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I, INTRODUCTION

The behaviour of the pion electromagnetic form factor for
asymptotically large momentum transfers Q can be calculated
perturbatively within the QCD/ -4/. The calculations are based
on the factorization theorem for the contributions related to
long- and short-distance dynamics, i.e., on the representa-
tion/!: 4. 5-8/

1o
F,(@%) - fdx [dy¢* (v, pDE@2 12 gG): x, y) G, u?) - 11+00/Q%)]
0 0
(1.1)
that is valid in the Q? -reglon where all poss1b1e power correc-
tions (i.e.,, higher twists and soft contributions) are suffi-
ciently small. Information about the long-distance dynamics is
accumulated in eq.(1.1) by the wave functions ¢(x,;15, é(y, u2)
corresponding to the probability amplitude for transition of
the pion into its constituent quarks carrying in the infinite
momentum frame the fractions x and (1 -x)(or y and (1 ~y)) of the
pion longitudinal momentum. Another function E(Q2 .2, g: x, y)
present in eq.(l.,1) is the amplitude of the short-distance par-
ton subprocess qqy* - q°G°. The representation (l 1) has the
structure similar to that of the operator expansion for the
virtual Compton amplitude, and in this connection E(Q ,y,g,,y)
is often referred to as the coefficient function,
The lowest order approximation for the coefficient function

; €.
E®a? yz.g;x.y)=2ﬂas(u)-——'i-——l-—§ - (1.2)
N, =xyQ :
is well-known starting from the pioniering papers/"4/.1n a pa-

per by F.M.Dittes and one of the authors (A.R.) the one-loop
contribution to E was also calculated’’’. An analogous calcyga/
lation was performed independently also by R.D.Field et al.
However, the dliﬁram by dlagram comparlson of the results pre-
sented in refs./ and (thls is possible because both calcu-:
lations were performed in the Feynman gauge) revealed that the
differ for some contributions. After a thorough study of ref,
we establlshed however, that ev n the ‘total result for-
”022 , g x y) ‘given in ref./1%/ does not coincide with the
sum of d1agram by diagram contributions presented in the same
paper/ /yrobably, due to errors in summing the contributions
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or misprints. In ref./'lﬂon the basis of the results of ref./g/
the coefficient function E(@Q2 #2, g; x, y) was calculated in the
framework of the mass singularity factorization approach pro-
posed in ref.’/!?/The use of this scheme guarantees the univer-
sality of the wave functions ¢(x, pz) (i.e., their process—in-
dependence), hence, the use of this scheme is, in principle,
more preferable than the scheme of ref. /% although the nume-
rical difference between the results of refs.’/9/ and/!! is not
very significant. .

Our aim in the present paper is a check of the results of
refs./%-11/ based on the calculation of EV(Q? p2, g: x,y in
the light-like axial gauge* P, A¥ -0 where P is the momentum

.of the initial pion (we recall that in the lowest twist appro-
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ximation considered here P2 is treated as zero). It should
be noted that our choice n, =P, essentially simplifies the
calculations compared to tﬁe more standard choice (used, e.g.,
in ref. /13 ) that requires (nP) # 0, (nP’) £ 0. The necessity of
such a check is motivated by the recently completed calcula-
tions of the two-loop corrections V‘m(x,y,g) to the evolution
kernels for the pion wave function’/!3-16/ This opens the possi-
bility of calculating the complete (renorminvariant) 0(a )
correction to the pion form factor asymptotics, provided,sfirst,
that one is sure that the results for E') and v(® are cor-
rect (within the factorization schemes chosen) and, second,

that one is able to calculate E/V) and v(? within the same
scheme, only in _that case the final result for the O(z_) cor-
rection to F,(Q") would be reliable, self-consistent and re-
norminvariant, Furthermore, in the present paper we describe
also an algorithm for the one-loop calculations that can prove
to be useful in other calculatuons of a similar type.

The paper is organized in the following way. In Section II
we discuss the general structure of the one-loop Feynman diag-
rams responsible for the radiative corrections to the coeffi-
cient function E(Q?, p2, g; x, y). In Section III we describe the
algorithm of the one-loop calculations, present the results of
our calculations for separate diagrams and compare our final
result with those obtained earlier in refs./%1V In the con-
cluding Section we summarize the paper.

»

*After completing our computations we were informed by
M.Sarmadi that he also calculated the one-loop corrections
to Ea;2,4;{ g X, ¥) using a light-like axial gauge n*A =0
(@® = 0) different from ours and the factorization scheme " /12/
used/%fvref./lhfﬂis result/!3/ coincides with that given in
ref., : :

#

II, GENERAL STRUCTURE OF THE ONE-LOOP CONTRIBUTIONS

Contributions of the one-loop diagrams of massless QCD con-—
tain usually ultra-violet divergences as well as mass singu-
larities (i.e., infra-red and collinear divergences). The most
convenient regularization procedure for all these divergences
in QCD is the dimensional one 7/ which converts the above-men-
tioned divergences into poles 1/¢ where ¢ =(d - 4)/2and d is
the space-time dimension. The poles 1/¢ _ due to the infrared
divergences should cancel for colourless states after summing
the contributions of all one-loop diagrams/58/ the ultra-violet
poles 1/¢ are removed by the R -operation (see, e.g.,ls/), )
while the poles corresponding to the collinear divergences are
factorized out into the wave function renormalization constants
by the factorization procedure S

In all the papers/946/ mentioned above the MS -conventi-
on’1% for the dimensional regularization was used, i.e., the
change

4 4- 2 Ve
Ak d Tk g e 8y (2.1)
(2”)4 (2”)4-26

for the virtual momentum integration ( YE is Euler’s constant).
However, there are some differences between refs.’?>'V in de-
tails of the choice of the R -operation and of the factoriza-
tion procedure. In paricular, the factorization scheme used in
refs.’/5/ and/9,10/ can be conventionally referred to as an E -
oriented, since the recipe for calculating the coefficient func-
tion E within this scheme can be formulated in a more simple
way than that of the wave function (or what is the same, of the
evolution kernel V ). Namely, to get E in this scheme one
should calculate for massless quarks the on-mass-shell transi-
tion amplitude qgy* » q’d‘ regularized according to the recipe
(2.1) and subtract the poles 1/¢ related to the collinear di-
vergences. However, the recipes for removing the ultra-violet
(UV) poles used in gefs./g/ and 19/ differ from each other. In
partjcglar, in ref.’? for this purpose the standard R —opera-
tion = was used that is equivalent to a subtraction of the
poles 1/e from‘;he contributions of the divergent subgraphs,
while in ref.”1% the UV poles are removed just like the colli-
near ones, i.e., by subtracting the pole part of the whole di-
agram contribution. On the one-loop level these recipes are
identical only if the contribution of the corresponding tree
(i.e., Born) diagram does not depend on ¢, However, in the prob-
lem considered the contribution of the simplest diagram (fig.l)
is proportional to (1 - ¢) because

Wy, = - -9y, (2.2)
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a) b)
Fig.1. Lowest order diagrams.

)
)
—b

Fig.2. Diagram containing
a self-energy divergent sub—
graph.

Hence, if the contribution of the divergent subgraph in a one-
loop diagram (e.g., in that one due to the self-energy inser-
tion into the gluonic propagator, fig.2) equals (A/¢ + B), then
the renormalized contribution to E calculated according to

the first recipe 9/ would be equal to BE(), while the one cal-
culated by the second rec1pe/l'/wou1d be equal to (B - AE(®)

It is obvious that one should prefer the first recipe rather
than the.second one, because the latter is equivalent to

a rather exotic version of the R ~operation with the counter-
terms depending on the physical process under consideration.

On the other hand, the factorization scheme proposed in ref./12/
and incorporated in refs, /11, 13/ may be referred to as a V-ori-
ented one, because the recipe of the evolution kernel calcula-
tion in this scheme is primary (and more simple) while the re-
cipe of the coefficient function construction is secondary

(and more compllcated) The UV-poles are subtracted in refs{!1,13/
in the same way as in ref. /,1 e., by using the standard ver-
sion of the R -operation.

It is to be noted here that in the light-like axial gauges
(n, A - 0, He = 0) used in refs,/11-13,15/ apd in the pre-
sent paper, thefe appear new singularities of the 1nﬁ1% -type
that manifest themselves as new 1/¢ poles in dimensionally
regularized integrals. These singularities may be divided into
two types. The first type corresponds to new UV-divergences,
and to remove them one should introduce n -dependent counter-
terms of ¢n(n#6F7_ ¥ ~-type’ “.These dlvergences, naturally,
should- cancel for physical quantities like F,(Q%). However,
for auxiliary objects like E and ¢ such a cancellation in
general may not occur. Moreover, in the problem under conside-
ration the new UV-poles in E are cancelled by those in ¢
simplify the factorization scheme it was proposed in ref, /
to subtract the new UV-poles just like the "old" ones. We also
adhere to this rec1pe. However, these exist also the second
type of the In(n? singularities. They are related to the
5(x) —parts of the contributions like

; 1
by .1 dz
(=) - = 5(x)0fzz

L), (2:3)

which provide a regularization of the soft part of the bremsstrah-

lung gluonic spectrum, i.e., the convergence of the integrals of
the type of

1
}f(x) (L) dax - fH=) - 1O 4 (2.4)
X + 0 X

0

in the small-x region. To avoid the divergent integrals of
fdz/z-type, a modified form of the denominators of the axial

part of the gluonic propagator has been used in refs. 712,13/,

k,n, +k k.ny, + kpn

gl e s el L . 1 ) @2.5)
(kn) 2 (kn) +id >

(kn) - i 8

(principal value prescription). As a result, the divergent ex-
pressions are substituted by Ind terms that cancel after summing
all the dlagrams contributing to the one-loop coefficient func-~
tion E RQz,u2 g; %, y).In the present paper we will not use the
prescription (2.5), because the dimensional regularization

(2.1) itself provides the finitess of results,

III. OUTLINE OF THE CALCULATIONS
AND DISCUSSION OF THE RESULTS

The main object one should calculate is the one-loop qqy* -
»q’q’ transition amplitude. The kinematics is the following:
the initial state quarks have momenta xP and(1 - x)P = xP, the
final state quarks have momenta yP~’ and (1-y)P’ yP.Further-
more, R =P’2_0. The form factor F_ @?%) is defined by
<1 ©|P> = @ + PV F,@%). @D
It is convenient to get rid of the p -index multiplying eq.
(3.1) by F; , i.e., to define F, by

P

F(Q)— SHEHOIE S
Q2

(3.2)

where Q2 = 2(PP”). If one adheres to this definition, then the

total lowest-order contribution to E is given only by the diag-
" ram la, while the contribution of fig.lb is zero., The use of
" the definition (3.2) also reduces the number of the one-loop

diagrams contributing to E.



The explicit calculations were performed in the light-like
axial gauge ﬁLAF=;0.The gluon propagator in this gauge is -

: kP kP
D (k) =-1 dpey ;
v 7 B i ) (3.3)

To check the computer program we calculated simultaneousl;
all the diagrams also in the Feynmaymﬁguge where Iﬁl =B, /k%
The computer program SCHOONSCHIP suited for analyt1c cal-
culations was systematically and intensively used throughout
our work, The algorithm adopted for this purpose is the fol-
lowing, The first step was to calculate the traces of the y -
matrices, with a proper account of the fact that the number of
the space-time dlmen31ons is (4 - 2¢). The scalar invariants of
the (a(Pk) + b(P”’ k) + ck 2) -type, resulted after the first step
was performed (k is the integration momentum), were expanded
- then over the structures present in the denominators of the cor-
responding Feynman integrals, This trick of "cancelling the
denominator by the numerator" considerably reduces the number
of essentially independent Feynman integrals, By further trans-
formations (e.g., by shifting the integration momentum k -k’ =
= K.+ A combined with the subsequent removal of terms odd in
k’ ) it is possible to reduce the number of basic integrals to
7 and in the case of the Feynman gauge even to 4. The explicit
expressions for the basic integrals are given in the Appendix.
Final results for the contributions of particular diagrams
have the structure A/e24 B/e + C + 0(¢). Note, that the double
poles do appear in a situation when the collinear divergence
of the k -integral for ¢=0 1s accompanied either by an in-
frared divergence or by a In(n? ) —singularity of the second type
(1 e., that related to integration over soft part of the gluo-
nic spectrum). We observed, however, that the 1/¢2 -terms cancel
for the sum of all relevant diagrams, in complete agreement
with our expectation that both the infrared divergences and .
the In(n?) -type singularities of the type mentioned above should
cancel after the summation.

" The finite parts C, of the contributions of separate diag-
rams are given in the Table, Their sum corresponds to the coef-
ficient function calculated within the simplest E -oriented
scheme used in ref./10/ However, as it was emphasized in Sec-
tion II, this scheme does not satisfy the requirement that the
effective coupling constant must be universal (i.e., indepen~-
dent of the process under consideration) because the corres-
ponding counter terms in this scheme are different for diffe-
rent processes., It is easy to establish also that the pion wave
functions are not universal within this scheme as well. Indeed,
the universality of the wave functions implies that the poles
1/¢ related to the collinear divergences are absorbed by some
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Table

Finite parts of the diagrams in the light-like axial ._gauge
(PA) = 0, The f0110w1ng notation is used ¥ = 1-x,y=1-y, Xy = l-x—y,

D={2%§ (x - yFT', sp(y, ¥) = Sp(—y/ir) ~ 8p(-y/y) where Sp(x) is

" the Spence function Sp(x) = -f dz In(1 - xz), L(a) = In(aQ /yz)
P 4

CF{ L) +(2enx+ 2eny+Cng+2)L(1) + Cn’x + (1/2)r7y + €rn’y +
+ 2€nxlry + enxlng+ 2bnx+ 2ény +Eng+ Sp(y.§)-Sp(2)}
- CF(XZ"X/?){LG}*L(I/Z)&X +bny-Clng+ 1}
-(172)Cv L’(1)+2(£ax+(ny-1}L(t)+fn‘x+fn‘}+2€nxfly-/ax-&j- Sp()+5}

Co {(1/2)&:‘;-(1/2)!/2 fy’ - anfnj -Sp(y.4)-25p(4)+ 2 S,c(:)}

C'y[[(x/)?) Enx+EnzJL(1)+[x/125)]€R%x + (1/2)€n°K +

+[(2x-1)/% ] nxlrny —(x/%)lrxlng+ bnxbny + lrylnyg +
+(X/%)Enx +Er% - X3 S0xy) + 2 Sp(y) - 25p (9}

Cf-(1/2)L )-[enx +(3/9) EnG]L(1)- (/2005 - [/024]]En’G ~(3/y)lxlny +
+enylng-Cnxbry +dxG[2y7 - (x-y)(2-NJbnx +DxX [ 247 +

o MWmﬁ

+(X-yN3y-2)]lny + DXF[2y] -(x-YX [br X + D% §[2%y+

+OCY)Ox-)lng-2Dy55 %S00+ (2/) Sp@) Iy -2 Sp)-1f

)

ol G/s)lng+ 1/2JL0+[R G +(, /) brxlni (. y/‘y)/nj bng+(1/2)bnx +
+ (T3 )ry~ B~ 23g) )+ 2 529~ 32}

*®

~(3/4) Cy [L‘(l) +(2tbx+2bny+9L(3) + f/z‘x+f/z‘zi +2lnxny +

; +bnx+bny -Spesy) +1}
(‘,{-(I/Z)Ll(zj—[[nx+l’rg+(1/2}l’nj+3/ﬂ[(y—(1/2)&5(-(l/lr)&}«-ﬂ/Z}fny—é’/zx(’/z -
) uxg-( )l sy sy -(42)ng (/) 4 3+ (42) Sp () - 44
(/2)Caf-(v2)Lt)+ [/ 5)nx-Crny + EnG]L 1) [/ 2%)] Enx - thjy +lnig +
+(5/ %) nxbny-(x /3 )l nxCng+l2y-3Y025)Jlny ¢ €nF ¢ Sp(y.5) +(4/2) Sp(1) - 1 }

1] -(4/2)Ce[L(1)-(x/%)ln x]
12 (1/2)Ce[L(1) +Enx]

(1/2)Caf201) + (4 8nx + Glry+1/3)L(1) +an’x+2/n3/ +%énxlny +
Y (1/3)bnx +(1/3)ny - 2 Sp(1)+ 34/} +(2/5)84 /L) +Enx+lry - 2/3 ]
Cv{(eng-Cry)ily -y +er3y +Dxy (2-3x+Y)bx+

MMQMM

14 + DX [ GO +2xy-4°)- (x-)y*Jlny+ DX (3x-y)bnX +
+ DR g [2xg+(xy)1-X-24)1lnF + Sp(4,5) - 22xR 2GS (Zy)}
c;ﬁ@%"[%?7lﬁ7+fh -tn’ ﬁﬂ?‘{gp?zliﬂﬁaz é@y Aﬁ}yggy)} ]

[

s




universal renormalization factors
A : 2
Z¢= (1 +—;-+ O(l/f ))' i (304)

where V; is the one-loop evolution kernel. The relation bet-
ween the transition amplitude T@ 2/u2 g ¢) and the coefficient
function E in the one-loop approximation is then given by

\' :
T + (—P— +C)l+...=0Q1 +—€1—+...)®[E0(e)+ E,(0 +.-..]®(1+‘—,€—1—+...). .

: (3.5)
;n the case when E (¢) has a nontrivial dependence on ¢ (i.e.,
if Eg©) = Eg+¢Eg+ ... ), instead of a simple relation EL(?) =C

corresponding to the factorization scheme used in refs./” and/1%
we get a more complicated one
E,©®=C-V,eEj-EjeV,. (3.6)

In this situation the requirement that the one-loop coeffi-
cient function be given by the sum of finite parts C can be
fulfilled only by adding Ej/Ej-dependent (i.e., process-depen-
dent) terms to eq.(3.4). ’

In the problem under consideration E_ () = E (1 -¢) (see eq.
(2.2)) and, hence, in the scheme definec? by eq.0 (3.4) we have

E,\0=C+V,®eEy+EjeV,. : 3.7

Note, that according to eq.(3.5), the combination V| e E4 +
+ EgeV) coincides with the 1/¢ coefficient or, what is the
same, with the coefficient in front of the collinear logarithm
1n(p2/02) resulted from the expansion (12/Q2)€ =1 4+ ¢ ].n(y.z/Qz)+...
The %c})licit form of the combination can be found, e.g., in
ref.’”’ where the collinear In(x2/Q2) and renormgroup }n(y 2/Q 2)
logarithms are separated. Using the results of ref.’s 'wg find
out that to get EY yithin the scheme proposed in ref,/12/

and utilized in refs.’/!!/ and /13/,one should add the term
(1) coll a
AR SO §-:3-01‘-,(4 + Inx + lny)E(o) (3.8)

to the sum of finite parts C. 5

In a similar way, the use of the standard (i.e., maintaining
tl.le universality of the effective coupling constant) R-opera-
tion corresponds to adding to C of the coefficient related to
the renormgroup logarithm ln(yz/Qz). The latter, according to
ref, /Y js el

(VRG @ 11 1 e
AE s st (Cp U, SNOE, - (3.9)
8

Using for C the expression dictated by the Table, we estab-
lished that the sum C + AE(DRG  coincides with the result of
ref.”% while the sum C + AE (DRG, A (Deoll  with that of
refs./1:13/ We conclude then that the results of refs./g’"'la/
and of the present paper, with a proper account of the schemes
used, all agree with each other. On the other hand, the disag-
reement between our expression for the sum of finite parts C
and the result for E given in ref. 10/ peans that the latter
is incorrect,

CONCLUSIONS

In this paper we described an effective algorithm for the
computation of the one-loop corrections to the asymptotic beha-
viour of the pion form factor in QCD adapted for computer calcu-
lations using the analytic calculation program SCHOONSCHIP. The
computations were performed simultaneously in the Feynman and
a light-like axial gauge P A = 0. Furthermore, in the latter
case to regularize the sfnﬁularities due to the denominator of
the axial part of the gluonic propagator we incorporated the
dimensional regularization that essentially simplified the cal-
culations compared to the standard trick based on the 8§ -regula-
rization (2.5). The results obtained in the Feynman gauge coin~-
cided diagram by diagram with the results presented in ref./9/,
Furthermore, the total contribution given by the sum of: all
diagrams in the light-like gauge coincided with its Feynman
gauge analogue. We investigated also the dependence of the coef-
ficient function on the choice of the factorization and renor-
malization schemes. In particular, we found the explicit for-
mulas (3.8), (3.9) for getting E; in the most natural scheme/
in which the coupling constant g and the pion wave functions ¢
are the universal, process—independent quantities, It is worth
emphasizing that it is this scheme that has been used in the
recent computations/l346/ of the two-loop contribution to the

evolution kernel V(x,y; g).

A 3
It is a pleasure to express our deep gratitude to F.M.Dittes
for numerous discussions, useful advices and for help in compu-
tations. One of us (R.K.) is indebted to the Directorate of the
Laboratory of Theoretical Physics, JINR, for the kind hospita-
lity extended to him during his stay at Dubna that made pos-
sible the completion of this work.

11-13/



APPENDIX
' Basic integrals (dk = —,—-—.‘.3..(417 —E (#2)5):
a) Feynman gauge
£y f dk i S SRR nb-de —-32954»0(52)!

(k - ap - bp)2(k - cp — dp”)? (4n) €

: dk o Ll | 11 il—elnlg—2+‘—-[lnzlgf—8p(1)] +
Z)Ikz(k—xl))z(k-p’)z (4m? xq2 2 W2 2 2
+ 062} :
dk 1my 1 Q. o2
f Y .2 {1-eln(xyy =) + O(e)}
(k—xpP (k-p")2(y - yp N2 (@n? 5Q2 © Tt
4) f dk 1L e 6

& -pk-p) k-3 -yp) % (4m® Q-x-yA
- 8p(y) + InxIny - InxIny }
b) Light-like axial gauge B A o

5) dk ' 201 1 ool
(k—aP)z(k-cP-dP’)z(kP) (4n)2 aQ2 ¢ 2 i
2d(a-c)Qj
u2

dk __2 1 In(b/d)1
(k- aP —bP* Pk - cP - dPHXkP) (4m? @2 P-4 ¢
x {1 - el Sp(d/b) - Sp(b/d) + In(bdd=C Q )] o+ O(( )}

2
L€ - Sp)} + 0(eD1.

6) [

In (b/d) b-d
= . : 2
7 fﬁdk(kp)(k? ) = x_yQ“ L i1 +c[-153‘-1ﬂ-¥y%—]+0(c2)!
k-xP2k-yP" )2  12(4m)2? i
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B OG\eAuHeuﬂam MHCTUTYTE AAEPHbBIX MCCNEeAOBaHMIA ,Hauan
BbixoAuTe cBopHuk "Mpamxue coobwyenus OUAU". B Hem
GyAyT nomMewaTbCA CTaTbu, cCoAepXawMe OPUIrMHaANbHbE Hayu4Hble ,
HayuYHO-TexHWYeCKkne, MeTOAMUYECKUe M NPUKNaaHbe pesynbTaThl,
Tpebyoume cpouHont ny6auxaumn. Byayum uacTeio '"CoobeHnin
OUAN'', crarbu, Bowepwue B cbopHuK, UMEnT, Kak W papyrue
napgaHua OUAU, craTtyc oduymanbHEX nybnukaumii,

CBopHuk 'KpaTtkue coobuerns OMAU' GypeT BbLIXOQUTb
perynsapHo.

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of, impor-
tant results.on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.
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