CO0OUEBHNA

A DOBEAHNEHHOTD

HHCTHTYTA

9N - ARBPHBIX

IS HCCABAOBANMA

N AYGH
E2-84-783

J.Hokejsi

ABSORPTIVE PART
OF THE VVA TRIANGLE GRAPH:
A COLLECTION OF FORMULAE

1984




1. INTRODUCTION

Let us consider the Fourier transform of a correlation func-
tion of three fermionic currents 5

1Ty, (k,p) = [atx dty o' (XFPY) <OIT(V, (Y, () Aa(O)[ 0>, %))
where Vﬁ and Au denote vector and axial currents resp.*:
V©0=d@y,y@. A@-$@y 5@, (2)

For convenience we suppress any internal-symmetry indices (which
might eventually label the currents) since these are irrele~
vant for the subsequent discussion. In the one-loop approxima-
tion (i.e., using the free fields in (1), (2)) one gets formally

Tauv(k'p)=ra#v(klp)+rayu(pvk)0 (3)
where‘

r : (k,.p)=["d4r Te ( 1 y 1 % 1 Yy (4)
Ty T (2n)t f-¥-m'* f-m f+p-m 2°5

The expressions (3), (4) represent the contribution of the
familiar VVA triangle graph, which has been discussed in nume-
rous papers in connection with the famous axial anomaly /1-%/,

Let us first summarize several well-known facts concerning
(3), (4) (see, e.g., ref.”* ): The definition of the integral
in (4) requires special care; its contribution is finite (even
without any explicit regularization) after the symmetric in-
tegrations, but ambiguous with respect to the shifts of the
integration variables owing to the superficial linear divergen-
ce which pérsists in (4) even after performing the trace. In
order to satisfy the usual vector Ward identities (gauge inva-
riance)

* Throughout the paper we employ the metric guv=’diag(+_7-)
and adopt the conventions = ypylygya"hxzs,'“+l' !
: L L2 S 23!1?7
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KPT,,, (k,P) =P’ gy (kp)= 0.y (5)
one has to make a shift r-r+(2+8)k+B8p (with B being an
arbitrary constant) in (4) and then integrate symmetrically
around the origin. Another possibility would be to regularize
the integral (4) from the very beginning in a gauge-invariant
way (e.g., 3 la Pauli-Villars) and then let the cut-off go to
infinity. If (5) holds, then the axial Ward identity picks up
an anomalous term

1 .9
Tauv(k’p)-2mTuv(k'p)+'§—;2"uvp0k | (6)

where q=k+p and the Tﬁv(k.p)(corresponding to the '"normal
term”" which vanishes for m-+0) is given by the formulae comple-
tely analogous to (3), (4) with y, replaced by the unit matrix.
The integral representing T,,(k,p)is convergent.

The amplitude (3) satisfying (5) has been first calculated
by Rosenberg /5/ who parametrized T ,(k,p) in terms of inva-
riant amplitudes ("formfactors") and represented these in
the form of the integrals over Feynman parameters (cf.
also /28/ ). Dolgov and Zakharov’®, in an attempt to elucidate
the origin of the axial anomaly, have calculated explicitly
the imaginary ("absorptive") part of a formfactor for k% =p?=0
m4£0 and shown that in the limit m » O this is nonzero, pro-
portional to 5(q2) (see also ref.’7/ ). Nonvanishing of such
an absorptive part in the massless limit is in turn related to
the existence of the axial anomaly via a dispersion relation.
The absorptive part of the VVA trlangle diagram has been recon-
sidered later by Fr1shman et al.’% in connection with a formal
proof of the so—called 't Hooft anomaly condition’/® via dis-
persion relations (cf. also 710,11/ ), In ref./8/ the absorptlve
part of a partlcular formfactor has been given explicitly for
m=_ 0O, k -p < 0. .

In the present paper we extend and generalize the earller
results /8:8/ by presenting the formulae for the absorptive part
of the amplitude (3), (4) for m £ O and k2 -p < 0. There are
essentlally two independent formfactors descrlblng the
(if (5) is imposed as well) and we calculate the 1mag1nary
parts of both of them explicitly. The limit m= 0, k2=p2= 0
is also considered. The properties of the (pseudo) tensor basis
employed for the decomposition of Thnv(k,p)are discussed in
a rather pedantic way, in view of an ambiguity in the definiti-
on of the formfactors encountered in the current literature
(cf. /2,8,6-8,10,12/) , -

The paper is organized as follows: In Sec.2 the definition
of the relevant invariant amplitudes is discussed. In Sec. 3

2 : ) v i

apv(k:P)

o

we present the general formulae for the absorptive parts of

the invariant amplitudes for m# 0, k?=p® < 0. In Sec.4 the
limiting cases kX®=p2 = 0 and/or m=0 are considered. We
compare our results with those following from’% ; the compari-
son with 788/ g straightforward. Section 5 contains a summary
of the main results and some concludfng remarks.

2. INVARIANT AMPLITUDES

. We will summarize here the relevant formulae concerning the
general tensor structure of the amplitude (1) (or (3) in par-
ticular). For the purpose of later references, our discussion
will be somewhat more detailed than is usual in the standard
literature (cf., e.g., /2-5:12/) e restrict ourselves to
the external momenta k,p such that

k¥ =p?; (7)
for definiteness, we shall therefore refer only to k® hereaf-
ter.

The amplitude (1) is a 3rd rank Loremtz pseudotensor, sym
metric under the interchange (k,p) and (p,v).Further, one may

impose the vector Ward identity (5). The Thﬂv(k,p)nmy be then
written as

4
Tow(kp)= 2 F@E)TH, D), (A
where
1 2)
T,,(u),,(k P)=¢€,, 0K fng, T,f,“,(k p)= (¢ M,op,,— av po u)k"p (.9)

txf ol

and the. invariant amplitudes Fi(qz.k )(occasionally called form-—
factors) satisfy

kp 4 v T(4) (k p)=€

Ta,“,(k p)=(e k apy ap.vp

Sappov” aupzrp )

Fy =Fp +(F -k Fy , < (10)

as a consequence of (5). However, the four (pseudo)tensors

in (9) are linearly dependent /2,8,5,12/ as the followlng iden-
tity holds
1 3 4
T g (.8) + T (kD) T,,‘,L(k.p)«» 1T k,p)=0. (an

To prove (ll) one has to employ the identity_(cf.’s'Ig/)

g:\a‘uvpo'- =~ Buafavpo By qf Appo ™ gpa Ap.va +BoafApuvp ™= =0. (12)



From (9) and (12) one obtains

2 3
T, (6,0) + T, (k,0) = (8,06 poa - Baty poa YO H + K17 )

22 e — £ p a=
(gp/\‘p.‘vdl gcn\‘uvpa* ga)\‘uvpo)qkk P

=T (kD) - (DTS, (kD) - g, (BFKP - K%0P),

and taking into account (7) we arrive at (i1).

Thus, in view of (10) and (11), only two of the formfactors
appearing on the r.h.s. of (8) are truly independent. In other
words, the definition of the invariant amplitudes according
to (8) through (10) is ambiguous owing to (11) and one must im—
pose a subsidiary condition to fix them uniquely. Let us mention
several conventions encountered in the current literature.

JU Foilowing Bell and Jackiw /3/ (see also/12/ ) one may
. require

F2 =—F3. (]3)

It is easy to find the relation of any other set of the form-
factors to those constrained by (13): Let the F; , i=1,...,4 in
(8) be arbitrary; using (11), the decomposition (8) may be re-
cast as :

¢V) @) m(®) 1 2. (4
Tapv =(F‘l ‘F+ )Tauv ""F..Tauv‘F_ Ta“y+(F4 ‘? 9 l"‘+‘ )Tc(z;zv ’ (14)
where -
F, =1 (F tR). ' (15)

II. In (8) one may express T(l) in terms of T(z),'l‘(s) and T®
using (11), setting thus effectively (see, e.g.,”2:5:8/),
- F, =0, (16)

III. For k? = 0 a particularly convenient option would be to
eliminate T® with the help of (11), setting thus

Fy =0; an
according to (10) then also

This is apparently the convention used in ref.’®; note that
in/8/ the F, has been neglected as well, assuming tacitly that
T;“V is to be contracted with the polarization vectors of phy-

4

sical photons. Let us also remark that in ref.’?” (see p. 224

_therein) the tensors T® T® and T® are discarded from

the very beginning, since they do not in general satisfy (5)
individually; however, in view of the preceding discussion
such an approach is evidently implausible.

Let us also consider the 2nd rank pseudotensor Tuv(k.p)ap-
pearing in.the axial Ward identity (6). This is described by
means of a single formfacter G,namely

T, (x.p)=G(a%, k%) ¢, 50 K707 ; (19)

(6) may be then recast as

O°Fy - 2F, = 20G + —. - (20)
2n

Let us remind that 2mG-+0 for m-0O.

If one considers the formfactors pertaining to the amplitude
(3), (4) as functions of a complex variable ¢® at a fixed
value of k%, these gossess a cut along the real axis, beginning
at @ =4m® (see /87 ). The corresponding discontinuity of
a formfactor F; or the amplitude Ty,,resp., divided by 2i, will
be called its absorptive (imaginaryy part and denoted A; or
Aaﬂuresp. According to the preceding discussion we may write

: 2.0 9. 1l)
Aguy(k.p)= E—.1A‘(q ik ,m) Ty, (k,p) (21)

with Tﬁ?v yi=1,...,4 given by (9) * .The Aa“j,may be calculated
with the help of the well-known Cutkosky rules 713/ Using such

a method, one deals only with truly convergent integrals; thus,
the integration variables may be shifted with impunity and the
vector Ward identity (cf. (10)) ;

Ay =kPAy+ (5 0% - k%) Ay, - : (22)

should be satisfied automatically. For the same reason, the
"normal" axial Ward identity must hold for the absorptive parts,
i.e. (cf. ref.’8/ ) : :
q®A, -2A, - 2mB, ‘ (23)

where B is the absorptive part of the formfactor G (see (19)).
Needless to say, (23) may be trivially recovered from (20), as
the anomalous term in (20) is real.

*For convenience, the A8 will be frequently called simply
invariant amplitudes (corresponding to Ag,, ).



3. GENERAL FORMULAE FOR m# 0, k2 <0

The direct evaluation of the quantity 2iA,,,(k,p) by means
of the Cutkosky rules’!® amounts to the following replacement
in (3), (4): ‘

(f-k-m) oo 2ni(f-Kkem)B(r-k)P -m®)0 (k5 -1,),

-1 7 2 2 (24)
(F+p-m)™ »-2ri(f+p+m)8(r+p)” -m )O(py+1y).

Note that for calculational convenience it is then also helpful
to shift the integration variables, e.g., so that r-r-p. Fur-
ther, as we have already mentioned in the preceding section,
(24) 1mp11es that Aa,“,(k p) can be nonzero only if 92 =(k+p)2>
> 4p? >0 One may therefore choose to work in the rest fra-
me of Q, whlch greatly facilitates the calculation (cf. aad
Thus, the external momenta may be conveniently parametrized as

kK =(2,0,0,b), pka (aOO By  (25)

Then in turn
32=.§.q2, b2=-:—q2—k2. (26)

Substituting (25) into the general decomposition (21), and
using (9), one finds that among the components of Aguy there
are essentially three independent combinations of the invariant
amplitudes A; (we do not impose (22) beforehand and rather

verify it by an explicit calculation, see below), e. g., A012 :
Ajog and A g :

Agp =-42%bA, +2bA, , (27a)
Ajop =28%b(Ap + Ag)-2bA, ~ (27b)
Ajgs =-2ab% (A, ~Ag), . (27¢)

A straightforward calculation based on the Cutkosky rules (24)

yields the following result for the components on the 1.h.s.
of (27):

s

1 g a® ;b2 — 2apR
A012=_-z_"-0(a2-m2)m 1 Bt

: (28a)
a a% 4+ b? + 2abR

2 2 2 12y a2 2 2 2 .2
Ay =L 6 (a2 _n?)[ 3=t g, (320X a2- 0%y am' o° 4u? 2abR
: 5w 2 4ab® a® +b® +2abR
(28b)

Aqgg =-%A102 ' (28¢)

where we have denoted

Rl 2 (29)

a® \

From (27), (28) it is easy to see that the vector Ward identity
(22) is satisfied. Indeedé us1ng (28c), one gets 1mmed1ate1y
from (27b), (27c) A, = (a° - b® ) Ay +(a® +b° )Ag and this coinci-
des with (22) owing to {(26). It 'can be shown that (27a), (28a)
constitute the axial Ward identity (23).

As for the invariant amplitudes, we shall give them expli-
citly, e.g., for the convention II (i.e., Ay= 0, cf. (16));
the passage to any other convention mentioned in Sec.2 may be
easily accomplished with the help of the identity (11). For
A =0 we obtaxn from (26), (27), (28) (we omit the ubiquitous
factor ‘0 (42— 4m?)hereafter)

1 q2—2k2[ @ +2k%

(am .2 .2 ¢ R
A ke 4 = +
2 (q 'k m ) on q2 (q2_4k2)2
~ (30a)
22 2 2 q® - ;
+ /(qz k*+2m Y s )lnS]
\/q2(q2 4k2)5,2 qT - k
2 &
AID 2.2 n? dob =R 5L Ry
3 (q m") 2n rqB (q2-4k2)2
(30b)
2x2(q%_ 2x?) a2 x® . gl
+ 2k2+m 2“2)2 )InS],
T (o) -
v a2 (q® - 4x?) :
where (cf. (26), (29))
2 2. 2 a2 _ 4x2 o
Eayl A% 4 O -0 Ry a® (q® -4k°) (31)

q® -2+ Ry QE(92- 4kF)



4. LIMITING CASES k% = 0 AND/OR m= 0

For k®=0 and m< O the formulae (30) take the simple form

it A
A( )( 2)= 1" __%_. . (32&)
A(D g2 2 m — -
q Y = (Q®)F 1+R "’ o
! 1 i -
. Agll)(qz;m2)=_§_q2A(3 )(qzzmz).; : (32c)

For a comparison with the result of ref./® we must transform

(32) with the help of the identity (11!) to comply with the con-
vention III (cf. (17), (18)/. We thus obtain

() , o 1 1-R .
A H 2)=~ In ’
Q) , o, o 1 R 2m? 1-R
A (9%;m* ) = ( + In ), (33b)
. 2r o @ (q%p 1+R
1 '
AU (q2;02) = AV (@) 0. (33¢)

Now (33a) coincides with the result presented in’®/ (up to an
inessential overall factor and an obyious misprint occurring
in the formula (14) of ref.’%).

As a pedagogical exercise we may also compare our results
with those following (after some manipulations) from ref. /%/.:
To this end, we have to make a transformation to the convention
I according to (14), (15):

(1, 2. 2 1 2m® , 1-R

A 3 = - R -~ In 5

1 (a%;m?) = q2 & ol ) (34a)
im g2 q? 1R

AU ;m?) - q2 A(”(q2 su?) . (34¢)

In ref.”% an 1ntegra1 representation of the formfactors
F, (9%;m®xorresponding to (3), (4), (8) and (13) has been gi-
ven, which for our purposes may be written as

8

i 1-x
LT & 1 e ; .
1(€%:m%) 3 l{dx o{ YW[“—Y (x-y)*1, . (35a)

1 1-x
Fg(qum2)=-rs(q2;m2>=~4-1—§- [ ax r dy—-g——-—~(1-x—yxx+y).
£ 0 (35b)
1-x

2. 2 17 1
F, (¢*;m®) =~ [fdx [ dy [(a-2)(m2-q2xy) +
" 4n® g 0 m2-q2xy

(35¢)
1 ¢ . :
+5 (A -x-y)x+ )],

In conformity with ref.’/#/, we have taken here into account the
afore mentioned ambiguity with respect to a general shift
r>r+(a+B)k+Bp in the integral (4). Notice that the vec-
tor Ward identity (10) is satisfied just for e =2. The formula
(35c) demonstrates once again that the ambiguity (the dependen-
ce on a ) resides solely in the real part of F,. Performing now -
in (35) the:-integration over ¥, one gets for the 1mag1nary parts
(dropping the manifestly real terms):

Im F, (a®;n?) =

2 202
- ! -———-Im[’dxlx 10 m-qx(2x+1)]1n[1_ix(1—x)],

2 2 2y -8 2
4n* q 0 (q2) X m (36a)

Im Fy (q%;m®) = - Im Fy (¢%;m®) =

2 2 2
Ll 1 e “’2 ol fx(x-D 0y 9 L 4y,
4’1’2 q? 0 q )2 x3 ln2 (36b)

Im Fy (a%:m®) = 2 q2Fy (e ;n?). : (36c)

Obviously, the loganthm in (36) may develop a nonzero imaginary
part only if 92> 4mPand xc(x_, x_.) where X, =(11R)/2,Such an
imaginary part may be then set equal to -rn accordlng to the rule
m2>m?_-i0, The integration over x in (36) is then elementary
and one arrives at the desired result

ImF (e%;n®)=A(a®%0®), ImF,(Q%:n®)=4,(0%n?),

where Ay, A; are given by (34a), (34b).



from the absorptive parts Ai(qzhobviously, it is most conveni-
ent to consider only such sets (44), for which the integrals
in the unsubtracted dispersion relations

© A.(t)
Fi(un)(qz) - _l_~_ r t ) de » i = 1'.-.‘04 (45)
L4 4m2 t-q
/6,8/

converge (cf. ). This is the case, e.g., for the conven-
tions II and III (see (30), (32)), while the convention I cer-
tainly does not meet such a requirement (see (34b), (34c) or
(39) resp.). Note that similarly inconvenient would be the op-
tion Ay=0. On the basis of (10), (22), and (45) it is then
easy to realize that in the technical sense one may encounter
just two alternatives, when defining the formfactors F}(qg)by
means of the dispersion relations: First, Ag=0 (the conven-
tion III); then Fi(““)(qz) given by (45) satisfy automatically
both (10) and (20), and 'the anomalous term in (20) is due to
(38) (cf./s/ ). Second, Agq £0; then one has to modify the
definition of the Fy in order to satisfy (10), namely (see
also /8 ) ' .

Fo (89 =F ()L 1 Ag(v)a.
2q o2
m
The anomalous term in (20) is in such a case due to (37b) or

(43) resp. More precisely, the result

& F, (a®:x% ,n®) - 2F, (¢%:k%, n®) — L
: m-0 2n

2

may be reproduced (at least for k® <0 considered ‘in this paper)
with the help of the dispersion relations (45), (46) in the
following way (adopting for definiteness the convention II):
For an arbitrary k®<0 one uses (40a) and (cf. (40c), (41),
(43))

1

('A t; 2,0 dt = —r .,
{ g(tik ) 2n

For k2=0 one has to employ (37c) and the fact that (cf. (32b),
(37b)) : .

[ A (t;0,m2)dt=—1 ,
4m? 2 2’
for any m#£0,

The peculiar behaviour of the relevant absorptive parts
Ai(qg;kg,mg)for k?=m2=0 (see (37b), (38), (43)) has been

12

established so far by means of particular limiting procedures,
namely k2.0 followed by m » O and vice versa. It would be
interesting to use the formulae (30b), (31) for an investiga-—
tion of more general limiting procedures, e.g., m -+ 0, k> 0O
simultaneously. This point will be discussed elsewhere.
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U.Topxeimu E2-84~-783
AGcop6THBHAaA 4acTb TpeyroinbHoOit auarpamdel Tumna VVA: cBogka
dopMyn

IIpegcraBiseTca CBoAKa HEKOTOpwxX GopMyn misa a6cop6THBHOMH
YaCTH H3BECTHOIt TpeyrojpHO#l OHarpaMme C OBYMA BEKTODHBMH H OO~
HOH axcualibHOM BepmMHOH,. [eTanpHo o6GCyxmaioTCs cBolficTBa IICeBHO—
TeH30pHoro 6asuca, HCIONL3YeMOro OJii ONpenelyIeHHs COOTBEeTCTBYIo—
HMX HHBAPDHUAHTHHX aMIUIMTY[,U HEONHOSHAYHOCTH TAaKOro onpepe-
eHusa. CymecTByT OBe HesSaBHCHMble MHBADHAHTHHIE AMINIHTYObl, H Mbl
npencrasiseM o6e B sBHOM Bupe. TaxuM o6pasoM, Mb o6o6Gmaem
pPes3ylbTaTh IIpexXHHX paboT APYrHX aBTOPOB 1o 3Toi TeMe, O6cyxma-—
IOTCA TaKXe NpefesbHbe CydyaH HylieBo¥ Macchl depMHOHA HIM CBeTO—
nono6HLIX BHEMHWX HMIYJIBCOB, PaccMOTpPeH Takxe BOIMpPOC O BOC—
CTAHOBJIEHMH aKCHANIbHOM AaHOMAJIMH NMPH NOMOMHM OUCHEePCHOHHBIX COOT—
HOmEeHHH .

Pa6Gora sBbmosiHenHa B JlaGopaTopHu TeopeTHueckoil dusuxu OUAH.

Coobmenne O06benHHEHHOro HHCTHTYTa AfNePHNX HccllenosaHHit. Ry6ua 1984

Hofejsi J. ‘ ‘ E2-84-783
Absorptive Part of the VVA:Triangle Graph: A Collection
of Formulae

A set of formulae is-presented for the absorptive part of
-the familiar VVA triangle graph. Properties of the pseudoten-
sor basis used for the definition of the corresponding inva-
riant amplitudes and the ambiguity of such a definition are
discussed in detail, There are essentially two independent
invariant amplitudes and we give both of them explicitly. We
thereby extend and generalize results of the previous treat-
ments dealing with the subject. The limiting cases of vanishing
fermion mass and/or some of the external momenta being light-
like are briefy discussed, as well as the recovering of the
axial anomaly via d1sper81on relations.

The investigation has been performed at the Laboratory
of Theoret1cal Physxcs, JINR,
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