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In papers 11,2/ а new conformally invariant formulation of 
electromagnetic-field quantization was proposed. It was sug­
gested Ьу the aspiration of preserving the Maxwell equation 
symmetries in quantum theory too. An essential feature of this 
quantization scheme is the existence of conformal symmetry only 
in the physical state space ~рЬ· As is known, the space ~ph 
is usually imbedded in а larger unphysical space ~ of the 
state-vectors of the vector field А~(~. Matrix elements of this 
field between the states from ~рЬ are electromagnetic poten­
tials. That is why the conformal symmetry in ~ph is usually 
achieved setting it in ~ )~рЬ· However, such а way of its intro­
duction is not suggested Ьу the physical proЬlem properties. 
In fact, it is enough to attain an invariance under the confor­
mal group action only in ~рЬ (as, for example, in / 1/ ). The 
requirement for the larger space ~ invariance has the mathemati­
cal origin. As was shown in / 3,4/ such а requirement gives us 
а possibility of calculating exact (and unique) values of some 
quantities which might play the role of two- and three-point 
functions in the theory. 

It seems that without conformal symmetry in the larger space 
~ we shall loss this possibility. However, even if so, it is 
evident that such а refusal leads, on the other hand, to а more 
general solution of the proЬlem of conformally invariant quan­
tization of the electromagnetic field. Thus the class of func­
tions which might play the role of the Green functions in the 
theory is essentially extended. 

In the present paper we shall show that some unique results 
may Ье obtained with the requirement for conformal symmetry of 
the photon sector only in ~рЬ· In particular, it is enough to 
fix the form of the integral equation for electromagnetic field 
which is of the type of the Yang-Feldman one. In the case of 
massless spinor quantum electrodynamics this equation allows 
us to formulate the theory so that Maxwell~s equation is automa­
tically fulfilled in the physical space ~рЬ· 

1. We shall begin with а brief review of some necessary in­
formation from paper 1 1~ In this paper а new gauge condition 
for the vector field ~(~ was proposed to construct the large 
space ~. This condition is а third-order equation and has the 
form (Greek indices take values from О to 3): 

а а~А~(х) = ralls(x) j~(x), ( 1) 
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where jll(x) is the current of e1ectric charges: 

дll j (х) = о' 
J1. 

(2) 

S(~ is а sca1ar fie1d with zero conformal dimension and with 
nonhomogeneous conforma1 transformations (in more detai1 this 
fie1d is considered in papers / 1,2,5,6/ ); f is а constant which 
depends on the All(x) and S(x) -fie1ds norшa1ization; c:J is the 
D~ A1 eшbert operator а= gllv дll дv; д ll = д/дхll ;gJl.ll = (1, -1, -1,-1). 
I n papers / 7,8/ condition (1 ) for the free case (when jll(x) =0) 
i s considered. 

In paper / 1/ Maxwel1~s equation was proposed to rep1ace Ьу 
equa t i on (1) in quantum theory. Motivation was the fo1 l owing: 

Suppose that we are аЬlе to construct quantum fi e1ds All(x), 
S(x) , and jll(x) which satisfy eq. ( 1). It turns out that among 
matrix e1ements of the operator А (х) there are conforma1ly 
invarian t ones and they . satisfy ~rfxwel1~s equation with the cur­
rent jll(~. In this case the role of Maxwe11~s equations is an 
additiona1 condition separating conforma11y-sytnmetric matrix 
e1ements of the operator А~(х) which оЬеу eq.(1). (For more de­
tai1s see papers / 1,2/ ) • The state-vectors of operator All(x) 
form the space Н .Its subspace Hph с Н is spanned on those of 
them giving rise to conformal1y sytnmetric matrix e1ements. Let 
us denote Ьу A~h (х) and j~h (х) шatrix e1ements of operators А (х) 
and jll(x) between physica1 states (i.e., states from Hph ).ihen: 

i) N'; (х) satisfies Maxwell~ s equation 

( J1. а· ~-~а· ) ph< ) . ph с ) ag v - v А ll х = J v х • (3) 

ii) the set of functions A~h (х) 
specia1 conforma1 transformat1ons 

is invariant under canonica1 

Aph(x) ... дx'vAph(x'). х' = х ll + allx 2 
ll . v • J1. 

дж.Ji. 1 + 2(ах) + а 2х 2 
(4) 

where all are transformation parameters. 
In fact, this шeans that in HPh there acts а conformal-group 

representation which preserves this space itse1f and, of course, 
еq.(З), though at the sаше time the space Н might not Ье con­
forma11y sytnmetric (at а11). 

In the case of а free e1ectroшagnetic fie1d eq.(1) takes the 
form 

' ll 
ад АР. (х) = О (5) 

and fie1d operators All(x) and S(x) оЬеу the following col!ППutation 
re1ations: 
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[Ар. (х), Av(Y)] = -igllvD(x- у) + iкдр.дvЕ(х- у), 

[AJl.(x),S(y)] = irдllE(x-y), 

[ S(x), S(y) ] = - iЛ Е(х- у) • 

(б) 

(7) 

(8) 

Here r , к and Л are constants, and cotnmutation functions D(x) 
and Е(х) have the form 

1 2 D(x) = аЕ(х) = -l(Xo) В(х ) , (9) 
217 

Е(х) =-1-l(x 0)0(x~. (10) 
817 

The space Н is the five-component fie1d (Ail(x), S(x)) Fock 
space and for Hph we shal1 remind on1y the structure of its 
one-photon state vectors, name1y 1 Ф> ~ Н ph , if 

ll + 4 
1 Ф> = f Ф (х) All (х) 1 0 > d х , ( 11) 

where functions Ф ll(x) ~ 'S (R 4) satisfy the following equation 

д ll Ф (х) = О ( 1 2) 
ll 

(S(R4 ) is the space of smooth functions of four arguments inc­
reasing at infinity faster than any negative degree of а11 these 
arguments). 

2. Let us now turn back to equation (1). As а first step 
we sha11 try to find some ana1ogy of Green~s functions for this 
equation. The proЬlem is that such а function (1et us denote 
i t Ьу G ~LV(x-y)) has to Ье а second-rank tensor due to the spe­
cia1 structure of eq.(1) and its Lorentz invariance. We obtain 
а vector aдllGilv when acting on Gllv (x-y)with the operator од ll. 
The simp1est vector function with а point support is дll В4 (х -У) 
(В(х-у) is the Dirac function). Thus \le are 1ed to the conc1u­
sion that this Green~s function ana1ogy must satisfy the fo1-
1owing equation 

ll 4 
од Gllv(x - y) =дvВ (х-у). ( 13) 

А pa rtia1 so1ution of this equation when sca1e dimension of 
GILV (х) is taken into account is 

G (х) = а g D (х) - (l + а)д д Е (х) , 
ILV ILV 8 /lV 8 

( 14) 

where а is an ar bit r ary cons tant, D (х) is the Green function 
~ 1 ь . 8 of D А em ert equat1on 
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4 oDg(x) =- 8 (х) 

and Е g<x) is Green# s function of the equation 

о 2 Е g (х) "' - 8 
4 (х) , (о Е g (х) = D g (х)) • 

(15) 

(16) 

It follows from eq,(13) that ·a/Lv must have а scale dimension 
of (length)-2 that is in agreement with the dimension of phy­
sical matrix elements of the field A/L(x) (dimension of the latter 
is (length)-1 

). Hence (14) is the only scale invariant solution 
of eq.(13) with such а dimension, We would like to point out 
that there is one uncertainty in Dg(x) and EgCx) because of the 
boundary conditions which are not yet taken into account, and 
later on we shall return to this proЬlem once more. 

Consider the following expression 

4 4 . 
h/L(x) cA/L(x) -!JD/LV(x-y)S(y)jv(y)d у+ ctfDg<x-y)Jiy)d у +С2д/Lф(х). 

' (17) 
Here A/L(x) is an arbitrary solution of eq,(1), с 1 and с 2 are 

arbitrary constants, and ф(х) is а new field \-тhich satisfies 
the equation 

о 2 ф(х) =О. (18) 

А straightforward calculation (where relations (13) and (1) 
are used) convinces us that h/L(x) obeys the free equation (5): 

oa/Lh/x) ""о aiLA/L(x)- fo aiL f D/LV(x-y)S(y)jv(y)d
4
y =0. (19) 

Thus, equation (17) gives us the correspondence between а so­
lution А /L(x) of eq. ( 1) and the free field h/L (х) ( in the sense 
of eqs.(5) or (19)). 

3, Let us now consider equation (17) in the quantum-theory 
context. This equation connects solutions of equations (1) and 
(5). Then the free field h~~x) and the interacting one A/L(x) 
have а common state space Х. The relation between those two 
fields is linear and canonical conformal transformations are 
homogeneous, Then it follows that physical matrix elements of 
the field h/L{~ arise when in the right-hand-side of (1r) physi­
cal matrix elements of the field Aix) have arised. And this 
means that the physical space J<ph for operators A/L(x) and h/x) 
will Ье common too. А simple calculation of the matrix elements 
of operator equation (17) between physical states gives us 

h~h(x) =Ath(x) -f(D/L
11

(x-y)(S(y)j 11(y))phd
4
y + (20) 

h 4 ' h 
+ с1 Г D g (х - у) J~ (у) d у + с2 д IL ф Р (х) 
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(the superscript ph is used here to denote the physical matrix 
elements of corresponding operators), As is known conserved cur­
ren7 j~h(x) is transformed under the special conformal transfor­
mat~ons as 

Jph (х) ... Jph 'сх) 1 дх'v 
2---, --jph( ') 

Р (а·; х) дх /L v Х , 
(21) 

/L /L 

where p(a,X)=l+2(ax) +а2х2. At the same time the fieldS(x) 
obeys а nonhomogeneous transformation law 

S(x) ... S'(x) =S(x')+)( ln\p(a,x)\, (22) 

where the constant )( depends on the field S(x) normalization. 
We would like to remind that h~h ( х) and A~h ( х) mus t Ье sym­

metric solutions of the corresponding equations. Hence the last 
three terms in the ri~ht-hand side of eq. (20) as а whole have 
to Ье transformed under the conformal group action according to 
eq. (4), when the matrix elements jPh (х) and (S(x) j(x)) ph trans­
formed under their own transformatfon laws, defined Ьу eqs.(2) 
and (22). Owing to (18) we may consider for the field ф(х) the 
same transformation law as for the field S(x)." So, the last term 
in eq.(20) will have canonical transformation law (4). For the 
remaining two terms 

L /L (х, S, j IL) = с 1 f D
8 
(х- у) j ~h(y) d4 у - t f D/L

11 
(х- y)(S (у) j v (у) )ph d 

4у 

we must find conditions that lead to the identity 

д ,v 
L (х, S' ; j ') = .....!-. L v (х ', S; j ) (23) 

/L дxiL 

(S' and j' are defined with (21), (22); the superscript ph 
is omitted for simplicity). 

А tedious, but not difficult calculation leads us to the 
following conditions obtained from the infinitesimal form of 
eq. (22) that are in an identity: 

i) а= О, 

ii) c 1=ft (see (14)). 

As we have reduced condition (23) only to the determination 
of arbitrary constants, both eqs.(20) and (17) are fixed. The 
constants f and )( are related Ьу 111 f = 2/)(. 

Therefore instead of (17) we finally obtain 

h/L(x) = A/L(x)-..!Jд/La11 Eg(x-y)S(y)Jv(y)d4 y + 
)( ' (24) 

+ fD/x - y)j/L(y)d 4y +О2 д/Lф(х) . 
5 



The constant с 2 is not fixed. The corresponding term repre­
sents the gauge freedom, each sol.ution of eqs.(1) on (5) pos­
sesses, 

4. Equation (24) is in fact some generalization of the Yang­
Feldman equation for electromagnetic potentials where the physi­
cal space conformal invariance is taken into account, То get 
convinced of this, we shall write (24) as а solution for the 
vectors AIL(x): 

AIL(x) = h/L(x)- I Dg (х- у) j/L (у) d 4 y + ~ rдJLдV Eg(x- у) S(y) {(y)d
4
y.(25) 

We have added the term с2 д!Lф to the field hix) making use 
of the gauge freedorn of the latter. Equation (24) is valid for 
all solutions of eq,(1). So, each of them may Ье represented in 
the form (25). 

Equation (25) differs frorn the Yang-Feldrnan equation Ьу the 
third, gradient terrn, This terrns do not vanish because in this 
case there would not exist conformal syrnrnetric rnatrix elements 
of the operator AIL (х) . 

The field ~(х) coincides with the (in)-electromagnetic field 
if correspond1ng retarded Green' s functions Dret (х) and Е ret (х) 
(oEret (х) = I?ret (х)) are taken in eq. (25). So. we rnay denote this 
field as A'n (х) and then eq. (25) will read 

IL 

А ( ) in( ) r . 4 2 . . v 4 ILX =Aj.i. Х- Dret(X-Y)JIL (y)d Y+XJдiLдvEret(x-y)S(y)J (y)d у. 

(26) 

5. We have not ye t fixed the structure of the current. It 
rnay Ье either an external classical current, or а quanturn fer­
rnionic one, if only conserved. In the second case we have to 
consider rnassless charged ferrnions because of the conforrnal 
syrnrnetry of the theory (though eq. (26) rnight Ье valid in the 
rnassive case too). These rnassless ferrnions satisfy the Dirac 
equation 

iу~'-д ф(х) = еу~'-А (х)ф (х) 
IL IL 

(yiL are the Dirac rnatrices). Then (26) includes the quanturn 
spinor current 

j IL = е ф (х) у IL ф (х) , iJIL j IL = О 

(defined in the usual way). 

(27) 

(28) 

Thus, we have obtained а new fornulation of quanturn electro­
dynarnics given Ьу eqs.(26), (27), (28), along with eq.(5) for 
the field А': (x).In this forrnulation Maxwell's equation is auto­
rnatically fulfi lled but only in the physical conforrnal-invariant 
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state space }{ph. The field А~ (х) must Ье quantized according 
to the scherne in paper l l / (sorne properties of this field are 
given Ьу relations (6)-(12)). As is known, an iteration method 
applied to eq.(26), (27) allows one to express approxirnately 
(in powers of е ) the out-fields through the in-fields and to 
calculate the S -matrix elernents. Obviously, in the perturba­
tion theory thus constructed the gradient term in (26) will 
play an essential role in the diagram internal lines. А diag­
rarn technique based on the Yang-Feldrnan equation in QED was con­
sidered in paper 191.нowever, an essential generalization of this 
techniques is necessary in our case because of the additional 
terrn in the integral equation (26). 

I would like to thank Prof. V.Kadyshevsky and Prof. P.N,Bo­
golubov for interest in the proЬlern and useful discussions. 
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Стоянов д.ц. Е2-84-465 

Уравнение Янга-Фецьдмана в ~онформно-инвариантной КЭД 

Исследуется ранее nредложенное новое калибровочное усло­

вие для электромагнитных потенциалов в квантовой электродина­

мике. Это условие дает возможность расширить гильбертоно nрост 

ранство состояний ~аким образом, чтобы физическое подпрост­

ранство, во-первых , оказалось конформно-инвариантным и, во­

вторых, в нем выnолнялись автоматически уравнения Иаксвелла. 

Такая структура nространства состояния дает возможность nо­

строить интегральное уравнение типа Янга-Фельдмана, которое 

приводит к новой формулировке квантовой электродинамики. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 
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Stoyanov D.T. Е2-84-465 
The Yang-Feldman Equation in Conformally Invariant QED 

А recently proposed new gauge condition f~r electromagne­
tic potential in QED is discussed. This condition allows one 
to extend the Hilbert state-space in such а way that the physi 
cal subspace is conformal-invariant and Мaxwell equations in 
it are automatically fulfilled. This state-space structure 
gives а possibility of constructing the Yand-Feldman type 
integral equation, which leads to а new formulation of quantum 
electrodynamics. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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