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I, Introduction

The quantization of systems with singular Lagrangians by means
of the functional integration in the phase-space was proposed by
L,D.Faddeev in paper 1/ « The proof of the formula which expresses
the matrix element of the evolution operator by the functional ir-
tegral over coordinates and momenta suggested there became the stan-
dard one and was acoepted in subsequent publiocations /24 without
change. However, in the ocase when the ocanonical Hamiltonian s equal
to zero identlcally (the Lagrangians homogeneous of the first-degree
in the wvelooltiest ralativ}stio point particle, relativistic string,
eto) the proof in paper /1 y ought to be modified. In this case the
gauge conditions, explioitly time-dependent, must be consiﬂered/y.
Usually one assumes that the gauge conditions have 2. such a depen-
dence /1-4/ « Besides, 1f the original Lagrangian has an expliocit
time dependence (e.g., a system coupled to an external nonstationary
f1eld), then the constraints in theory may turn out to bs time-de—
pendent as well. It may demand the choice of gauge conditions
depending on time explicitly in turn.

In this paper we shall show that the rules for construction of
the functional integral for the systems with degenerate Lagrangians
in the phase space, proposed in 1/, remain valid when the time-de-
pendent gauge oonditions are used. The funotional integral is written
at first in terms of the physical canoniocal variables that are obtai-
ned by means of a oanonical transformation adapted to the gauge
conditions. In the case of the nonstationary gauge conditions the
canonical transformation expliocitly depends on time. In comparison
with papers 714/ thie leads to an additional term in the Hamiltonian
whioh determines the dynamios on a physical submanifold of the phase
space.

The organization of the paper 1s as fllows. In Section 2 the
equations of motion in the phase space for the systems with oonstraints
and nonstationary gauge oonditions are written in a generalized Hamil-
tonian form. In Beotion J using the canoniocal transformation we
reduce the equations of motion to the Hamilton system which desoribes
the dynamios only in terms of the physical variables. In Seotion 4



the funotional intsgral for the matrix element of the evolution
operator is construoted at first in terms of the physiocal variables.
Then the functional integration is extended to the whole phase space

by inserting into the integrand appropriate 3 - functions. In oonolu-

clusion we note basio distinctions between the given proof and that
of papers 1-4 .

For simpliocity in this paper the mechanical system with a finite
number of degrees of freedom is considered.

2. Generalized Hamiltonian dynamloa of systems with
time-dependent constraints

The Lagranglan /»C‘}* G) of the system with a finite number of
degrees of freedom is setted as a Iu.notion of the genaralized coordi-

mtosq, Gy %) emdvaloo:l.tieaq, (G “.,_,Ci,n)‘

We are interested in the case when in tha whole configuratlion
space ((fq.) the rank of the symmetrio Hessilan matrix with ele-
ments

‘/\‘U(q' $ids C')qq aqu (2.1)
aJ Sl AP

is less than the number of degrees of freedom 77

vankl Ay <h.40) < n .

In partioular, condition (2.2) will always be fulfilled, if the Lagran—
glan L(Q Q.) is the functlon homogeneous of first—degree in the
velooities /6 « Indeed, the Euler theorem for such Lagrangians leads
to the relation

q_ aL(‘?- 9.

(2.2)

L(Q,,C'J,). (2.3)

The differentiation of (2 3) with respeot to q, allows one to oon-
olude that the matrix (2,1) has at least ones zero eigenmvector

qr./\.o'cq q ) (2.4)

Everywhere we have been assuming the summaticn over repeated indioces.
By virtue of cendition (2.2) the phase space of canonical coor—
dinates ( and momenta P defined as

P - L(q')q’) 4: = 4 1 (205)
< .

99
is restricted by constraints /6-1/ « The primary oonstraints direcotly
follow from the condition (2.2)., The secondary constraints can be ob-
tained from the Lagrange equations of motion independent of the
accelerations

Let

(2.6)
ch.P)— 9

o |

be a complete set of all (primary and secondary) constraints in the
theory. We shall propose that ‘&(_Cf,,P) gl
are funotionally indepenient, that is

El

vank| %l - k (21
wl'= Cq.PI, 1ep<n.

In virtue of (2.7) egqs. (2.6) determine a (211~ K )- dimensional sub-
manifold M of the prase space (G, P).

Having the complete set of constraints (2.6) that obey the condi-
tion (2.;), one can derive the canonical equations for the oonsidered
system « By means of the Lagrange multiplier method we obtain
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where HCQC}P) is the canonical Hamiltonian, construoted in
aocoordance with the usual rules, and )\d‘(t ) R en 1 s K

ars Lagrange multiplisrs. The equation of moticn - for a gensral
phase-space funotion WF(C},,P .t ) 1n accordance with (2.8), has
the fo=r

ﬂ L+ (H V> KA 0.8

Here the Foisson brackets of two funotions f(qr P ) and 3(9’ P ¥
are defined by

.9+ Z(é}%&( 5’%{%)

We shall restrict ourselves in what follows to the oase when the
relations (2.6) are first—oclass constraints, that is the Poisson
brackets with each other and the canonical Hamiltonian Hc vanish
on [~

(2.10)

Gl et =0, Ga.12)

L HG=G, <0,p>‘P

& J‘=f 2yl 4

E(

0 { (2.12)

wherac J'(q' P) ana “_P(Cj, P) are oertain funotions of the
oanonio variables 5

It follows from (2.11) and (2.12) that the constraints (2.6)
are invariant relations for the canonioal system (2.8) with arbitra—
ry funotions /\ (t) . In other words, equations (2.6) will be
satisfiea by any solution of the ocanonlocal syatem (2.8) with any form
of the funotions A (1)  1f these equations do for the initial
data. Indeed, substituting (2.6) into squations of motion (2.9) and
taking into acoount (2.11), (2.12), we obtain

G (H8) + A0, 950,

ol = L k
Thus, if the relations (2.6) are the first—olass constraints,
the solution of the Cauohy problem for the system of the canoniocal
equations (2.8) involves K arbitrary funotions of time A d('t').

(2.13)

In this case the infinitesimal ohanges of the ocanoniocal variables q,_
and P generated by the oconstraints (2.6)
)

Ech. = Ed'('L)'gTﬁ)o‘:" Sﬁ-—-- Ed({)(%*{ s (2.14)
~ L=t N

] L

transform the olasses of infinitely neighbouring trajectories into
themselves, and functions /\d('t P! inside eaoch olass change as follows

Sl\azd i Edd P & %d ) ijd. i "\P(b%d ? Cjagu © (219%)
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The funotional arbitrariness in the solution of canoniocal
squations (2.8) oan be removed by the requirement that all the obser—
vables in the theory do not change under the transformations (2.14)

oV = Y W50,
Henoe by virtue of the independence of parameters Ed_(t Y we obtain

a set of K differential squations of the first order for the
observable funotions Y

o, ¥
o w4 o

The substitution of relations (2.11) into the Jaocobi.identity ylelds
the integrability oondition for (2.16)

(“P T ) "‘V)) (“P (‘P Y- (( ‘PP),W)"‘“"O. (2.17)

C/dﬁcq"P)\P}; &l , (2.16)

It follows from (2.17) that eqs. (2.16) have (2N -k ) solutions

and there are K oonstraints (2.6) among them . Therefors
the indepsnfient observalle variables w will be unambiguously de-
fined by their values on the submanifold of the phase space with
dimension (2N-K ) - K = 2Cn-K>,



Such & submanifold oan be realissd as follows ’7/., In addition
to the K oconstraints (2.6) the ocanonical variables and P
will be submitted to k gauge oconditions that will be asgumed
axplioitly time—dependent

%dJC(;,P,'t) =( : (2.18)
CRCT e

The relations (2,18) have to be taken not invariant under the
transformation (2,14)

OXg= €CY, %) # 0. e

This allows us to remove ocompletely the funotlonal arbitrariness
in the oonsidered system, 1.e. to express the Lagrange multipliers
Act)  tarough canomtoal vartadles,

From (2.19) it follows that the cholce of funotions Xxd‘(C},P,t)
is restricted by the requirement

det”(“&,xﬁ )“ #0 . (2.20)

Aooording to (2.20) the set of constraints (2.6) and (2.18) becomes
the second—olass one.

In addition to the oondition (2,20) it is necessary to require
that eqs. (2.18) be invariant relations for the ocanonioal system
(2.8). The substitution of (2.18) into (2.9) yields K equations
linear with respeot to the functions )\d’C": )

g%f - %ﬁ + (Hc,],ﬁ) i X/ﬁ) =0,

d,j,=4’_‘_'k_ (2.21)

The solution of the system (2.21) has the form

Acr=-[88 ~ Ha)]a,,

cL,jB= (A iy k !

(2.22)

6

where the matrix ” ad‘ﬁ' H is inverse to that of the Poisson

braoketa"(‘f’z. I’ﬁ)"
— o )
OupClpXp) - 8, e

Thus, the dynamios of the considered system is completely deter-
mined by the set of second—olass oconstraints (2.6), (2.18) and the
canonioal equations (2.8) which owing to (2.22) can be represented as
follows

g%i . g_PH.L ’ [g%d' (M, x’au)] O‘ﬂ} EJB}D_L]?3 g (2.24)

Pi .
gﬁ 51’0;“ “[@s+ cH, 2

¥
“p 0Q;
i=1,....n.

Substituting (2.22) 1nto (2.9), we obtain the equation of motion for

the funotion Y¢gq, p A5

(2.25)

dt ~ 0dt ot

o
where the Dirao bracket (Hc ,w) is defined by the equality

g¥ . 4y, ﬂLa*ﬂ(%,w) ; (pr)*,

CH A Y= CH, W)-(Hc‘lm)ﬂdﬁ(“l?j, i, g T

Finally, in the case of time-dependent gauge conditions (2.18)
the equations of the generalized Hamiltonian dynamics take the form
(2.2¢). 12 H = 0 s then eqs. (2.24) admit solutions, different
from the statioc ones, only for the gauge conditions (2.18) dependent
on time t explioitly.

3. Reduotion to the physiocal variables

To describe the dynamics of the considered system in terms of
(N -k ) independent degrees of freedom, we make use of the lavariant
relations (2.6) and (2.18). In the olassical mechanics it 1s well



known that the existence of first integrals or invariant relations
of the Hamiltonian system allows one to reduce their order { see; e.g.,
Levi-Civita and Amaldl 9/ ). Herewith the reduced system of equations

has also the canonical farm.

If M first integrals or invariant relations of a oanonical
syatem of 2N  aifferential equations (1 €M ) are in involution,
then one can reduce the number of these equations to 2(n-m), In ge—
neral, when 771 first integral or imvariant relations are not in
involution, the order of the Hamiltonian system ocan be reduced only
to 2n-m. It 1is necessary to emphasize that the reduction by using
the first integrals leads to the canoniocal system whose general in-
tegral 1s that of the original ocsnonical equations too. On the oont—
rary, if the invariant relations replace the known first integrals, .
then the gensral solution of the reduced system is only a partioular
golution of the original EHamiltonian system. This solution describes
only the trajectories which lie as a whole on the submanifold of the
phase space defined by these invariant relations.

In the case under consideration just this submanifold is the
physical phase spaoce. To racover from the system (2.24) the equations
that desoribe the dynamios on the physiocal phase space, we carry out
the oa.non}rl:?l transformation of variables q, and P « Following
to paper s we shall suppose that the left-hsnd sides of gauge
ocondition (2.18) satisfy the relation

(}LOL,XJ,):O, (3.1)
a,p o= Y g

Agoording to (3.1) the new ocanoniocal variables can be introduoced
as follows

Q=Qigpty, P =L ecqpt>, o

QQegpty E+Eeqgpiy, " o2

CL’k*f‘...‘n;

CR.Q;>= 0y, 60

fsi_js n.

¥We notice that the gauge oconditions (2.18) lead to the appearance
of the explicit time dependence in tramsformation (3.2)-(3.4),

To write the equations of motion (2.24) in new variables, it
is necessary to substitute the new coordinates G; and momenta :
grom (3.2) and (3.3) instead of ’I,U(q,_P,’c ) 1iato (2.25). 4g a re-
sult; we obtain

.._—.QK +Mﬂ (P 3.5
U:- §p¢ aoﬁaygﬁf’ 0.5

5 oo dKe _ gKe B .
F="80: " da. Adpgﬁf
T A R ES

The oonstraints (2.6) and (2.18) are rewritten now as

$(4CQ.PI,PCAPEN = RAPEI=0, 00

P=dcgpiy=0, (.

Tpl s (N K .
In formula (3.3) A, CQ.P. 1) aenotes the matrix obtained from
a—dﬁ(q’-P 3 by the transformations (3.2)-(3.4) . The rela-

tion (2.23) becomes now

A =T 8 : .8
dgaoﬁ oL (3.8)
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The new canonical Hamiltonian KC(Q,Pt ) is given by the expree-
sion

K . QP1I=HCG@PLPQP+ RAPE) ., G

The second form of (3.9), caused by the explicit time dependence of
the canonical transformation (3.2)-(3.4), 1s determined up to an
arbitrary additive funotion of t as follows

AR@PH. ik P 1>, IRAPL. Rt O
P Jt 3%

; 0Q;
= o
Owing to (3.8) the second half of the canonioal equations
(3.5) att =L =1,.... k turns into an identity which means that
(3.7) are invariant relations with respeot to (3.5)
fg{;tjw = 0> (2.11)
(- S 1,...,k :

That 1s k generalized momenta a take constant zero values
along those phase trajeotories of th® system (3.5) which 1ie in the
manifold defined by (3.7). The coordinates Qd' oanonioally
oonjugate to the e,_ can be eliminated by using the oconstraints
(3.6). Indeed, by virtue of ocondition (2.21) the appropriate Jacobian
does not vanish

£
det“ G“"J3l #0 Cd.P " 00, (3.12)

and system of equations (3.6) can be solved for K coordinates Gd.,

Q,- HL:L(OU,P_ 3

(3.13)
T MR ol RS By

2

In this case 1t follows from (3.6) that the partiel derivatives of
funotions L]U (QU,P, t D with respect to O 1 and P—i ere conneoted
with those of original funotions f‘(G,P,‘E ] by the equalities

10

2 (2.14)

R
I
o

=

+ G

Kedl. ... N

2

+Gob—a-’-_HP—O.

f GRT g (3.15)
=4 )14 L
Taking into aocount the obvious identity
0% . ¥ Rkl 4 TP
o, " bap ﬂ_%?;t"’ fdia
we Tewrite the relations (3.14), (3.15) as follows
gip? i3 Gd.P ﬁm%#ﬂl g (3.16)

I

dCQ -4y .
Gd.}! éG‘Pl

A SRR

for

Now the expressions (3.13) and (3.14)-(3.15) allow one to comple-
tely eliminate the dependent variables G a4 from the remaining equations
of the system (3.5). As a result, thess equiations at 4= 0 =
= k+1,....Nn take the usual Hamiltonian form

QO. dF; aGd,-g_:_;%_ 0P, Gan

11
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and with L =L =1,... K they are reduced to the ocondition
that the constraints (3.13) be the inveriant relations

. ~

et aaﬁg‘:;f” - 8 iy

¢ I8 SUSSID ST
Here the canonical Hamiltonian KC(QOP{ ) 18 a result of substi-
tuting (3.13) into the funotion Kc(Q,P,t )

(3.19)

” =
K (Qa.P 1) = K(HcQ,P.t>,Q,.P 1)
In what follows the conditions (3.18) may be dropped out of con—

slderation beoause they are identically satisfied in virtue of equat-
lons (3.11) and (3.17)

%_il:', (K. ,L{Jd')P £ %%c , (3.20)
a*=a

WRRA

To prove the identities (3.20), one ocan use the relations (2.11)-
(2.12) after they have been expresssd in new canonical variables (3.2)-
(3.4). Then, replacing the derivatives of funotions G~ CAP.t) vy
the expressions (3.16) and taking into acoount the oo:ditién (3.12), we
obtain from (2.11) the following equalities

(Qd_,- LP H QP- LPP ) . (3.21)

= R L e
oo A )

12

We notice that the relations (3.13) cannot be used to fulfill (3.21)
because the right-hand sides of these equalities do not depend on
the coordinates de « In other words, the involution of constraints
(3.6) on the manifold ™  entails the involution of constraints
(3.13) in the whole phase space 1 .

By similar arguments as it has been done for (2.11), relations
(2.12) are reduced to the equations

(3.22)
 Hande T s
% Ia-uu F P d.’f.--.,]f.
Passing from HC to the new canonloal Hamiltonilan f/\c acooxrding to
(3.9) and taking into account (3,10), we obtain from (3.22)

Al ek _ DKe , AKe QY i
3 Stk e ag;ap}}‘

P el
Finally, after the replacement of the coordinates Gd, by the
expressions (3.13), we add these equations and the conditions (3.21)
side by side and obtaln directly the identities (3. 20),
Now we pass to the consideration of the remaining equations (3.37).
By substituting the relations (3.7) these equations are reduced to the
Hamilton system of order £ (/1- K ) only with the independent oanonical

variables Qa . PC!

5%-0 B %éj" gitjﬂ — g_gf;:. (3.24)

a=K+1,...,.n

s

where

1 Using the obvious relations (ch (3~ )= 8‘1 in addition

P
to (3.21), it 18 easy to see that the procedure of elimination of the

dependent variables Q d given here is completely -quir_;lont to the

canonical transformation (- () - . ,8uch that [/ = - —L‘J

dad k ’?ql F;'Qt’ F:L Pd.-Qd. Qd o’
Tui it

13
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If the general integral of this system oontaining Z2( 11~ Kk )
arbitrary constants is known, then the dependence of coordinates

on time can be obtained by the substitution of this integral and con-
ditions (3.7) into the relation (3.13). Besides, taking into acocount
that the canonically conjugate momenta =0 we get such partiou-
lar solutions of the orlginal ocanonical system (3.5) that satlafy the
invariant relations (3.6), (3.7). As eqs. (3.13) are also the inva-
riant relations, the subetitution of the solutions Q ) P(.t p)
into (3.18) turns (3.18) into identities.

Thus, the independent canonical va.riables for the considered
system are Qg , F, , G =K i, whioch satisfy the Hamilton
equations (3.24) with the e:l.’i’ective Bamiltonia.n defined by formulae
(3.25), (3.19), (3.10), and (3.9).

4. Construotion of the functional integral

The physical canonical variables Qu - Pa can be used now for
the quantization of the original constrained system. At first, we
represent in accordance with the standard rules 3 the matrix ele-
ment of the evolution operator for the Hamiltonian system (3.24 3
-(3.25).

U exp{-ict=HK U P O}
by continual intagral

I Q,,....0lU0LHIA, .0 -

IBI fPQ K (Q 4k t)dtﬂliQMnQ_’,ua)
P t.a 27

Q=k+{,.... n,
Now the functional mtegration in (4.2) oan be extentad to the

whole phase space G'- ,F‘:- ,L=1,....n by the ansats

[nScectndca,- LJg{,cm

»

ul

23t k (4.3)

QuetrdBcty f
- :

14

Hera the 8 < funotions restriot the integration over (], and M L
AR IR to the sulmanifold defined by oonstraints (.6),
(3.7), and we uss the formula generalized to the casa of arbitrary
dimensions the well-known property of the usual 8 = funotion

Y. 0CX-0)
8(“’)('1 ) |r‘tu)| (4.4)
rgu Y =,

Substitution of (4.3) into (4.2) gives for the functilonal integral I
the following representation

u

e gexp{ s [Pﬂ K.CQ.Pt)]dt def”C (4.%)

HSCPm)SCCPca p t))lldﬂtd’d* <y

2 f"
1 :
To deduce this formula, we extend the sum Z};. 4Pa Gu in the
exponential to all variables g.0, &5 n

due to (3.7) and replace K ' (Q p 13 vy Kﬁgu‘, s A
according to (3.25) and (3. 19)

Making use of the oanonical transformation inverse to (3.2)-(3,4)
we perform now the change of the funotional variables in integral
(4.5) «» A8 a result, we obtaln the final expression for the matrix
element of the evolution operator ir the form of the continual integ-

ral over the whole phase space q, ’ P
L]

(4.6)

t
L= fexp{ef(p g~ Hcq.poJdthdet|ce, 1
t

9 n ichHdpct
tHS(‘Pch -P))B(x’acw-f’))t ‘.d_%%_&c_ )
ok b

This formul7 completely coincides with the appropriate expression
in paper

2) We do not disouass here the possibllity of performinqﬁug;?/a
replacement of the variables in the funotional integral’ '™ .
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5. Conclusion_

The basic result of this paper is the proof of the Hamiltonien
structure of dynamios on the physical submanifold of phase space de—
fined by the constraints and the gauge conditions. Just this problem
takes the central place in the g,ingal investigation of the constrai-
?;i‘ gymmios in the phase space « In paper and monographs

the Hamiltonian structure of dynamics on the physical submanifold
was assumed implicitly. In contrast to this we give the consiatent
derivation of the appropriate Hamiltonian equations (3.24) ana (3.25).

The authors are pleased to thank L,D,Faddeev, L.V.Prokhorov and
1.V.Tyutin for interest in the work and useful d¥scussions,
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