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I. INTRODUCTION 

The behaviour of the pion electromagnetic form factor f or 
asymptotically large momentum transfers Q can Ье calculated 
perturbatively within the QC~/ I- 4/ . The calculations are based 
on the factorization theorem for the contributions related to 
long- and short-distance dynamics, i.e., on the representa­
tion/ 1,4,5-8/ 

1 , 1 
2 2 2 2 2 

fdxJdyф*(y, 11 )E(Q , 11, g(/1); х , у)ф(х, 11 ).11 + 0(1/Q ) } F' (Q2) 
17 

о о ( 1. 1) 

that is valid in th~ 0 2 ~region ~here all possiЬle power correc­
tions (i.e., higher twists and soft contributions) are suffi­
ciently small. Information about the long-distance dynamics is 
accumulated in eq.(l.l) Ьу the wave functions ф( х, 11 2), ф ( у, 11 2 ) 

corresponding t Q the probability amplitude for transition of 
the pion into its constituent quarks carryi~g in the infinite 
momentum frAme the fractions х and (1- х) (or у and (1 - у ) ) of the 

1 pion longitudinal rnornentum. Another function I::(Q 2, 11 2, g; .х , у) 
present in eq.(l.l) is the amplitude of the short-di s tance par­
ton subprocess qq y* ~ q'q'. The representation (1.1) has the 
structure sirnilar to that of the operator expansion for the 
virtual Compton arnplit~de, and in this connection E(Q 2, 11

2,g ;x,y) 
is often referred to a s the coefficient J unction. .~ 

The lowest order approximation for the coeffic j._ent function 

с~. _1_ E (O\,Q2 2 g · х у) = 2ттаs(/1) · - - · Q2 · ~ , /1 • • • · N г х у (1. 2) 

\ 

is well-known starting frorn the pioniering papers / 1- 41. In а pa-
per Ьу F.M.Dittes and one of the authors (A.R.) the one-loop 
contribution to Е was also calculated 191. An analogous calcy-

1 lation was performed independently also Ьу R.D.Field et al. 10 . 
However ; the dia.r,ram Ьу diagram comparison of the results pre- .., 
sented in refs / 1 and IIO/ (this is possiЬle because both calcu""· 
lations were perforrned in the Гeynrnan gauge) revealed that the(. 
d i ffer for some contributions. After а thorouвh study of ref.1 О/ 
we estaЬlished, however, . that even the •total result for · 
E ( I)(Q2, 112, g; х, у) 'givep. in ref/ 10L does not ,coincide with the 
sum of diagram Ьу di agram contributions presented in the same 
paper 1 IO/ ,probaЬly , · due to er rors in surnming the contributions 
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or mis·prints. In ref.f 11 1,on the basis of the results of ref.f9/ 
the coefficient function Е (Q 2, Jl-2, g; х, у) was calculated in the 
framework of the mass singularity factorization approach pro­
posed in ref, I 12~ The use of this scheme guarantees the univer­
sality of the wave functions ф(х, Jl-2) (i.e., their process-in­
dependence), hence, the use of this scheme is, in principle, 
more preferaЬle than the scheme of ref.l9/ although the nume­
rical difference between the results of refs,/9/ andl 111is not 
very significant. 

Our aim in the present ,, paper is а ch~ck of the results of 
refs.l9- ll/ based . on the calculation of E(l)(Q2, 11 2, g ; х, у) in 
the light-like axial gauge* Р~ All = О where Р is the momentчm 
of the initial pion (we recall that in the lowest twist appro­
ximation considered here Р 2 is treated as zero). It should 
Ье noted that our choice n11 = Р11 essentially simplifies the 
calculations compared to the more standard choice (used, e.g., 
in ref. /1 3/) that requires (nP) 1 О, (nP') 1 О. The necessi ty of 
such a - check is motivated Ьу the recently completed calcula­
tions of the two-loop corrections v< 2> (х, у, g) to the· evolution 
kernels for the pion wave function /l3-l 6/. This opens the possi­
bility of calculating the complete (renorminvariant) ' о(а ) 
correction to the pion form ' factor asymptotics, provided,~first, 
that one is sure that the results for E(l) and ,v< 2> are cor­
rect (within the factorization schemes chosen) and, second, 
that one is аЬlе to calculate E(l) and v< 2> within the same 
scheme, only in that case the final result for the о~ ) cor­
rection to F~(Q2) ' would Ье reliaЬle, self-consistent ~nd re­
norminvariant. Furthermore, in the present paper we describe 
also an algorithm f9r the one-loop calculations that can prove 
to Ье useful in other calculatuons of а similar type. ~ 

The paper is organized in the following way. In Section II 
we discuss the general structure of the one-loop Feynman diag­
rams responsiЬle for the radiative corrections to the coeffi­
cient function E(Q2, 11 2, g; х, у). In Section III we describe the 
algorithm of the one-loop calculations, present the results of 
our calculations for separate diagrams and compare our final 
result with those obtained earlier in refs. / 9-ll/. In the con­
cluding Section we summarize the paper. 

*After completing our computation~ we were informed Ьу 
И.Sarmadi that he also calculated the one-loop corrections 

' to E(Q 2, 11 2, g; х, у) 131 using а light-like axial gauge nllA =0 
(n2 =- 0) different from ours and the factorization scheme 11 /12/ 
used

1
in ref.f 11< His r~sult / 13/ coincides with that given in 

ref. 11 1 
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II. GENERAL STRUCТURE OF ТНЕ ONE-LOOP CONTRIBUTIONS 

Contributions of the one-loop diagrams of massless QCD con­
tain usually ultra-violet divergences •as well as .mass singu­
larities (i .• e., infra-red and collinear divergence~). The most 
convenient regularization procedure for .all these divergences 
in QCD is .. the dimensional one / 17/ which converts the above-men­
tioned divergences into poles 1/ Е where с = (d - 4)/ 2 and d is 
the ' space-time dimension. The poles 1/ c1R due to the infrared 
divergences should cancel for colou~less states after summing 
the contributions of all one-loop diagrams 1 !Н! / , tl1e ultra-violet 
poles 1/cuv are removed Ьу tl1e R -opera.tion (see, е. g. / 181), 
while the poles corresponding to the collinear divergences are 
factorized out into the wave function renormalization constants 
Ьу the factori~ation procedure 15-8/. __ 

In all the papers / 9-16/ mentioned above the MS -conventi­
on / 191 for the dimensional regularization was used, i.e., the ~ ' 
change 

4 __!!__L d 4 - 2с -

( 

4 -> ------ k ( у&-
2 ") , (2 ") 4- 2 с 4 "е J с 

" 
( /1 2) ( (2. 1) 

for the virtual raomentum ~ntegration ( У .,; is Euler: s con~tant). 
However, there are some d1fferences between refs. / IJ-II / 1n de­
tails of the choice of the R -operation and of the factoriza­
tion procedure. In paricular, the factorization scheme used in 
refs ,/5/ and / 9,10 / can Ье conventionally referred to as an Е -
oriented, since the recipe for calculating the coefficient func­
tion Е within t~is scheme can Ье formulated in а more simple 
way than that of the wave function (or what is the same, of the 
evolution kernel V ). Namely, to get Е in this scheme one 
should c.alculate for massless quarks the on-mass-shell transi­
tion amplitude qqy *-. q 'q' regularized according to the recipe 
(2.1) and subtract the poles 1/ r relat~d to the collinear di­
vergences. However, the recipes for removing the ultra-violet 
(UV) poles . ~sed in refs, / 9 / and 110 1 differ from each other. In 
part~cular, in ref, / 9 / for this purpose the standard R~opera-

• 18 1 d h . . 1 ь . f h tlon· · was use t at 1s equ1va ent to а su tract1on о t е 

poles 1/с from (he contributions of the divergent subgraphs, 
while in ref,/IO the UV poles are removed just like the colli­
near ones, i.e., Ьу subtracting the pole part of the whole di­
agram contribution. On the one-loop level these recipes are 
identical only if the contribution of the corresponding tree 
(i.e., Born) diagram does not depend on с. However, in the prob­
lem considered the contribution of the simplest diagram (fig.l) 
is proportional to (1 - с) because 

ylly у = - 2(1 - ()у . 
v /1 v 

(2.2) 
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Fig.l. Lowest order diagrams. 
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Fig. 2. Diagram containing 
а self-energy divergent sub­
graph. 

Hence, if the contribution of the divergent subgraph in а one­
loop diagram (e o g. ~ in that one due to the self-energy inser­
tion into the gluonic propagator, fig.2) equals (А/с+ В), then 
the renormalized contribution to Е calculated according to 
the first recipe / 9 / would Ье equal to ВЕ(О) • while the one cal­
culated Ьу the second t:ecipe/ 107 would Ье equal to (В - А)Е (0). 
It is obvious that one should prefer the first recipe rather 
than the . second one; because the latter is equivalent to 
а rather exotic version of the R. -operation with the counter­
terms depending on the physical process under consideration. 
On the otl1er hand, the factorization scheme proposed in ref .f12/ 
and incorporated in refs. / 11 • 131 may Ье referred to as а V-ori­
ented one, because the recipe of the evolution kernel calcula- ~ 

tion in this scheme is primary (and more simple) whi le the re­
cipe of the coeffi cient f unction construction is secondary 
(and more compl'icated). The UV-poles are subtracted in refs( 11,13/ 
in the same way as in ref. 191, i.e., Ьу using the standard ver­
sion of the R -operation. 

It is to Ье noted here that in the light-like axial gauges 
(nf!Ail = О, n2 ", n nll = О) used i n refs.JII-13,15/ and in the pre­
sent paper., the.fe appear new singularities of the ln(n; -type 
t hat manifest themselves as new 1 /с poles in dimensionally 
regularized integrals. These singularities may Ье divided into 
two types. The first type corresponds to new UV-divergences, 
and to remove them one should introduce n -dependent counter-

- л .Jl -1 / 12 / terms of фn(nfl(f) ф -type ·.These divergences, naturally, 
should · cancel for physical quantities like F"(Q2 ). However, 
for auxiliary objects like Е and ф such а cancellation in 
general may not occur. Moreover, in the proЬlem under conside­
ration the new UV-poles in Е are canceЬ.led Ьу those in ф То 
simplify the factorization scheme it was proposed in ref. / 121 
to subtract the new UV-pol e s just like the "old" ones. We also 
adhere to this recipe. However, these exist also the second 
type of the rn(n 2) singularities. They are related to the 
о(х) -parts of the contributions like 

... /, 

1 

(.1.) = .1.- о(х) f 9L 
х + х о z 

J~'~ .~: 

(2 : 3) 

which provide а regularization of the soft part of the bremsstrah­
lung gluonic spectrum, i.e., the convergence of the integrals of 
the type of 

J f (х) ( .1.. ) dx = J .!..Lx_2_:__fjQL dx 
о х + '""' о х 

(2 .4) 

in the small-x region. То avoid the divergent integrals of 
fdz/z-type, а modified form of the denominators of the axial 
part of the gluonic propagator has been used in refs. / 1 ~ 1 3/ , 

kfl nv + k1/nfl kfl nv + kv n11 1 1 · 
------ __, ----- ( ------ + ------ ) 

(kn) 2 (kn) + io (kn) - i о 
(2. 5) 

(principal value prescription). As а result, the divergent ex­
pressions are substituted Ьу lno terms that cancel after summing 
all the diagrams contributing to the one-loop coefficient func­
tian E(I)(Q2, f12, g; х, y).In the present paper we will not use the 
prescription (2.5), because the dimensional regularization 
(2.1) itself provides the finitess of results. 

ii. 

III. OUTLillli OF ТНЕ CALCULATIONS 
AND DISCUSSION OF ТНЕ RESULTS 

'" 
""'"~:· 

The main object one should calculate is the one-loop qqy *_, 
__, q'q' transition amplitude. The kinematics is the following: 
the initial state quarks have momenta хР and(1- х)Р ", хР, the 
final state quarks have momenta уР' and (1- y)P' ", yP:'Further­
more, ~ 2 = Р ' 2 = О. The form factor F" (Q 2) is defined Ьу · 

<Р ' 1 Jfl (О) 1 Р > = (Р + Р 'f F "(Q
2
). (3. 1) 

It is convenient to get rid of the 11 -index multiplying eq. 
(3. 1) Ьу Р~ , i.e., to define F" Ьу 

2 2~' 
F"(Q) =Т <P'I J

11
(0) 1 Р > . (3.2) 

Q 

where Q2 = 2(РР '). If one adheres to this definition, then the 
.total lowest-order contribution to Е is given only Ьу the diag­
ram Ja, while the contribution of fig.lb is zero. The use of 
the definition (3.2) also reduces the numЬer of the one-loop 
diagrams contributing to Е. 

5 " 



The explicit calculations were performed in the light-like 
axial gauge Р Afl = ·о. The gluon propagator in this gauge is · 

fl 

Df.LV (k) = ~ (g v- k!LPV +kv~) ' 
k fl (kP) . 

(3.3) 

То che~k the comput~r program we calculated simultaneousl~ 
all the d1agrams also 1n the Feynma? cr.auge where Dfl.~ = g~v/k • 

The computer program SCHOONSCH~P 2 1 suited for analytic cal­
culations wa.s systematically and intensively used throughout 
our work. Тhе algorithm adopted for this purpose is the fol­
lowing. Тhе first step was to calculate the traces of the у -
matrices, with а proper account of the' fact that the numЬer of 
the space-time dim~nsions is (4- 2f). The scalar invariants of 
the (a(Pk) + b(P'k) + ck2) -type, resulted after the first step 
was performed (k is the integration momentum), were expanded 

· then over the structures present in the denominators of the cor­
responding Feynman integrals. This trick of "cancell-ing the 
denominator Ьу the numerator" consideraЬly reduces the number 
of essentially independent Feynman integrals. Ву further trans­
formations (e.g., Ьу shifting the integration momentum k ... k' = 
= k + !'. combined with the subsequent removal of terms odd in 
k' ) it is possiЬle to reduce the number of basic integrals to 
7 and in the case of the Feynman gauge even · to 4. The explicit 
expressions for the basic integrals are given in the Appendix. 

Final results for the contributions of particular diagrams 
have the structure Alf 2 + 8/f +С+ O(f). Note, that the douЬle 
poles do appear in а situation when the collinear divergence 
of the k -integral for f = О is accompanied either Ьу an in­
frared divergence or ~у .а ln(n2 ) -singularity of the second type 
(i.e., that related to integration over soft part of the gluo­
nic spectrum). We observed, however, that the 1~2 -terms cancel 
for the sum of all relevant diagrams, in complete agreement 
with our expectation that both the infrared divergences and 
the ln(n2) -type singularities of the type mentioned above should 
cancel after the summation. 

Тhе finite parts С 1 of the contributions of separate diag­
rams are given in . the ТаЬlе. Their sum corresponds to the coef­
ficient function calculated within the siinplest Е -oriented 
scheme used in ref. /1 О~ However, as i t was emphasized in Sec­
tion II, this scheme does not satisfy the requirement that the 
effective coupling constant must Ье universal (i.e., indepen­
dent of the process under consideration) because the corres­
ponding counter terms in this scheme are different for diffe­
rent processes. It is easy to estaЬlish also that the pion wave 
functions are not universal within this scheme as well. Indeed, 
the universality of the wave functions implies that the poles 
1/f related to the collinear divergences are absorbed Ьу some 
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Table 

Finite parts of the diagrams in the light-like axial gauge 
(РА) = О. The following notation is used х = 1- х, у = 1 - у, "ХУ= 1-х-у , 
D = [2ху (х- уfГ 1 , Sp(y, у)= Sp( -y/y)- Sp(-y/y) where Sp(x) is 

1 d 2 2 the Spence function Sp (х) = - f _!_ ln (1 - xz) • L(a) = ln (aQ 1 f.L ) 
о z 

~:п 
C!={L1(1}+( lfnx+ 2fnJ+ fnj+2)L(!)+ fn 2x + (J/2)tn}+- fn)' + 

+ гenxin;+- tп.xtnj+2tnx+2tn.~+-tn.y+ 5р(у,у)-5p(~JJ 
zn - CF(xfnx/x){U1)+(1/2)enx +- fn.Y- t'n.)l + 1} 
3 .~ -( 1/ZY: v{Ltt}+2(lnx+l1LJ-1}L(f)+ tn~+-fn'J+2lnxfllj-t'nx -fltj'-Sp (1 )+ .f} 
~ :z: Cv {(1/l)eп/J-{1./2)en} - en.Yfn.J- Sr(~.~) - 2 5p(Jf)+ 2 5p(J)} 

х 
С".{[(х/х) tnx+ fnx }Ц1)+{X/(lx)}fnlx + { 1/2)fn2

X + 
5 +{(2x-1)/x}tnx{n_y -(X/x)fnxfn,j+ fnxfn.:; + tJ?.Yfll_r + 

+ (x;x;eпx+-fnx- ><~ S(x,#)+ 2 Sp(y)- 2 Sp(J)j · 

C11{-(1/2)LTi)-[lnx +{j/;Jjfnj]L(t)-(f/l)!n~ -[1/(lifJln~ -(jiJ)!m·!nj + 

6 tr +en.~lnj-fnxfnj+2xj[Zyj -(x-)1}(!-x))fnx +7Jxx [2Jj +-
+ (x-J}(3)!-2}]tl'l}l + ?Jxg [2JJ; -rx-JJx]en.x +.l)x я [2xJ+ 

+(X-JJ)(Jx-JJ)lnj-2lJJj:Xjl_S(x,j)+{lj!)l)5p(j)+[{SJI-'t)/(ZJ)] Sf(i)-1 / 

7 tL c .. {Rjl))fttj+1/2]L(f}l-/9#j}}!liij+(jl;)fnxfn.J-(jl)l}tn~tnj+(1/2)fnx+ 
+ {(2-J~)/(Zj)}!ll.,i- fn,,f-(2j/~)5p(j)+(2:i/i)Sp{1)- J/2} 

8 2 -(3/~) (ff { L 'r.t) + (2fnx+2f17.J+f}Uf) + fnZX +fnjj +2fnxfn..t ~ 

+ fnx+ fn;- 5p(t) + 1} 

9 !:У 
r4-(f/2)Lt(t)-{ln.x+!n,r+fl/2)fnj + J/t)Lr!)-(1/l)fn~ -(1/'f,Jtn} -(1/2)6z7- fnxfn.y-

(1./l}fnxf~tj-(1/f)!n)t ffi,;fltj)/flfJ-(1/l)fnj -(J/2}fp{i,j)+(Ф)5p(J}-J/f) . 1 

10 у 
{1!2Ju{-{l/zJL}fJ+8x!xJ!II)<-f!Z)+ftzj]LM+[x/r2xJ} enlx- tn)J + tn t,; ~ 
+()t/x)fnx.!n;-(x/x)tnxfllJ+/!lj-JJ/(~j/}fп.J +f'!J+ 5/'~j) +(1/2) 5!J(f} - 1) 

f1 1~ -(J/2)C,:[L{f}-(x/x)ln х] 

12 ~ (J!г)CF{Lf1) + tnx] 

1J :t {f/2)Сн{2 Lf9+ ( 'tl~rx+- 'tfn;+ 1./J}Lff) +2tп$(+2!njt + rfnxellj' + 

+ (1/J)fnx+(i/.J)!n;- 2 5p(1J+ 3't/9J +(1/J)#j.[L(I)+fц+!'!j-l/З J 

tr 
Cv[(fnj-fn.J}L{f)-fn~tlnlff +])xz.i(2-3X+jj}lnx~ 

н + 1Jx [ij(x2+2x;-J)-(x-J)jj'Jln,y+ 1Jx J{3X-~)fni + 
+ '])xj[Zx~+(x-,Y){1-X-2jj)]fllj +5p(j,j)-2 ~xzxz.y 5(X-}I) 1 

~5' 1~ CF{{fnJ-lfl#)L(/)+fn.) -t'n~ +[1i.-l,y)/{Zj}jtn._y-&у-S f>(Jt,j) J 
7 

" 
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universal renormalization factors 

vl 
zф = (1 + -( - + о (1 / (2 )). (3.4) 

where V1 
ween the 
function 

is the one-loop evolution kernel. The relation bet­
transition amplitude T(Q 2/ /L 2• g, f) and the coefficient 
Е in the one-loop approximation is then given Ьу 

. Ji vl ] vl 'JQ(f) + ( + С) + ... =(1 + - + ... )~[E0 (f) + E1(f) +.-.. ~(1+- + ... ). 
( ( ( 

(3.5) 
In the case when Е (с) has а nontri vial dependence on ( (i. е., 
if Е0(с) = Eo +f Eo+ ... ), instead of а simple relation Е~(О) =С 
corresponding to the 'factorization scheme used in refs / 1 and / IO/ 
we get а more complicated one 

Е 1 (О) = С - V 1 11t Е0 - Е0 ~ ~~ . (3.6) 

In this situation the requirement that the one-loop coeffi­
cient function Ье given Ьу the sum of fini 'te parts С can Ье 
fu i filled only Ьу adding E0/ E 0 -dependent (i.e., proces·s-depen-
dent) terms to eq.(3.4). · 

In the proЬlem under considerCJ.i:ion Е (f) = Е 0(1 -с) (see eq. 
(2.2)) and, hence, in the scheme defined' Ьу eq. (3.4) we have 

' 
Е 1 (0) = С + V 1 ~ Е 0 + Е0 ~ V1 • 

(3. 7) 

Note, that according to eq. (3.5), the combination v1 ~ ·Ео + 
+ E 0 ~ v1 coincides with the 1/( coefficient or, what is the 
same, with the coefficient in front of the collinear logarithm 
ln(IL2 /Q!) ' Гesulted from the expansion (IL 2/Q2 )c = 1 + ( ln(/L 2/Q!)+ ... 
The explicit form of the combination can Ье found, .e.g., in 
ref / 9' where the collinear ln (11 

2; Q2) and renormgroup ln(llfi/Q 2) 
logarithms are separated. Using the results of ref. / 5/ we find 
out that to get E(l ) within the scheme proposed in ref. / 121 
and utilized in refs. / ll / and / l 3~ one should add the term 

дЕ О ) c oll - as С (4 l l ) Е(О ) -- ~ F + nx + ny (3.8) 

to the sum of finite parts С. 
· In а similar way, the use of the standard (i.e., maintaining 

the universality of the effective coupling constant) R-opera­
tion corresponds. to adding to С of the coefficient related to 
the renormgroup logari thm ln (/L ~!Q 2 ). The latter, according to 
ref. 191 is . 

д Е(l ) R~ ~ (CF + .!.!.с А-_!_ Nf )Е(О ) . 1 (3.9) 
2" 6 3 

8 

Using for С the expression dictated Ьу the ТаЬlе, we est~b­
lished that the sum С+ дE ( I)RG coincides with the result of 
ref / 91 while the sum С + дE(l)RG+ мШсоll with that of 
refs .f ll,l 3/ . We conclude then that the results of refs/9• 11

•
131 

and of the present paper, with а proper account of the schemes 
used, all agree with each other. On the other hand, the disag­
ree~ent between our expression for the sum of finite parts С 
and the result for Е given in ref/ 10

/ means that the latter 
is incorrect. 

CONCLUSIONS 

In this paper we described an eff ective algorithm for the 
computation of t he one-loop corrections to the a symptotic beha­
viou~ of t he pion form f actor in QCD adapted for computer calcu­
lations using the analytic calculation program SCHOONSCHIP. The 
computations were performed simultaneously in the Feynman and 
а light-like axial gauge Р }f = О. Fur thermore, in the la tter 
case to regularize the s{n~ularities due to the denominator of 
the axial par t of the gluonic pr o.pagator we incorporated the 
dimensional regularization t hat essentially simplified the cal­
culation s coшpared to the standard trick based on the а -regula­
rization (2 .5). The resul t s obtained in the Feynman gauge coin­
c i ded diagra~ Ьу diagram with the results presented i n ref. / 9/ . . 
Furthermore, t he total contribut ion given Ьу the sum о~ all 
diagrams in the light-like gauge coincided with its Feynman 
gauge analogue. We investigated also the dependence of the coef­
ficient function on the choice of the factorization and renor­
malization schemes. In partit ularJ we found the explicit for-
mulas (3.8), (3.9) for getting Е 1 in the most natural schemet' 11

-13/, 

in which the coupling constant g and the pion wave functions ф 
are the universal, process-independent quantities. It is worth 
emphasizing that i t is this scheme that has been used in the 
recent computations/ l3-lб/ of the two-loop contribution to the 
evolution kernel V(x, у; g). 

\ 
It is а pleasure to express our deep gratitude to F.M.Dittes 

for numerous discussions, useful advi ces and for help in compu­
tations. One of us (R.K.) is indebted to the Directorate of the 
Laboratory of Theoretical Physics, JINR, for the kind hospita­
lity extended t o him during his s tay at Dubna that made pos­
siЬle the .completion of this work. 
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1. 

APPENDIX 

- d4-2c k -уЕ -с 2 f 
Basic i ntegrals ( dk = - - . -(477 е ) (JL ) ) : 

(217) 4 - 2с 

' 

а) Feynrnan gauge 

1) f dk 
(k - ар- bp}2 (k - ер - dp ')2 

!. j_ .!. 11 + с ( 2 - ln .ili_::Д!_{c- a29j + О(с 2) 1 
(417)2 ( /l2 

f --ak _____ = - _ _1_ 1 1 1 Q2 2 
2) k 2(k - xp)2(k- р')2 (477) 2 xQ 2 ~ 1- c ln~ + с2 (ln2x~ - Sp(1) ] + 

+ О(с 2) 1 /l ll 

3) f ----~---= __ L_ ln..L. 1 - Q
2 

2 
(k - xpf(k - p ')-(y- ур ')2 (477)2 xyQ2 Т l1 - cln(xy y 2) + О(с ) 1 . ll 

4) (-------~-~------------- = -~ _ _ _ _ ! ___ 1 Sp (x) + Sp(y) - Sp (X)-
. 2 2 2 2 2 

(k-p) (k-p' ) (k-xp- yp) (477) '(1-x- y)Q 

- Sp( у ) + ln х ln у - ln х ln у 1 

Ь) Light-like axial gauge р л1t = о . 
ll 

, ~ 

5) f dk = - _g__ ..L _!__ 11 - t ln(~i~--:_~)Q_:_ ) + 

(k - a P )2(k - еР - dP ') 2(kP ) (477) 2 dQ2 ( 2 1-1 2 

с2 [ 2 d(a - с ) Q 
2 

] 2 1 + - ln ---- - Sp(1) + О ( с ) • 
2 1-12 

ak 2 1 ln_{bldJ 1 
б) f - -·--------- --------·---·-·--- ~ -- -- --- -- --- --

(k - aP - bP ' r(k- cP - dP' )2(kP) (477)2 Q 2 b - d ( 

х 11- c [~.P(d/b) ~~~<!_) __ + ln( bd~--:__?_ ~ )] + О(с 2 ) 1 
ln(b/ d) . b - d 1-12 

"' 

- 4 . 2 
7) f ~U'lJJй"_j__ = _'!lQ_ ..!. 1 1 + с [ _1~ - ln~..Y.9__] + О(с 2 ) 1 

(k-xP)2 (k - yP ' ) 2 12(477) 2 с ~ 1-12 
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' В Объединенно'м институте ядерных исследований , начал 
выходить сборник "Hpamкue сообщен ия ОИЯИ". В нем 
будут помещаться статьи, содержащие оригинqльные научные, 
научно-технические, методические и прикладные результаты, 

требующие срочной публикации. Будучи частью "Сообщений 
ОИЯИ", статьи, вошедшие в сборник, имеют, как и другие 
издания ОИЯИ, статус официальных публикаций. 

Сборник "Краткие сообщения ОИЯИ" будет выходить 
регулярно, 

The Joint Institute for Nuclear Research begins puЫi­
shing а collection of papers entitled JI NR Rapid Communi ­
cations which is а section of the JINR Communications 
and is intended for the accelerated puЫication of. impor­
tant results .on the following subjects: 

Physics of elementary particles and atomic nuclei . 
Theoretical physics. 
Experimental techniques and methods. 
Accelerators. 
Cryogenics. 
Computing mathemat i cs and methods. 
Solid state physics. Liquids . 
Theory of condenced matter . 
Applied researches. 

Being а part of the JINR Communications, the articles 
of new collection like all other puЫications of 
the Joint Institute for Nuclear Research have the st atus 
of official puЬlications. 

JI NR Rapid Communications will Ье issued regularly. 

" 

' 

Халмурадов Р.С., Радюшкин А.В. Е2-84-606 
Однопетлевые поправки к формфактору пиона в КХД 

в светаподобной калибровке 

В рамках пертурбативной хромодинамики в светаподобной 

аксиальной калибровке произведен расчет однопетлевых поправок 

к коэффициентной функции операторного разложения для асимпто­

тики форМфактора пиона. Исследована зависимость результатов 

от выбора ренормировочной и факторизационной схем. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 

Преnринт Об1.еД1111енноrо ииствтута цериых нсспедоваинй. Ду15иа 198/t 

Кhalmuradov R.S., Radyushkin A.V. 
One-Loop Corrections to Pion Form Factor 
in QCD in а Light-Like Gauge 

Е2-84-606 

In the framework of the perturbative QCD in а light-like 
axial gauge the one-loop corrections are calculated for the 
coefficient function of the operator expansion for the asymp­
totic behaviour of the pion form factor. Тhе dependence of 
the results on the choice of renormalization and factoriza­
tion schemes is investigated. 

Тhе investigation has been performed at the Laboratory 
of Тheoretical Physics, JINR. 

Preprint of tbe Joint Institute for Ruclear Researcb. Dubna 198/t 


