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I, INTRODUCTION

Gluon and quark condensates — i.e., non-vanishing vacuum
expectation values of local, composite gluon and quark opera-—
tors — are important parameters of non-perturbative QCD. Within
the framework of QCD sum rules’! they play the role of phenome-
nological numbers. Ultimately, one should be able to calculate
them from a theory of the vacuum structure. So far models based
on instanton solutions yield only rough estimates’/2:3/,

Recently, Nikolaev and Radyushkin/4’ have computed the coef-
ficients of higher dimensional operator contributions to the
charmonium sum rules usually written down for moments, i.e.,
derivatives of the vacuum polarization function. Having esti-
mated the <0|G4|0>nmtrix elements employing instanton gas
models as well as the factorization hypothesis <0|G%|0> -
<0]G?|0><0|G?|0> they found these contributions to be very
large and possibly to spoil the convergence of the operator
expansion. In Ref.”’% it has been argued that the convergence
can be considerably improved if the moments are defined at
a momentum Q% £0 instead of @® =0. However, the estimates were
based on the factorization hypothesis as well. The latter has
been criticized’/® with 1/N, arguments. On the dther hand naive
factorization is violated due to operator mixing with respect
to renormalization’/7?8/, Thus, independent <G!> estimates are
highly desirable.

Monte—-Carlo simulations in lattice QCD proved to be a power-—
ful instrumentarium for calculating non-perturbative numbers
such as the string tension, hadron and glueball masses, decon-
finement temperature, etc. They provided a strong indication
for chiral symmetry breaking’? as well as for non-vanishing
vacuum expectation values of ggcm,ﬂzv(x)/IO/ and
gtabe g2 gb G%#(%) 1 The numerical value for <g®a? G2 (x)>
in the gU(Bf case 1%/ turned out to be very close to the'pheno-
menological one.

In this paper we present first numerical estimates of the
<G8> and <G%>matrix elements from Monte-Carlo simulations in
pure SU(3) Yang-Mills theory. Our method is analogous to the
one applied in Refs.”/10.11/  yhich has been shown/13/ to yield
values for the ratio <g2G2>/0® (o denoting the string tension)
independent of the subtraction scheme and of the lattice size.
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2. OUTLINE OF THE METHOD

The condensation parameter corresponding to an operator O(x)
is usually understood as the finite non-perturbative remainder
after having subtracted all perturbative (divergent) diagrams.
Therefore let us formally denote it by <0|:0(x):|0> according
to a "nmormal product’ prescription with respect to the pertur-
bative vacuum state. Then, one imagines distinct large-scale
fluctuations in the vacuum (instantons, etc.) due to which
<0]|:0(x):]/0>£0, In the following we consider the local com-
posite operators of the gluon field G”V(X)==Gzy(x)Ta (T* the
generators of SU(3) in the fundamental representation)

b
S(x) = gdfabe GZVG,,,,G;“ .

01(x)=(g2G3%, Gh, (x)®, Og(x)=(g*1**° G} G}, (x)°,
05(x)=(g%d*™ G}, Gy, (x))°, 0e

0, (x)=(g2G}, G, (xN%, 0,(x)=(g%1*" G}, G}, (x)?,

0g(x)=(82a*" G5, G5, (x))?,
£2b¢  dabe ropresent the antisymmetric and symmetric structure
constants of SU(3). Summation over colour and Lorentz indices
is understood. The operators O;, ..., Oy represent a complete
set of D=8 scalar operators.

The renormalization properties of 8, Oy, ...,04 have been
studied in detail in Refs.’/7%/,. In pure SU(3) gauge theory the
six operators Oy, ..., Op have been shown to mix with each
other under renormalization.

Renormalization-invariant combinations are at the lowest
order

z

S(x)=g ° B8(x), y =-6N,=-18, (2a)
2y. 2y

Qix)eeg ® Q(x)=p "

X Cy04(x), i=1,2,..,6." (2b)
e

The anomalous dimensions Y, and the matrix C are quoted in the
appendix (b=_l§§0,1n fact, we shall determine first the inva-

riant condensate matrix elements <O0|:Z:[0> , <0]:Q;:|0> from
lattice data. Then, by inverting (2b) the quantities <0|:0,:|0>
will be estimated at different subtraction scales.
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On a hyper—cubic 4D lattice with lattice spacing 38 let us
define operators tending to expressions (1) in the naive conti-
nuum limit.

L

] (n)=2tr((UW-1)[UVp—l,UPM—I])=2tr(UW[U,,p.Upu]). (3a)
2 1, 2

0} (n)=4(r (Uy, ~1)(U,,, -1, G5 (n)=4(tx (Uy, ~1)(U,, - 1)) |

O5(n)=-2u([U,, -1,U,, -11%), O5(n)=-2u([U, 1,0, -11%),

Og(m)=2te((Uy, =1,U,,, -119) - £ 0{(m), o

0ftn) = 2u(1Up, - 1.0, 1) - Z 0} (n) .

Pl ] 3
Uy = el? 8ocw/(xn)+0(“) c SU(3) represents the Wilson loop

attached to a given lattice site X =n around an elementary pla-
quette in the p-v plane. It can be easily realized that for
as0, st.abs n(a”). ol .a%0, «0€a?Y (-1 72 6 The
choice of lattice operators (3) is not unique. Different lattice
operators deviate from each other in the continuum limit by

the higher order contributions O(a’) and O(a?),respectively.

In order to check the consistency of our calculations we employ
also the modified operators 3

O (n) = 4(tr((Uy, - 1(U, -1,
Ok()- sedU, LUE U (3¢)

A Aq,
Og (n) = 2u(1U,, -1,U;, -1 )-2.0y,

having the same continuum limit as 0%(i=1,3,5). Furthermore,
we introduce the lattice analogue of expression (2b)

Q}‘(n)sélcijolj‘(n). ()

which can be modified replacing O% by 0% (i=1,3,5), respective-
ly.

In the following we want to compute the vacuum expectation
values <XL> - fidul e~S XL/f{du} (it xL gLk, ol , numerically
by Monte-Carlo simulations on a finite lattice. dilson's action

Lol 3 u('-U"V(n» is assumed. The behaviour of
g2 n;péy

<XY> as functions of the bare coupling g, can be analytically



determined at gy << 1, applying usual perturbation theory as
well as at g; > 1 using the high temperature expansion. In the
weak coupling regime we have

L L :
B> = 3 bl <O =S A g2, o1 6. (5)
n=2 3".. n=2p3.uo

Applying the Feynman rules according to Ref/14 we obtained for
the lowest order coefficients in the SU(N;) case

2

I
b, = 72N (NE- T 2 e
2 c( c 1)( 5 64 L91ay
a12=(N%—1)((4812+9)N§+4812+3)'

agp =(NG-1)((961° +6)NG+36), ago=(NZ_1)Ng .6,
3,5 =(Ng - 1N (-961% +30), a52“T:c—(N e-1)(N5-4)(961° 4 12),,

Bap= -—tql-g(N%-l)(Ngf-4)(9612+42) i

’;\)'l‘((l+ )Q(Q*A)

w d4p w d4q 1]
- o)t L @e)t (PP (Q8%)(Kk*)

)Nv—h

(uévxépépwuhout summation), p ~e'Pu g 5 k =-p ..q

2

(pp*)— 2 p p* s A numerical computation y1e1ds for a 4% lat-

tice 1 '“0 107, = 0.00148. Thus we have for SU(3) by, = 14.6,
3-51725 716., agy —799 » 3gp = 144, aygp= 694., a5 =175., ago =
The leading terms of the high temperature expansions have
been determined as well in order to check our Monte-Carlo com-

puter programme. There is no need to quote them here.

The renormalization-invariant gluon condensation parameters
;hould be determined in the intermediate coupling range (go _<_1)
rom

*Obviously, there are some misprints in the corresponding
formula for by in Ref./11/,

4

a®gy P <0]::|0>-<8t>-<8hs (6a)
2y,
b . L L
g, 7 <0]iQ,:|0>=<Q; >-<Qy> (6b)

where we assumed the contributions 0(a’) and O(a®), respectively,
to be negligibly small. In the continuum limit the lattice spa-
cing has to satisfy the renormalization group behaviour

B,
e RZ
ol (L)% ey —loy.r1e0(ed), Q)
AL Bosgg Bo 8o

where By and B, are the one- and two-loop coefficients of the
B -function. The scale constant A is usually related to the
string tension o. For definiteness we use here the estimate

A = (0.008+0.001) ‘rllsl Vo = 420 MeV. Recent calculations for
large lattices’!6 point out to larger values of Ap/+/& leaving
the given number intact at least as a lower bound.

Eqs. (6,7) indicate an exponential, non—gerturbatlve signal
to be "seen” in the Monte-Carlo data for <S> and <Q >= 2‘,Ci <0J >
if the condensate values are sufficiently large.In practlce we
fit the condensate values in units of A; together with a few
analytlcally unknown higher perturbative coefficients of

L
<8t > ert, 204 <Ql>pem,respect1ve1y.

3. RESULTS

The SU(3) vacuum expectation values of the operators st 0L
and 0L have been calculated with the Monte-Carlo heatbath proce-
dure 1Won a 4* lattice with periodic boundary conditions. Ran-
dom upgrading of the lattice links has been applied in order to
minimize correlations between subsequent iterations. (Per defini-
tion one iteration updates each link in the average twice).

The expectation values w.r. to averages over all lattice si-
tes showed up only small statistical fluctuations. Thus, we li-
mited the number of iterations typically to 70 per g; value.

Our numerical results are presented in Figs. 1-5 and in Table 1.
The error estimates in the Monte-~Carlo data are usual statistical
ones taking correlations between subsequent iterations into ac-
count.

In Fig.1 the <8L> data have been plotted together w1th the
fitted curve. For comparison the perturbative tail <sL >pert. is
indicated with a dashed line. Given the fixed coefficient by two
further coefficients had to be fitted in order to achieve an
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number of
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Fig.1. Monte-Carlo data for <S“>and fitted curves
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effective description of the tail and an excellent x? value per
degree of freedom (= number of data points - number of fitted
parameters). Analogously to the SU(2) case’!l we observe

a clear non-perturbative signal. As expected within Euclidean
Yang—Mllls theory <0]iZ:|0> turns out to be negative.

The <0 >data have been linearly combined according to eq.(4)
with all poss1b1e replacements <OL> +<BL>,i=1, 3, 5. For each
possible <Q%>comb1nat10n the condensate values <0[iQi:|0>
together with the corresponding perturbative tails have been
fitted. With the same notation as in Fig.l the Figs. 2-5 show



the results for those combinations which provide the best fits
with respect to the y® value. The other combinations produce
large condensate values differing from the quoted ones (cf.
Table 1) by less than one order of magnitude and lead to worse
x® values. As for the D= 6 gluon condensate <0|:Z:|0> we

find non-vanishing values of the D = 8 condensation parameters
<0|iQ;:|/0>. The errors quoted for them have been estimated by
the standard CERN library MINUIT procedure minimizing the X’ va-
lue and therefore correspond to the statistical errors of the
Monte—-Carlo data, omly. Due to the poor knowledge of the per-
turbative tails our condensate values should contain yet syste-
matic errors, which are very difficult to estimate.

It should be mentioned that we also tried to fit the data
without the nom—perturbative contribution, i.e., by a pure
polynomial including one or two more perturbative coefficients.
Then in the scaling region (0.9 <1/g < 1) the fits became defi-
nitely worse.

Finally, we determine non—invariant D = 8 gluon condensation
parameters by

2y.
__:_L
<0]:0,:]0>=% C;; g(n) <0]:9 :|0>
)

at subtraction scales p relevant for phenomenological QCD sum
rule investigations in the charmonium case (see Ref,’4 ). We

g% (2m,)
use the standard value a,(2mc)= =0,2 with m =1.26 GeV
d 477
an ¢,(F¢)
as(ﬂ-)= ’
lva,(p) Ll Yog 2
8 Fﬁ 577 "0

The results are presented in Table 2. For comparison we also

quote the numbers found with the factorization hypothesis
<G4> <G2 2/18.&/

We used <0 uu-|0> 00120eV =(9,1 +6 0) 10 A and

denote §= <0|g’ PVC#V |0>. At the given scales the lattice
results are typically by 4 orders of magnitude larger than one
would expect from simple factorization. Even if a suppression
of systematic errors mentioned before could change the lattice
extimates by one order of magnitude (and presumably change the
erroneous sign of <0|:0,:]|0>), the D = 8 condensation parameters
would be surprisingly 1arger.

The inclusion of dynamical quark degrees of freedom should
not reduce the walmes in such a drastic manner that factoriza-
tion becomes nearly satisfied.
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However, there might be a further source of an overestimation
of the condensate values*. In accordance with Refs./1%11/ ¢the
leading non-perturbative contributions in expressions (6) have
been read off from the classical (local) limits (1) of the ope-
rators (3). On the other hand the operators (3) themselves are
non—-local ones. Generally, they should be represented by ope-
rator expansions the coefficients of which containing all higher
order perturbative corrections, as well. The latter could give
rise to lower dimensional contributions (of the order a%<g®.2GG>
and a6<g2-g3rGGG>) which have been omitted in Eqs.6 together
with the higher dimensional, classical ones. We hope to come
back to this point in the future.
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APPENDIX

The operator mixing under renormalization was studied’® for
the D=8 scalar operators given in the basis (SU(3) case)

2 = 2
Ry =(g2G%,Q0) Re = (8 Gy, Gy )

b

b 2 a 2
Rg E(ggG:‘VG“V) Ry E(gzcuycuy)

2 2 tabec qb Fzc &
Rss(ggd‘ch“l’Vsz) Rg =(g~d* CGWG:V) :

6;,, =%‘f;wpo G;a being the dual gluon field strength tensor.

They mix as follows Ry(u")=R;(u)+ g2(u)-L-}j3M,j R;(u)

.2
with L=—1 _ 10g ¥ _ Arid
16172 pu?

*One of the authors (M.M-P.) thanks J.Kripfganz for giving
this argument.
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30 -42 139 -89 37 =47

~42 30 ~89 139 =47 37

w. 1] -60 84 -482 118 -26 46
" 12| 84 -60 118 -482 46 -26
90 -126 201 =5] . =171 9

-126 90 -51 201 9 -171

By diagonalizing this matrix we find the renormalization-inva-
riant combinations {}; and the anomalous dimensions y;

2V o
Q. b s AR
i=§ i R

y, = -0.6134, =12.40, -31.82, 4.823, -20.84, ~42.98,
“clf4hs 5eas s03zh L 0.3 0
0.038 0.038 0.097 0687 1 i
0.218 D2is a3 Ay

o {650 —1.650 0471 0470 1 -i .
-0.162 0162 =0.139 0139 . 1
0.560 -0.560. -1.813 £813 1 .

For our purposes we have to reexpress the operators R; in terms
of the basis (1b). This can be done by consequent use of iden-
tities for the structure constants f2P¢, d2P¢ and for ‘uvpa"The
result is R; =3 B”Oj 5

}

0 0 0 1 0 3
0 2 4 0o -12 0
0 1 0 0 0 0
-4 1 0 1 0 3
B=
0 2 o o} -1
3 3
8 0 i 0 4 2
3 3

Thus, matrix C in eq. (2b) is given by C=A.B,
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BeluHCIIeHHEe TIIIOHHBIX KOHAEHCATOB PasMEpHOCTell mecTh W BOCeMb
B pemeTouHoM KX

8Me'ronou Moure~Kapso BhMHCIEHH rili0OHHBIE KOHIEHCATH THNA
<G®> u <Gi>s KXII Ha pemeTke B IIPHG/IDKEHHH OTCYTCTBHS BHUD-—
TYAJIbHBIX KBAPK—AaHTHKBAapKOBHX nap. HalimeHHble 3HaUeHHMA »OJIA KOH—

neucawqf <G4>gxasunamT Ha CHIIbHOE HapymeHHe THIIoTesH dakTopusa—|
mun <G*>~<G2>%,

Patora BmmonHena B JlaBopaTopHH BEMHCJMTENIBHOH TEXHUKH
M aBToMaTHsauuu OUAH.

Coobmenne O6benHHEHHOTO MHCTHTYTa ANEPHWX HccllenoBaHui. [lyGra 1984
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