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1. INTRODUCTION

An exciting prediction of QCD as the theory of strong interac-
tions is the existence of glueballs, the bound states made up
of gluons /1-4/.However, a definite verification of the prediction
is not yet done. There are announced glueball candidates /5-10/,
but different interpretations are possible as well /11-12/ . Thys,
it becomes more and more clear that for the identification of
these states one should know not only their masses and quantum
numbers but also their decays to ordinary hadrons. This is even
more urgent because the glueball candidates 75-7+10/ 4o not beha-
ve in their decays as one naturally expects /13/  -Since the glue-
balls are flavour singlets, it is expected /13/ that they are equ-
ally coupled to all flavours and so, their decays into, e.g.,
#tn~ and KK~ mesons should only differ by phase space factors
increasing thus decay to pions. However, experimentally the op-
posite is seen for the glueball candidates /5~7,10,14/

Independent theoretical results/15.18/ and, maybe, experimen-
tal indications /5-10/ show that the scalar glueball is probably
the lightest one with mass around 1 GeV. So, the number of its
hadronic decay modes is limited; it decays only to the lighter
pseudoscalar mesons. This suggests that in order to understand
the decay properties of the scalar glueball, it is highly desi-
rable to have a nontrivial model describing interactions between
this glueball and pseudoscalar mesons. Moreover, one can hope
that the main characteristics of the model can even be generally
valid for interactions of glueballs with pseudoscalar mesons.

Recently, an effective Lagrangian model of this type has been
suggested in our paper /17, This model has been shown 717/ to sa-
tisfy the anomaly relation of the trace of the energy - momentum
tensor of QCD 718/ and the important low-energy theorems of
refs./18:19.20/  pgere (section 2) we want to present the model in
more detail. We shall see that the part of the Lagrangian that
describes the effective interaction between a scalar glueball
and a pair of pseudoscalar Goldstone mescns is predicted if one
specifies the mass of the scalar glueball. The model will be
shown to be in a resonable agreement with the glueball assign-
ment for the g, (1240)/7/ scalar meson. In this way it will be
- explicitly demonstrated that the coupling of the scalar glueball
to.pseudoscalar Goldstone bosons is only due to a chiral-symmet-
ry-breaking quark-mass term in QCD Lagrangian, i.e., in the
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SU(3)xSU(3) chiral symmetry limit the glueball does not decay to
lighter pseudoscalars. In the case of exact SU(2)xSU(2) symmetry
this glueball does not decay to pions while in the realistic
world the width of such a decay is proportional to m% and is
strongly suppressed. Thus, we cal this coupling the gﬁ(Z)xSU(Z)
rule. We shall also show that the SU(%)xSU(Z) coupling rule ex-
plains the existing experimental data 8,14/ £or decays of a ten-—
sor glueball candidate 6(1640) into pseudoscalar pairs (secti-
on 3). In section 4 some conclusions are drawn.

2. AN EFFECTIVE LAGRANGIAN FOR A HYPOTHETICAL SCALAR
GLUEBALL AND PSEUDOSCALAR GOLDSTONE MESONS

Let us begin our considerations by assuming that the low-
energy dynamics of the octet of the pseudoscalar Goldstone me-

sons is described by the following{effective Lagrangian (for fur-
)

ther references see, e.g., ref,’/?

£=L (3,1 U+ &g, (1a)
where

€ep =-Tr[M(U+UN)]. (1b)

Here the elements of the 3x3 field-matrix U(x) form the (3,3)
representation of the chiral SU(3)xSU(3) group, i.e., under chi-
ral transformations U(X) transforms as follows

U-AUBY, 2)

where A and B are unitary matrices of transformations. The mat~
rix M in eq. (1b) is real diagonal one and is proportional to the
mass matrix of light quarks. So, the explicit breaking of chi-
ral invariance due to the quark masses_is provided by £ term

(eq. (1b)) representing the genuine (3,3)+ (3,3) mode1/22ﬁ? In the

"current algebra" Lagrangian (1) the matrix U(x) satisfies the
constraint 721/

U@ U () = 17 : 3)

and can be parametrized as

8 :
U® =1 exp(i = Mam )
j=1 fn
where f, is the pion decay comstant (f, = 93 MeV), ¢, “s (i =
= 1,...8) are fields of the octet of the pseudoscalar Goldstone
mesons and A 's are the Gell-Mann A matrices normalized to
Tr()“,\j)==28ij . The Lagrangian (1) combined with eq.(4) comple-

2

tely reproduces current algebra results for the system of pseu-
doscalar Goldstone mesons. We mention here that we neglect the
pseudoscalar (non-Goldstone boson) singlet field (and, corres-
pondingly, a term in eq. (1) that solves the U(1) -problem) sin-
ce such a neglect is not essential in what follows provided the
scalar glueball is light and cannot decay into the 7m° nor 7%’
systems. ;

An interesting and important result coming from eqs. (1) and
(3) (or (4)) is the trace of the "improved" energy-momentum ten-
sor oﬂv/23/ which has the following form

(6:)1 =—-15Tr[(auU)(a“U"’)]._4£SB' ‘ (5)

where index "1" labels the correspondence to eq.(l). To deduce
eq.(5), it is useful to introduce the scalar u;'s and pseudo-
scalar v;“s (j= 0,1,...,8) fields by the relations

1
by = TA (U4 UDL, =-Zli_'rr[aj(u-u+)]. (6)
Then Lagrangian (1) can be rewritten in the form:
8
£=.;_ iz=0{(aaﬂui)2+(auv1 Yr.e... (7)

Now let us assume that the fields u's and v's (and consequently
the field-matrix U) have dimensions (conformal weights) equal
to the number d, i.e., under dilatation transformations X px

( p> 0 being an arbitrary number) one gets U(n-ap“dU(n and
Ut-p Ut (x). It is an easy exercise to obtain the "impro-
ved" energy-momentum tensor /23/ from eq. (7). We get

8
O = 2, 100,0,)(3,u)+(9,v)(8, v, ) -8, 2+

(8)

8

b3 (u? +v?),
. 1
i=0

d A
+—6-—[guvr9 3,\-—8“3,/]

The trace of the ouv reads (after the use of equations of mo-
tion) ’

oh-(d-1) S FGa 02 v v Flitdo4)¢ (9a)
" it Al ) Ll d) oy :

or, in a more compact form (using eqs. (6)):
d-1 : :
N il U ryt 4.
) P l'[(au YR UT)]) + ( 4)fSB 4 (9b)

Due to condition (3) the dimension (conformal weight) d= 0724/
and then eq.(9b) gives eq. (5).



On the other hand, in QCD the result for the trace of the
energy-momentum tensor is given as 718/

u B(g) _(a) _(ayuv Qcp
il e - (1 e
(ou )QCD T (1+y (8))Lgy (10)
where F“f:)'s (a=1,...,8) are gluon—field strength tensors,
B(® is the Callan-Symanzik function and y_(g) is the mass ano-
malous dimension. The term £9°D(x)-_3m q (x)q, (x)(m,  's

© SB 19 i i 9

are quark masses, qi(x) 's are quark fields, i is a given fla-

vour) represents the chiral-symmetry-breaking term in the QCD
Lagrangian.

In the pseudoscalar Goldstone meson sector described by
eqs. (1) and (4) the relation (10) is effectively represented
by eq.(5). However, because of different dimensions (conformal
weights) of the terms .QS and Q%gnin eqs. (5) and (10) chiral
noninvariant pieces of tgese equations are formally different
(naive comparison gives the unacceptable result y, (g) = 3).
Although such a difference is allowed for effective Lagrangians
nevertheless, being guided by eq.(10) we want to enlarge eq. (1)
in a way to include a scalar field into it. In fact, to follow
closer eq.(10), the improvement of the dimension of eq.(lb) is
needed. This can be done by assuming the existence of a dimen-
sional, flavour-independent scalar field o(x) (dimension d, =1)
which can be used to write down the following symmetry-breaking
term .

£ (0)=-[o(x)1®77m) Tr(M(Ux)+U*(x))] . an

instead of eq.(Ib). In eq.(11) y, is a parameter which will be
specified later. We note here that since o is flavour—indepen-
dent, it is singlet under chiral (i.e., in the flavour space)
transformations, and therefore £4p belongs again to the
(3,3)+(3,3) representation as it is required /22/ We also remark
that consistency with spontaneous symmetry breaking (requiring
VEV <o>g =035 #0 ) and correct behaviour of ¢(x) under dilata-
tions (Xspx, o(Xx)+p~lo(x) ) need introduction of the actual
physical field 6(x)(<5>6 =0) through the parametrization’25/

e(1)=0. oxp (24X) ) (12)
0 o
0
where G(x)-.&(x)-aolnp when X-pX.
It should be stressed here that there is no need to change
the dimension of the first, chirally invariant but dilatationa-
ly noninvariant term in eq. (la) since just this term gives a
chirally symmetrical contribution to eq.(5) in agreement with
the QCD trace anomaly, eq.(10). Moreover, in the chiral-symmetry
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limit it is this piece of the trace of the energy-momentum ten-
sor (eq.(5)) which effectively represents the low-energy .theo-
rem of refs,/19,20/% '

EppRp )i @] 02 L W8 (13)
limit 2

where q2=2p1.p2=(p1+ 92)2 is the invariant (mass)2 of the
PP system.
Thus, a minimal enlargement of Lagrangian (1) including the
o-field is proposed to be of the following form
1 2 1 ot ¢
compl =§-(a#a-) +74-Tr[(aun)‘(a UNDI-V(e)+ £5;,

(14)

where U,e¢ and SﬁéB are given by eqs.(4), (12), and (11), res-
pectively, and V(o) is a chirally invariant potential and

as such dependent only on the flavour-independent o~field.

The Lagrangian (14) gives

[ 1 : dV( ) , g
o, =--2-Tr[(auU)(a“U+)} +4V(e) 0 ol (Ley VEL, o0 (15)

We see already formal consistency between eqs.(10) and (15)

and we also expect that the parameter y  is approximately given
by perturbation theory, i.e., ym!—-ym(g(u)), where p is some
typical hadronic mass scale. We choose for definiteness a,(yu) =
= 0.7 at p = 0.2 GeV /28/ and then y é2as/n+0(af)=0.5+8(a%).
To completely specify Lagrangian (11:5 it still remains to find
the potential V(o). To do this, let us expand V(o) in the right
field ¢:

dv . - 1, dRy ~
V(o) = —_ 5 < — L
(o) V(ao)+,< d&v>° o+5< 1oz 2,7+ (16)

Using parametrizatigns (4) and (12) in eq.(l4), and eliminating
the term linear in o from (14) by requiring
3 -

av 1 ’m 2, . 2y¢r2
G 2 1=,

P e 7, ( mK+«mn) > 17)
we obtain Lagrangian (14) in a correct form. From this Lagran-
gian one easily finds, e.g., the o -particle (mass)?:

2 3~
e o OV Y OV (18)

ma -
d02 0 ab doe O

* As usual, we shall calculate in tree approximation, and sta-
tes will be normalized covariantly: <p|p ’>=(2r)3 2‘0‘, 53 (p - p”).
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and the interaction term:

1 3-)/ =
?,P;(x)-—?#’(‘) 1%1“'3"5?(‘)' ay

where m,'s (i=1,...,8) are masses of the octet of the pseudo-
scalar mesons. It is seen from eqs.(10), (15), and -(16) that the
chirally invariant part of the trace anomaly is effectively

given as

H(x)=- B(e) Fz(x)=H°+H15(x)+H2'az(x)+

. : (20)
+0(6%)+ 2 Tr[(3,U)(8" U],
where

B(g) _o av _
H°=-< 2g F >0=0'0 <—a—;—>0 —4V(00).
i U (21)

o1 iy e . 4RV

Hp = 5[y < a7 % 4< 3550 1, ete.

To find coefficients H; (i = 1,2,...) one can use successively
the following low-energy theorems /18’ (valid in the chiral-
symmetry limit):

1 [dx <o T(H(x)H(0))|0>=4H [1+0(m )],

. ; (22)
1% fax [ dy <o| T(H(x)H(y)H(0))| 6> = 16H, [ 1+ 0(m )1, etc.
Combining eq.(20) and the first of egs.(22) we get
2 2 ;
H'=4m?H/ [1+0(my)]. ) (23)

Analogously, eqs.(22) can be used to calculate all the coeffi-
cients H, in terms of, e.g., my and Hy. Moreover, from eqs.(17),
(18), (21), and (23) one finds

mf,¢r~(2)-4H0[1+0(mq ). , (24)

The value of Hy is approximately given as follows (for the
SU(3), —colour group and for three light flavours, Np= 3):

H0=—<—£—(-QF2> =235 pty 06, (25)
2g 0 8 m 0 s :
where da,/n) F2>6 is the familiar gluon-condensate term paramet-—

rizing nonperturbative effects of QCD /28/  Shifman, Vainshtein,
and Zakharov were first 726/ who estimated this condensate by

6
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analysing the QCD sum rules for charmonium., They obtained

a
<

2 F2>0 ~0.012 GeV4 ., (26)

However this value is not yet strictly determined, and a larger
value than given in eq.(26) is called for (may be by a factor
2+ 3)/27, Thus, the only arbitrary parameter of our model

(eq. (14)) remains the mass m, of the scalar o-particle., Since
the o -particle dominates the scalar gluonic current (see eqgs.
(20), (22)-(24)), then this particle must be identified with
a hypothetical scalar glueball, Such an identification is sup-
ported also by a large N -dynamics (N, is a number of colours).
For example, from eqs.(20) and (23) it is (as it must be for
a true glueball, see ref./18/) <olH(o)|e>=2m, Vv Hy ~N, in the
large I;c limit because, as usual, m ~N; , and from eq.(25)

Hy ~Ng.

i It cis worth to note here that just the constructed Lagrangian
(14) gives (combining eqs.(15)-(19)) a generalized version (for
nonzero quark masses) of eq.(13), namely,

- . L
<P(pP®,)I(6,), 10>=2p . p,+
(27)
. m* 2
+(3“"m)mP"'J_'m2 q2+(1+ym)mp.
L
which for higher o-particle nass (m2>a2%>4md) behaves as
P [ 1 2 2 '
<P(p IP(P,)I(0,), 10>=0%+2mp (28)

in full accordance with such a generalization of the low-energy
theorem in ref.’2%, Taking eqs. (27) and (28) to be valid for
all eight pseudoscalar mesons (i.e., PP=n*r~ , K*K g ,etc.),
we easily see that the present model suggests the bound

Mg >2my = 1.1 GeV for the mass of the scalar glueball,

Defining the decay amplitude T,,¢ as
420 (4
<AISii>=5, +1(2n)* s (0 -0 T, . (29)

where, as usual, S=Texp(i [dx®, , (x)), then using the interac-
tion term (19) and combining it with eqs.(24) and (25) one easi-
ly obtains the following formulae for the decay widths of ¢ into
pseudoscalar pairs:

4m2 a2

o”o=Am;(1" ) ’

. 4 - =2F
o7 n o> m
(4



r Aat (1 4m‘%( 1/2
e e ARl o) G0
2
= A 1-
f,‘,.,,,,, 2 mn(‘ m% ) ;

where the overall factor A is

2 ma-
ag i
F>
0

Y
A=(1- ;’ ) an

87 <

The scalar glueball candidate g8g (1240) dis satisfies the mass

bound m, = 1.24 GeV> 1.1 GeV and still is light. enough to have
8
dominant hadronic decay only into pseudoscalar pairs. Then to
a good accuracy the total width I‘g is given as
8

ng =‘I‘gs_”m +I“gs_)K-}-{+ ng it - (32)
Labelling x"=I‘gs oy /I“g;, xp=T, Lxx /l"g and putting m, = mg =

8 8
= 1.24 GeV we obtain (x"xl‘()v“2 = 0,06 from eqs.(30) and (32);
and for y éO.S,((as/n)F‘2>d syz =0.012 Gev? (see eq. (26)) we

5 i . 2 2
find I‘g8 270 MeV while for ;asF >0 =2<“5F > syz °one gets
r;;s = 135 MeV. We see that the agreement with experimental va-

1/2

experiment 0.04 and (ng Jexperiment =

= (140 + 10) MeV is remarkable, Because of the lack of know-
ledge of precise values of the phenomenological parameters H

and 'ym it is difficult to say whether the consistency with ex-—
periment requires definitely a higher value of <{a4 /U)F2>0 al-
though this seems to be the case when using reasonable approxima-
tions given by eqs.(23)-(25) and y /341,  We note also here
that the decay pattern of another announced scalar glueball
candidate G(1590)71%/ is not consistent with egs. (30).

1ues/7/(x”xK)

3. THE COUPLING OF A TENSOR GLUEBALL TO PSEUDOSCALAR MESONS

In the previous section we have explicitly illustrated (see
egs. (14), (19) and (30)) the SU(2)xSU(2) rule for the coupling
of a scalar glueball to pseudoscalar mesons. Here we want to
show that this rule is valid more generally, namely, for the
coupling between the tensor glueball candidate 6 (1640) and pseu-
doscalar mesons (for the original suggestion, see’28/),

So, let us label the field of the tensor glueball candidate
6 (1640) as ¢uv(x).where

8

[ 1y

J ¢'uv=0' B g, =0 . : (33)
and ¢, is symmetrical in u.v (see, e.g., ref, /29 ), Since d’uv
is flavour-blind, it is singlet under chiral (i.e., in the fla-
vour space) transformations, and then besides U (egs,(2) and

(4,),) the following derivative terms, for example, g (a“av.U),

¢* (3,U)(3, UNHU, * U(9,U%X9, 1), ¢’ U(3,0,U%)U,etc. satisfy
eq.(2); thus, a linear combination of them can be used in eq.
(1b) instead of U. However, not all these derivative terms are
nontrivial and independent, because due to eq.(33) we have,e.g.,:

3, (8 8,1)=¢" (30,1, - (342)

3, (6" U(a, UH U1=¢" (3,009, U0
(34b)
+" 03,9, UM U+ ¢ U (5, UN,U).

The 1.h.s. of these relations are full derivatives and as such
do not give nontrivial contributions to Lagrangian; then all

three terms on the r.h.s. of eq. (34b) .are not independent too.
As a result (after the use of parametrization (4)), we choose

8
uv ) :
105 (1) =897 () 2w (3,4, (N3, ¢, (), (35)
what is then the only nontrivial and independent Lagrangian term
coming from the general effective quark-mass term and descr%-
bing interaction between 6 (1640) and pseudoscalar _pair particles
P,B(PP=ntn—,K'K", etc.). Here g, is some unknown constant
and my's are masses of the pseudoscalar mesons. Using egs. (.29)
and (35) it is easy to obtain explicitly the following partial
decay widths ;

4m2  s/2
4 z
Do e il e
>Tw -» 0
4 amf 62 36
Gty loewe s Ul m?2 ) : -
6
4m?
1 4 7 5/2
=—'C 1"' ’
FG-nm 2 o ¢ m;)

where an unknown overall constant C depends only on gl.and mg.
We see from egs.(36) that the decay of §(1640) into pilons is
naturally suppressed due to smallness of the pion mass. Eqs,(36)
give (for m,= 1.64 GeV):

T /T i 0.05, (experiment: < 1),
Q-nm O-a7y



0 g =026, (experiment: 0.33+0.,2), (37)

where the experimental data are from ref./14/,

It is interesting to note here that.géé term (eq.(11)) has
the dimension corresponding to the quark-mass term one if ome
assumes Yp = O while in the case of a tensor particle coupled
to pseudoscalar mesons (eqs.(34)-(35)) due to derivative coup-
lings this property is automatically satisfied.. Then the overall
factor A in eq. (31) is specified by specifying m, (yp/8<<1
and can be neglected) while the factor C in eq. (36) remains un-
known and only the ratios (37) can be predicted. We see (eq.(37))
that this prediction is in a remarkable agreement with existing
experimental data /1%/,

I 7AE
m

4, CONCLUSION

The Lagrangian (14) has been constructed as a minimal enlar-
gement of eq.(1) so as to lead to eqs,(15) and (20). These equ-
ations effectively represent the important low-energy theorems
of refs,’/19:20/ hyg justifying the starting Lagrangian (14).

The Lagrangian (14) contains besides the pseudoscalar octet
fields the only scalar glueball field o »i.e.,, other possible
quarkonium scalar mesons and their eventual mixing with o-
glueball are neglected. However, this does not mean that there
is no mixing between gluon and quark degrees of freedom. It fact,
the present model realizes strong mixing of this type, as one
can see from eq.(20), having on the r.h.s. large and unsuppres-
sed pseudoscalar meson (i.e., quark) contributions too, It is
just this type of mixing/18/ that explicitly gives not only low-
energy theorems of refs./1%20/ bue also is consistént with the
SU(2)xSU(2) coupling rule. This rule (see eqs. (19), (30), (35)
and (36)) is in a good agreement with the existing experimént31
data on gs(1240)/7/ abd 6 (1640) 76,14/ glueball candidates. Howe-
ver, any definite conclusions need fyrther experimental work,
namely, the confirmation of g (1240) v particle is urgently
required. -

Note added: after this work was finished the paper’3%/ has
appeared in which the coupling of the type of eq. (19) (between
a scalar glueball and mesons) has been independently mentioned.

I am grateful to prof. V,A,Meshcheryakov for his interest
and support in this work.
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