; :

To estimate the cross section for elastéc.pd scattering at
180° we neglect the nondiagonal terms 0 40 in (37) and the n
dependence of F  (p,P°). The results ?f calculations with the
parameters fixed above .are compared with the e§per1menta1 d§—
ta’/11/ in fig.7. It should be mentioned that this cross section
contains an additional factor r®v?*0) with respect to ?he cross
section of pd »pyX. At the values of parameters fixed in the
previous section the pd-»dp cross section comes out too small
almost by an order of magnitude. However, these factors are very
uncertain and within their limits one can change the normaliza-
tion, what has been done in fig.7.

As is seen in fig.7, the observed change in the energy de-
pendence of the cross section at T,; = 2.5 GeV may b? connected
with a dibaryon resonance of mass around 3 GeV/c 2. Flgur? 7 §hows
that the contribution of this mechanism at smaller energies 1s
negligible. It would be important to obtain experimental data

at higher energies.

-

6. POLARIZATION EFFECTS

Effects connected with the polarization of the inci@ent par—
ticle in the reaction hd »-ppX are small at high energies énd
decrease as an inverse power of energy. However, the_polarlza—
tion of the backward nucleon could be large in principle. Never-
theless, in the domain where the first dibaryon resonances do-
minate (Pp = 500-600 MeV/c), the polarization of the bac@ward
protons is zero if one ¢an neglect the interference of d}ffere?t
resonances and of the background. If Pg is near to the glnematl—
cal boundary, the polarization of the backward protons 1s dg-
termined by the interference of gluon- and quark—e§c§anges in
the last colour exchange, which takes place at a finite energy.
Hence the polarization would depend on Pp but not on tt.le inci-
dent energy. It is interesting to note that a polarization mear
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to zero can be expected in this case. Actwally, in the elastic
NN scattering the polarization is due to the inserference of
the imaginary non-spin-flip Pomeron amplitude Imf,; with the
real part of the leading Reggeon”s contribution to the spin—flip
amplitude, Reffﬂ. The exchange degeneracy of f~® and p-Ag
leads to their compensation in ImfF while their contributioms
add in Ref®, In the process N,N, > NN considered here the pola-
rization is due to the interference of the real gluon—exchange
non-spin-flip amplitude Ref%, with the imaginary part of the
spin-flip Reggeon amplitude, kn(ff. The later is zero if the
colour Reggeons R¢ are exchange degenerate. If the exchange de-
generacy for colour Reggeons is strongly violated, the backward
protons can have polarization of several per cent 5/ .Note, that
the size of this polarization is equal to the azimuthal asym—
metry of backward protons in the case of polarized deuteron.

i
S

7. DISCUSSION

A high energy hadron, interacting with the deuteron, can
transfer colour from one of the nucleons to another, turning
the deuteron into a colour dipole. The decaying dipole can emit
a nucleon into the backward hemisphere. This mechanism is based
on the popular model of colour strings, which reflects, we hope,
properly the space-time development of hadron-hadron interac- .
tions. The study of hadron-nucleus interactions provides a uni-
que possibility to verify these ideas.

We note, that the kinematics of production and decay of the
colour dipole resembles the mechanism of intermediate produc-
tion of resonance’8/ when this resonance interacts with the se-
cond nucleon in the reaction N*N- NN, and due to the excess
of mass it produces a nucleon in the backward hemisphere. At
small momenta Py, =1.5 GeV/c of the incident proton the pro-
duction of Agg isobar 7812/ gives a large contribution, which
decreases with energy as an inverse power. The contribution of
diffractive excitations does not depend on the incident energy.
However, the cross section of diffractive dissociation, summed
over the final states is suppressed compared to 0, by an order
of magnitude. This smallness enters quadratically into the
cross section pd »p,pn, therefore at high energies the contri-
bution of white intermediate states is negligible with respect
to the coloured ones. ‘<

Another mechanism with nonvanishing contribution at high
energies - the spactator mechanism’?/ - has been mentioned
earlier. This dominates in the pd-»py X cross section in the
soft part of the backward spectrum py < 500 MeV/c. At large
momenta the calculations in this model lose sense because the

usage of the two-nucleon wave function of the deuteron is un-
justified. ; 19



For the same reason the calculations presented above also
have limited domain of validity, extending, however, until
higher momenta, than for the spectator mechanism. A colour
dipole with a large mass can be formed not only by increasing
the prepared momenta of the nucleons within the deuteron but
also by the energy of the colour flux tube.

The comparison with the available experimental data allows
us to conclude only that the contribution of the mechanism pro-
posed here agrees in order of magnitude with the cross section
of reaction pd-»pgX at py 2 500 MeV/c and with the cross sec—
tion of backward elastic pd scattering at Ty, = 2.5 GeV.

A great part of the available experimental data for back-
ward proton production has been obtained on nuclei with A> 2.
Cascading effects and the Fermi-motion of a nucleon pair as
a whole makes the theoretical study of these process difficult.

For that reason is more favourable to study different pro-—
cesses on deuterons. Several examples are listed below.

1. A change in the character of the reaction hd »pgpX with
the increasing py. At py < 500 MeV/c the spectator mechanism
dominates. It is characterized by large multiplicity <nd 4 =<n>,y
and large momentum loss of the leading particle <xp> = 0.5,
where Xpis the Feynman variable. :

If the contribution of intermediate colour dipole dominates
at Py 2 500 MeV/c then - since this process is diffractive - the
leading hadron should have quantum numbers of the incident par-
ticle and xp in the diffractive region. Accordingly, the mean
multiplicity in this process is small. :

By selecting the diffractive part in the reaction hd - pgX,
e.g., hd-»anmh*), one can suppress the background of the spec-
tator mechanism. :

2. Observation of bumps in the momentum spectrum of the back-
ward protons would be a serious argument for the existence of
heavy dibaryon resonances with separated colour. These reso-
nances are analogous to giant nuclear resonances, which are
collective excitations of nuclei.

We would like to stress that the calculation of the mass
spectrum of dibaryon resonances presented above bears an il-
lustrative character only, since no quark structure has been
taken into account, a linear confinement potential has been
used, etc. Values of parameters « and W strongly affect the
masses and widths of the resonances, e.g., at « = 3 GeV/fm
the first resonance gives a peak in the backward spectrum at
Pg = 0.65 GeV/c.

It should be noted that search for such dibaryon resonances
in the NN scattering is difficult due to their small produc-
tion cross section. Indeed, the contribution of dibaryon reso-
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nance into the cross section at E=E, is (41:/1(2)»1”31/1“t 5
“which is only 1Z of o}V . = N

Therefore search for heavy dibaryon resonances in reactions
with energetic backward nucleon production Py 2 500 MeV/c seems
to be favourable with respect to the signal to noise ratio.
Really, at high incident energies the known mechanisms do not
contribute (the spectator contribution can be suppressed by
.selecting the diffractive events)."

Light nuclei can be used as targets if the effective mass
distribution of two protons is studied, one of which flies
backward. ‘

3. The importance of obtaining data on elastic backward
scattering at Ty, > 3 GeV is obvious from fig.6.

The mechanism considered above should be noted to give con-
tribution also to the #d backward elastic scattering. In this
case five—quark intermediate resonances of m, N, type are exci-
ted. The cross section (37) for »d backward scattering has an
addtional factor of 4/25 taking into account fewer permutations
of nucleons and less number of quarks in the pion. A

4. It is important to note that this mechanism does not con-
tribute to the backward proton production on the deuteron if
the incident particle is a lepton. On the contrary, the type
of ‘the incident particle is irrelevant for the spectatorgheggg;ﬂf;//
nism. Therefore a characteristic dependence on P of the rat i
R=0(fd » pgX)/o(hd » p3X) can be expected. At p; < 500 MeV/c,
where the spectator mechanism dominates, R should be constant
(~o0, €N) /o, (0N)), while it should fall down at increasing p,
?ecause the colour excitation mechanism becomes relatively mogz
1mportant. s =

This statement does not apply to heavier nuclei since the

guark kicked out by the lepton can convert a pair of nucleons
into a colour dipole. : '

The authors acknowledge useful discussions with V.B.Belyaev.,
and L.I.Lapidus.

*APPENDIX A

For convenience of notations let us consider the problem
where all three interacting particles A,B and C _are mesons,
consisting of quarks and antiquarks denoted by qld;, q354,qg§6-
Particles B and C form a bound state on which particle A is
scattered. We shall calculate the scattering amplitude in the
eikonal approximation, valid for large relative energies.

-
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' In this approximation we have
—» Ind = ad -2 A
A, Ky, ko) =2573d% ...d ‘s‘*’i,ig(‘ xz)[‘l’ (x1~12)]*eq;{-ikA){l2)x

B - - B -» -» 5 - - C -3 - q - —-v x
2% wi3i4 (‘a"4)[‘l'j413(xs' x )1 e (kg X, )Wisis("s ""e)[q'is-i 6(’5 X )1 *x

ig2 8
> - - - lg - t 0
x exp(~ikXoq) Wy (Kgy-Xgg) expl- —— 2 ag t%@) t4(8) V(x, x,g)l
(A1)
Here x, is the transversal coordinate of a’ th quark (antiquark);
" kp,Ekg and Kg are the transverse momenta of corre5pond1ng par-
ticles after the interaction; i i (xl—x ) 1is the wave func-

tlon of hadron A w1th quark colour indices i; and iy ;'Xaﬂ =
= (x +X )/2 3 ¥, (x —X“) is the "deuteron" wave functionj;
the sum %’ in the exponent is done over quark pa1rs belonging
to different hadrons; matrices t are defined as

. A*(@)  for quarks a = 1,3,5 .
t l(a) =
[ (@]T for antiquarks a= 2,4,6,

A% (a) are the Gell-Mann matrices acting on quark a ; g is the
QCD coupling constant;

2-’
Wx) = |

(2")2 62

An implicit dependence on longitudinal quark momenta in the in-
finite-momentum frame is also ment. ;i

‘In the eikonal approximation the longitudinal momenta of
quarks does not change in the course of interaction.

For colourless hadrons we have:

A - - & 1 A -"
‘Pilig(xl— x2) _—-—\/_5_ ailiz ¥ (x1 %) .

The amplitude shown in fig.2 is given by the (g%)3 terms in
(Al). After summing up over the colour indices and some in-
tegrations the amplitude becomes:

2 2 g - > -
21 [_d_.L .9._.‘_1_2.<I)(q‘, qy) 0l-qy, qg) x

AK,, Bu, ko) = 18sg
a ter fo 27 " em? (@

e 22 D e
x 04, dp 477457437 ¥, ).

22 =

>

Here we use the notatmns ‘11— q, qg— Ep— a; 33-= _ﬁB-{l’-— 5;

DK, qQ) = (K +q) - 1K ~3q), where

> 1 - P .
1@ = a2 [ ¥ (£, o)) ® exp(ikx) . (A3)

0 4na(l —a)

is the one—quark form factor of the hadron. The coefficient
[4ra( - a)] ! appears in the infinite momentum frame; a is the
momentum fraction carried by the quark.

In (A2) we have ¥4q(@) =94 ay) = [d%X¥, (X, ) exp(-iD%) .

In the case of baryons the r.h.s. of (A2) should be multi-
plied by (3/2)%.

The p dependence of the lntegrand in,(A2) is determined main-
ly by ¥ (1?),wh1ch decreases rapidly with increasing p. There-
fore all other factors can be evaluated at p = 0. Then after
integration over the transverse components of p we obtain for

the differential cross section: ; -
do : 5> - daN
o - Wrtalla (K, kB)|2f -|¥ (x=0,a )% . (A4)
a%, a®K, anay (1 -ay) N
Here

3

AL, %) _f——<1>(ql q,) o(~q 1 1) P60y, )@ aTF g 75 (A5)

(2n )
The integration over ayin (A4) gives : 3
da y :
—————— ¥ (x=0,a )% = faL¥, (x=0,0)|% . (46)
4naN(1 -aN)
For k, = 0 (A4) can be written in the form .
10 B
do 2 2
—g:r——'g::—lk e 2 1(x) deH’ L) | (A7)
Kodky "4 u8 ’

where u -is a mass parameter in thé nucleon form factor: f(k) =
= u2/k2+p®); x= kg/uzand

I 2 Fd (x-y?2 plexry 1 1
2 2 pio® ‘ i
(1+x2) o Q1+ (1+2x +2y) |x y | \/(1+'x+y)2 — 4y
Note that I0) = 1, hence :
: ,10 6
_.:.9_1._:.1 =———.§..[dL|‘Pd(L)|2 . (A8)
a’% @KL b, =k =0 L gf
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Numerical integration over Ky in (A7) gives

210 ,g 5
;%‘é..;k =03 faLie, @1> . ‘ Y
A Al u i &

One can define the average value of slope parameter B as

»> do do -1
B-=fd%k ol ) 3 (A10)
Ya%, a%, k,-0

The outg01ng transverse momenta k Al kB and ~(kA+ kB) enter in-
to (A7) in a symmetric way, hence using the relation

2~ .9 9 o -9 2 > - o ‘.-_
fa%k 5d"kg exp[-B (k7 + kg + kg) 18" (k; + Ky + ky) 230 exp(- 2B k D
(Al11)
and the definition (A7) we have
3 ;
B = —2-30 ; (A12)

On the other side, Bo'can be found from the ratio of (A8) and
(A9) using the relation (All):

2o M0 (e b3 (A13)
M 2
7 %, a2k, =k =0 @2, k,=0 u

We determine the values of a_ and p from elastic and total
cross sections of pp scattering with the same parametrization
of the form factor /1%

NN 4
64nma
L ERE 2L,
tot o dt pnt [
where
i -2 -2 4x
I® =0-n [t +22(1-% In——=—]
- (1+x)2

Subst1tut1ng the, values "tot = 40 mb, I:E‘ = 7 mb we obtain

a; = 0.78 and k¥ = 0.62 GeV . From (AlO) we also get the slope
parameter B = 12.8 GeV ™. For the coefficient B in (2) the
comparison gives the value B =0.17.

APPENDIX B
. We present here some formulae for the Green functions in

the linear potential with complex string tension «.
24

For the Hamiltonian

in one dimensions we obtain the Grren function (18). In three
dimensions the Green function is {(for t = 0):
Ailer -
eECD . (er - B/ x)
2ar Aj( ~eE/x)
v, 1/
where € = (2ux )1 ’
For real values of « we obtaln from (18) and (BT1) the norma-

lized wave functions (15) and (30).
One can verify the orthogonality and normalization of these
wave functions using the following relations:

(81)

de Ai(y) Ai(y + ¢) = -(1; Ai’(x) Al(x + €) — %—Ai(x) Ai‘(x+0),
X 2

& (B2)
[ aglAim)]? = - x[Ai® 1%+ LA W1
f .

~which can be proved directly from the differential equation

for the Airy function Ai”(X) = xAi(x).

‘For complex values of «x the corresponding wave functions are
not orthogonal to each other, and the expression (16) is no more .
valid. However (18) and (Bl) remain true, and the propagator
has poles at complex energy values E,=E}-il} /2 = al (2 /20) /3,
At large enerﬁles, where AE <<I‘ one can use the asymptotlc
expression

4

Ail~-z) = g 18y 18 sm( B = +41 —-1)
and obtain
&E; x,0) ~ -i-p—exp(lplx] L _2_x2 Limk), (B3)

where p=v 2E.

The expression (B3) shows that ? is given by the free pro-
pagator with the damping factor D!"2(x) introduced in. section 3,
whu:h forbids the breaking of the string during propagation:

(x) exp(~Im« { dxdt) .
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