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1. Introduction

We are going to continue the study of the quantum-mechenical
tunnelling through & singular potential barrier started in the first
pert of this paper (Ref.!, hereafter referred to as [I]). We have
considered there & non-relativistic particle on the line moving under
influence of & potential V which was sssumed to have a (repulsive)
point singularity et x=0 (for & more detailed formulation of the
problem - see Section 2 of [I]). We have obtained two conditionms,
namely

c
j\V(x)dx = 00 (1.1)
-c

and
c
[fvlax - (1.2)
-c

for some c¢>0 , under which the tunnelling is forbidden provided the
formal Hamiltonian H1 = H04-V is essentially self-adjoint (cf.Corol-
lary 3.2 and Theorem 3.3 of [I]). Both these conditions are fulfil-
led particularly if the barrier is semiclassically impenetrable. More-
over, the tunneling is forbidden also in the case when H, is not
e.s8.a. and one chooses HP , the Friedrichs extension of H‘ , as the
Hamiltonian of the problem.

2. The example of V(x)=gx~2 : construction of the

self-adjoint extensions

Here we are going to illustrate that we may not generally re-
place the Friedrichs extension in the above essertion (i.e., in Corol=-
lary 3.2 of [I]) by another one. To this end, we shall treat in de-
tail the particular barrier
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Vix) =gx'2 s g20 . {2.1)

This potehtial fulfils obviously the assumptions (az-(c) from the
Section 2 of [I], as well as (e) and (dp) for p23 » thus all the
respective conclusions apply.

Let us ask when H1 =Ho+ Vv is e.s.8. In view of the relationms
(3.2)-(3.4) of [I1, the equation specifying the deficiency subspaces,
(H: -14)p =0 for A=2%1,1is simply related to the Bessel equation if

we set
1/2 ;
)= (g+%) : (2.2)

i1ts solutions on the halflines R; are linear combinations of
(22)/28(0) (e**1/4x) , k=1,2 . It is gasy that none of them is
square integrable if vzt , i.e., if g;% , and therefore H‘ is
e.s.8. in this case. . : :

On the other hand, if ge€ (0, %) , oY YE (5 , 1) , the deficiency
subspaces k* are two-dimensional and spanned by the vectors

8(x) /2 Bs‘)(&x) ’ (2.3a)

1L 209
Pi i Py (X
piz) 3 P£2)(x) = y,(,”(—x) = -9(-x) (—x)'/2 54’ 352)(9.::) (2.3b)

and

B

d1 ;i = ¢ = g 22 5P 0 (2.30)

"

g 2P e | s

o2 : B = yizs(x)
Here and ». further on, we sbbreviate & = 0’1/4 . The solt;ad oint
extensions of H' are then comstructed in the atanderd way’ <’

They are parametrized by the isometries X > X_ » i.e., by 2x2
matrices U whose elements fulfil the uniterity condition

ﬁlju1k+ﬁ23u2k=ajk Sy RE 20 ; (2.4)
Por a given U , we denote

x) () (2) . 5

P! pB) ot Esl @

According to the second von Neumann formula, the domain of the exten-
sion Hy of H' consiste of the vectors Y =p+(I-U)$o_' ’

vhere p*=c1pi”+02p£2) v 1ee.,

¥ = P*ctf’é”*‘-‘z?ﬁm (2.68)

with pe D(ﬁ,) and cy,c,¢€ € . The operator Hy; acts on them &8s
Egy =Ep+ 1(I+U)p, ; in view of (3.2b) end the inclusions HyCHjc

* 1
cﬂnin , one has

Hyy= -9  +Vy . (2.6b)

Let us look more closely how the functions of D(HU) behave

eround x=0 . We take yeD(H;) and @eD(Hy) with sapppc [-n,n],
then

_2 n

(‘P,Huya) = lim (f + f),f)(x) (-’y;"(x)+gx'27;(x))dx -
770 s )

Since both ’y' ' ?' are absolutely continuous in any compact subinter-

vel of R\ {0} , one can integrate by parts obtaining in this way

(pitup) = (opiy) & M8 QZ;*ou;(«,)y'(«p -p lapIylay)) .

Furthermore, to any ¢¢€ D(HU) one can always find a sequence

{yn}c D(BU) of functions supported by [-n,n] such that Pu ¥ s
HU?n"’ HUV’ y 8.g., by imposing (sufficiently smooth) cut-offs on Q.
Then the last equality holds for arbitrary p,ye D(HU) , and therefore
the second term on ite rhe must be geroc for each such pair of vectors,

This requirement can be reformulated as the following continuity con-
dition

11 (p,pix) = 11 (p,¥; .
L o (2.0

for ¢,peD(Hy) , where J(ppix)=p(x)y’(x) -p (x)p(x) . By a polari-
gation-identity-type argument, it is further equivalent to

lim JV(X) = 1lim J.*(x) (2.7b)
x+04 x50~

for each e D(Hy) , where Jy(x) = (21)7 J(y,pix) = Inm F(x)p (x) .
Hence one can say that the domain of every perticular extemsion HU
contains the vectors for which the probability current is continuous
et x=0 .

A stronger mssertion is valid for the vectors of D(ft,) : one can
take @ from the domain of ﬁ‘ =H:" and Ve D(K’:) , and repeat the
above argument for (p,}{'{y) ;3 1t yields again the conditions (4.78) .
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In the present case, however, one may always write ‘y='¢/‘ +1[/2 » where
both % ’1’2 belong to D(H1) and are supported by (-0,0) and
(0,0) , respectively. Consequently, one has

11 (pysx) =0 (2.8)
x-»gt diprr

for peD(H,) ana Ye D(Hfl’) . Notice that the last relation is easily
verified directly if ye D(H,) eand pe X, , because then |p(x)|g
£ K lxl3 2 (cf.the proof of Theorem 3.3 in [I]) and the functions
(2.3) behave near x=0 as follows

pi"(x) = A[E“x‘/z-v-BEBvxl/2+v +0(xs/2'v)J X0 (2.92)
etc.(the remaining formulase are obtained by complex éonjugation and/or
replacement X -» -x ), where

10 2P -y FQ1-y)
= - - Y R e et = o 2' b
: 7200 r(1-y) sinwy ’ M(1+v) (a:38]

On the other hand, (2.8) need not be true if neither ¢ mnor ¥
is contained in D(ﬁ,) . In view of (2.6a), we ere particularly inte-
rested in the case when V,y are of the form (2.5). The limits can
be calculated with the help of (2.9) and (2.4) ; they equal

;]50“)50( ),x) =% lumlzsec% » (2.10a)
11:8 382,020 = - 2L tu‘2|2 =2, (2.10b)
(1) (2) 0 vt 24 = yr (2.10¢)

111(:)1 ;](p "y 1x) = - U4y, B8C 5 . .10c

We see that, in general, the probability current for 'y/eD(HU) need
not vanish at x=0 unless U ie diagonal. It indicates that the
tunnelling might occur in such cases. In the next section, we shall
confirm this conjecture by evaluating the transmission coefficient.
Notice that the matrix U -U referring to the Friedrichs extension
is diagonal : we have shown in the proof of Theorem 3.1 of (1] that
D(H Jc An)c Q, , and threfore one has to require lim ’OU )(x) =

It yields easily

Usi= gy

= - . (2.11)

Remerk 2.1 ¢ 1In the above considerations, closedness of H1 is not
required. Before proceeding further, we would like to mention an
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elegant proof of this property which, however, works for g>% only.
It is based on the canonical commutation relations. We write

H, = (P2+%Q’2)+(g-%)Q-2 and apply it on & vector § of & suitable
domain, say, CZ(RN\{0}) . It gives

M2 < 220 2 Q7202 + (82 - %) 7212 + (e - 2) (y, (P20 200722y,

Using the relation [P,Q"]y = 1Q'2'¢ , one can rewrite the last term
as follows

o (P22 )y = 3 o7 -aTTeylR - S a2 .
Omitting the non-negative terms, we get the inequality
2
Iayh® 2 -2 0e%% , pecRN {0} . (2.12)

The remaining part of the argument is simple {(cf.the anaslogous problem
treated in Ref.4 , Proposition 1). Since g>% ’ Hm is e.s.a. and
the relations (3.2) of {I] show thet CO(R\{O}) is a core for H, .
To a vector Y€ D(H ) , we take a sequence {'yznj GiC (R\{Of) 3

Yp—> ¥ » then {Hﬂ‘n} is Cauchy and the same ie true for §Q° yn}
due to (2.12), and for sz,} too since P ‘yan-Hé 5 -gQ 21’11 .
However, both P° and Q are closed so Y € D(P YN D(Q™ )—D(H,) o

3. The transmission coefficient

Now we shall discuss scattering on the barrier (2.1) restricting
ourselves to the non-trivial case, 0~<g<‘z , only. We use the time-
independent setting, because it is simpler, and at the same time, it
allows to illustrate the main point, namely that the dynemics is de-
termined by the self-sdjoint extension BU chosen to play the role
of Hamiltonian. Hence we are going to work with the functions which
obey all the appropriate requirements Jocally but eventually do not
exhibit the overall square integrebility. In order to get the rigorous
Hilbert-space (time-dependent) scattering theory, one should consider
the motion of wavepackets composed of the plane-wave solutions con-
structed below ; but we are not going to pursue this task.

Given E>O , we are looking for solutione of the stationary
Schr8dinger equation

-¢7(x) +gx"%p(x) = By(x) (3.1)



assuming they are of the form snalogous to (2.6a),

(1) (2)
Y=Y %% %ty (3-2)

where ¥, belongs locally to D(-H1) . The equation (3.1) can be then
rewritten as

-4 + (gx"2- B, (x) = X)), (3.38)
where ’)( expresses through the functions (2.3) as

%(!) = O(X)[o(‘) (1)(1)"’0(1) (1)(x)] +9( x)[c(Z) (2)(1)*

(3.3b)
o(Pp{B ()]

with

o eor1) , o'Fle togu, tou )i} , k=12 . (3.30)

The function X is c® in R\{O} so the aamo is true for 2] It
can be seen as follows @ v‘ =(gx" -E)P‘ Xe C (R \{0}) , because
Y, Dbelongs locally to D(H ) D* (cf.(3.28) of [I]), then one has to
derivate successively the 1aat relation.

Pirst we shell solve the equation (3.3a) for x>0 . We start with
the related homogeneous equation whose Bolution is easily found to be

Yo = X¥01 *%Yoz + Where

Vo(s) = 228y |, etz (3.48)

where J = 31/2 . The Wronskian of these functions can be determined
from their asymptotic behaviour, either for x -»e or for x>0+,

Vo1 (%) = Joglm) = & [E9/20/30 _ggh g92,0/20 (.52 0], (3.

one has '(?‘01"/’02) = 4/21 . Next we suppose the general solution to
(3.3a) to be of the form

¥y () = &, (x)Y, (x) +lx2(x)yr02(x) . (3.4b)

The corresponding system of first-order equations for the functions
“k is8 easily solved giving

X X
i i
¥ (x) = < ¥oq(x) f X(¥)Yo{y) dy -L4- 1/’02(")./ )Yy (¥) dy +
0 0 (3.6)
+ €Yo () Ly, (x)

where the constants u,,aa are arbitrary up to now. In order to fix
them, let us look at the behaviour of yﬁ near the origin. It can be
found from the formulae (2.9),(3.3) and (3.5). A short calculation
shows that the leading-order terms (behaving as 15/2'3v ) in the
first two expressions of (3.6) cancel mutually, and the esymptotics
is determined by the last two expressions, specifically

W) = (g -a) AEY21x 2V L amia i - wye?) 2725 1/24

(3.7
+ o(1x|>/2-7)

Before proceeding further, let us look for the solution to (3.3a) for
x<0 . It can be found easily : 'y‘(x)=$‘(-x) » Where ‘71 fulfilse
the same e?uation as ¥, with replacement of x(x) by (-x).
Since p (x)= P -x) , the function ‘h differs from ¥, Just
by the coefficients : in the first two terms of (3.6) ciz) stand in
the place of ci” , and N,,Mz mey assume other values. With this
difference, the asymptotics of 141 for x -»0- is again given by
(3.7).

Legma 3.1 : Let a function ye Lfoc(ﬁ) fulfil the following oanditions:

(a) ¥,y° are absolutely continuous in R\{O}

(b) there is a positive such that ‘e L{ (R\[ 1)

(e) 1t holas y(x)= [a,x'/2~Y +qx'/2* 0(1)4—%. (cxjliev,
+ u(-x)‘ % JO( x) +j(x) , where _f belongu locally to D(H, )
(equivalently H j" is absolutely continuous in R and the
functions ! e 2}. belong to Iaz( 22) ).

Then either a;=-.:.-=8,=0 or y does not belong locally to D(H ).

roof ¢ We write the function € = y-§ 88 p-o , where P is a
suitable linear combination of the functioms (2.3) and & is regular
at the origin. Using (2.9) and the fact that sein(vax/2) 4is non-zero
for vel(g,1) , we see that p ie determined uniquely by the numbers
a, and that w(x) ‘O(IXIS ) near the origin. Then & Dbelongs
locally to D(H,)C D(Bl) and the same is true for §f-w =Y~y 1in
view of the assumption (c). Suppose that ¥ Dbelongs locally to D(‘ﬁ'),
then the same should hold true for P . Moreover, ¢ 18 square-inte-

grable so pe D(ﬁl) . However, ¢ 1lies in the subspace ¥, o P
1



of D(H"‘) that is H1-orthogona1 to D(§1) (Ref.4, Section X.1). It

is possible only if p= 0 , or equivalently, Byseeo -, = 0. B

The function ‘% is supposed to be locally of D('ﬁ.‘ )‘ 80 the
above lemme implies easily that the last two terms on the rhs of (3.6)
must vanish, and similarly for @'1 . Now we express the obtained solu-
tion more explicitly substituting for % from (3.3b). We denote

00

g = feillowa e | xie (3.88)
X

L0, 0 (3.9)

The asymptotic behaviour of Jkt(') for x-»c0 can be found using
that of the cylindrical functions in (2.3),(3.4a) ! there is a cons-
tant K (depending on E ) such that

M @erenlcai2yy | i50 | (3.80)
The function 1#1 for x>0 can be now rewritten as

L 2L (D) «
fm =B [y, -5, ) 40!V, -3, (0] 45,00 -
o ) (3.10a)
=T [VG s v May -5 @n) gm0

and due to (3.4a2),(3.8b) , its asymptotic behaviour for x>0 1is
the following

1/2
Spdf (1) (1) 2
¥ ix) = 2(24) {(c+ Joutel J2__) exp[i(qx-%—%)] -

(3.11a)
- (ci‘)J“+c£‘)J'_) exp[—i(\lx—%-%)]} +O(x°1) :
where again A=E‘/2 . Similarly, one has the expression
}px = 4 ("iz)"’a -3pu -2 +efB -3, (x0)]yg (-3 -
(3.10b)

S 3 LT ARC O PRI AR CEOPI EMEE)
for x< 0 , which behaves for x-» -o9 &8

1/2 :
Y (x) = %(%) {(ciz)J2++c£2)J2_) exp[-i(.\x+-‘¥-+ )] =
(3.11b)
s (OEZ)J“_-&c-(_Z)J’_) exp[i(.\x+%+¥4-)]} 40(‘,“-1)

In order to make use of the relations (3.11), we should know the
coefficients Jk.t explicitly. It can be easily achieved (cf.Ref.5,
6.521.3 and 8.407.1) ; one has

2 g‘v E)?E)’/Z _2VE-\’/2

g = . (3.128)
1+ "X ginwr E-1
y_=V/2  =3y_V/2
-3E
7. =2 £E £ . (3.12b)
- " x sinva (E+i)
do, =3, 4, =3 (3.12¢)

Now the crucial point is that the functions ?I(Ik) in (3.2) decay

exponentially at infinity. Thus the asymptotic beheviour of Yy coin-
cides with that of ¥, and it is fully determined by the choice of
the coefficients c*k . One has to know the correspondences
(ci”,ci‘))(—-p(ci,cz)ﬁ(ciz),cfm) . Two cases should be distin-
guished @

(1) the matrix U_is disgonal. Then the pairs o'’ and ci2) are
independent : the relations (3.3c) give

L

(B
- kk E-i "+ ?

k=2 (3.13)

Consider the situation when one of these pasirs is zero, say, ci2)= 0y
Then the formulae (3.112),(3.12¢c) &nd (3.13) yield the asymptotics

x

yoo = 3(2) 7

(1) E+i 2
s {(J2+‘“11§_‘IJ2-) “P[i(“"%'z)]*
(3.14a)

Eed el 1 S | -1
Taaeg Yz, N ﬁ"z-)elp[-i(-\x—-g---,;)]} +o(x~hy

for x—»00 . On the other hand ciz)= 0 1implies c,= 0 80 the rels-
tions (3.2),(2.5) together with u2'=0 give 'y/(x)=‘p1(x) for x<0.

In that case, however,
y({x)=0 yo X0 (3.14Db)

holds due to (3.10b). Hence we have total reflection in this case ;
the phase shift of the refiected wave can be easily derived from
(3.14a).

(11) the mstrix U is non-diagonal. Now the appropriate determinants
ere non-zero 80 the correspondence (c ,t:_1 )H(ciz),ciz)) is bi-

jective. We choose the initial conditions in such a way that we have

9



the transmitted wave on the positive semiaxis only, i.e.,
eflly +olly 0 . (3.158)

Then the reflection and transmission coefficients are defined by the
expressions

ciz)J +4-c£2)J2_ 2
R = R(EU) = |5 (3.15b)
e, dy e "0,
and
c(1)J *c(')J -
T = T, (EV) = |~y . (3.15¢)
ey dyp 20t il

respectively. Using (3.12c) together with the unitarity condition
(2.4)5 one can check that the equality loiz)JZ**c(Z)Jz_lz +

¢ fo!! J2++c(‘)J2_|2= Icfz)J1++c_2)J1_|2 holds if (3.158) is valid,
i.e.,

R+1T =1 2 (3.16)

Let us now express the transmission coefficient more explicitly.
The system of equations for ciz) that follows from (3.3c) is easily
solved. Further °£1) and cf') are related by (3.15a), so we obtain

ciz) = - El- %f% (l4—n‘1ﬂ) cf') ,

u
oi?-) = [_umF + -n—L;U +unp)]c£1)

where
=69 v :
B+t Yy 69 V -EE
p=--—1311:=£".’-_.—‘-5;_8; . (3.17a)
Substituting now to (3.15¢) and denoting
I 6v oy
Lige M= B
¥ A . —E2°Ev ’ (3.17p)

we arrive after a shart calculation 8t the expression
-1 2
U RPN
1+B2rU + 2 det U]

After some more simple menipulations, we can rewrite it in the follo-
wing final form

T (3.17¢)

10

Iv(E;U) = 16 Iu,alzainzu sinzgg [aE” +b *cE'vl‘z 5 (3.18a)

where
o= 8,0 = EY1+ePru+ ePaerv] (3.18b)
b= py(U) = -2 i [1 +£4vcoa"% tr U + et U] , (3.18¢c)

6

o= oy(l) = 146700 4 £ Pgetu . (3.184)

Let us collect some simple properties of T !

Theorem 5,2 ¢ Let E>O0 and v:(g+%)v2e (%,1) . The transmission
coefficient T,(E;U) referring to the self-adjoint extension Hy of
Hy with the potential (2,1) i then given by the formulae (3.18),
where the coefficients (3,18b-d) cannot be simultaneously zero. It
assumes values from [0,1] and depends continuously on y,E,U . In
particular, for a diagonal metrix U we have total reflection,
?2,(B;U)=0 . Por a non-diagonal U , the following slternative is
valigd ¢
gither U 1is unitarily equivalent to the matrix g (EO Eg“) and

= 4 lugl? cos? B (3.19)
is energy-independent,

or at most one of the coefficients (3.18b-d) can be gero. In that
case, T bhas the following asymptotic behaviour

TH(ET) = 16 lupl? sindur s1n® 2(3) (3.208)
where

2(B) = 1o1"28®” ~ 201 *Re B0 2% + 0(E¥) , o400 , (3.20b)

2(®) = |p1~2-2Ip| *Re @b '+ 0(E¥”) , c=0 , (3.20¢)

holds for E—> 0+ , and similarly

£(B) = lal"26"% _21a1"Redd E°Y + 0(E"Y) , ajo0 , (3.200)

£(8) = |v)"2-21b) " *ReBo BY + 0(E?) , a=0 , (3.20e)

for B —poo
Por fixed B and U , the transmission coefficient tends not necessa-
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rily to O as g-a»% - and to 1 as g >0+ . In fact, we have

lim  TLEU) = 1 (3.21a)
v>1/2+ v
-1/2 e~10
iff the matrix U 1is of the form 2 10 with weR

otherwise there are at most three values of E for which (3.21a) can
hold. On the other hand,

1im T (E Uy =0 (3.22a)
V+1-
holds almost everywhere : there are at most two values of E where
the 1imit is non-zero for a non-diagonal U , namely

cos &

B i
1-8ina 5 (3.22b)

where ei“ is an eigenvelue of U such that ae(-i,%) .

Proof : The inequality O0<T<1 follows from (3.15),(3.16) . Each of
the coefficients (3.18b-d) may be zero (examples of such metrices U
can be easily found), but they cannot vanish simultaneously. Suppose,
e.g., that a=b=0 . The relations (3.18b,c) then yield

det U = -3 -Zngr U = -Esv —249008!% Tr U (3.23a)
and the last inequality further implies
=2
TrU =252 | (3.23b)

The relations (3.23) are fulfilled iff U--EZ"I , then a=b=0,
while c¢=(1 - ) is non-zero. Similerly, b=c =0 is possible for
II=-EGvI only, in which case a= 549(1 49 g 40 . Both these U are
multiples of the unit matrix so the transmission coefticient is zero
for them. For a non-diagonal matrix U therefore, either a=c=0

or at least two of the coefficients are non-zero. In the first case,
the relations (3.18b,d) determine uniquely the values

TrU—-Zz‘vcos-é— s detU = 2 :

which can be achieved just for the matrices U thaet are unitarily
equivalent to the above written one. The relatiom (3.19) then follows
readily from (3.18) and (3.23). Check of the relations (3.20) is ele-
mentary. i
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In order to prove continuity of Tv(E;U) , one has to verify that
the denominator in (3.18a) does not vanish in the allowed region of
parameters. In view of (3.17), 1t equals (l-fﬁTrIJ+ﬂ det U)(1-¢ 2 v)
and since the last factor is non-zero, we must solve the correspon-
ding quadratic equation for ﬂ . Its roots are easily seen to be
Fk=-exp(-ixk) , k=1,2 , where exp(iak) are eigenvalues of U .
Hence we have to solve the equation

,Bz 86\’ 1- 569E” _ e

= e a= &, . (3.24&)
‘_EZVE\) Y 1.2

Obviously lﬁl =1 , and it yields the condition sinuksin!g =0 which
cannot be fulfilled for ve(—,l)

Let us pass to the limits in y . The equation (3.24a) has no
solutions for ¥ = 5 8as well, so we have

lim  T,(E;U) e;u,zf" (-i+ETr U + det U)E’/2 +
v-1/2+ (3.21b)
2 25(142°/2 pey detT) ~4(1oemr U + deru) BT1/3[72

with the rhs properly defined. It yields particularly (3.21e) if
a=c=0 and !u‘2| =27 what is possible just for the matrices
written above. If these requirements are not fulfilled, then (3.21a)
can hold only for the values of E where the denominator in the rhs
of (3.21b) reaches its minimum. This condition leads to a fourth-order
equation for E” /2 . It has at most four real roots, among them one
necessarily negative, if both a,c &are non-zero, and at most one in
the remaining cases.

On the other hand, the equation (3.24a) has two solutions Ek 5
k=1,2 , if v=1 | they are eventually equal to each other (if
% =&, ) or to o0 (if ozk--) It is easy‘to find that they are
given by (3.22b), where only the case ae 0—- 2) is interesting
giving a positive solution. With the exception of - B =Ek , the rela-
tion (3.22a) holds. If E equals to Ek>-0 , one obtains

it

3.1.?_ T, (B V) = 16 #2 |u‘2: Ja(E ;! | , (3.22¢)
where

AWED) = - = [ay(EY +1,(W) +c‘,(u)1;"’]))_1 ; (3.22

the last expression cannot be zero at E==Ek since T 1is bounded
by 1 . B
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Hence we have confirmed the conjecture formulated in the prece-
ding section : the tunnelling actually occurs for the barrier (2.1)
with ge:(O,%) y unless the matrix U specifying the Hamiltonisn is
diagonal. The transmission coefficient is "almost continuous" when the
coupling constant g reaches the critical value g::z above which
H1 is self-adjoint (cf.Remark 2.1) end the tunnelling is forbidden
due to Theorem 3.3 of [I]. More explicitly, the relation (3.22a)
holds with a possible exception of the "resonant" energies (3.22h)
for which the tunnelling vanishes discontinuously at gz-z « On the
other hand, the berrier does not generally become fully trensparent
as g - 0+ , except for the special class of the matrices U speci-
fied above. This is not strange, however. Even for a very small g ,
the barrier still has the singularity at x=0 , which makes the
motion over it different from the free-particle case.

References

A more complete 1ist was given in [I] ; here we refer to :
1

Dittrich J. and Exner P., Tunnelling Through a Singular Potential
Barrier., The Main Results, JINR,E2-84-352, Dubna, 1984.
Reed M. and Simon B., Methods of Modern Mathematical Physics,
II.Fourier Analysis.Self-Adjointness, Academic Press,
New York 1975.
) Blank J. and Exner P., Selected Topics of Mathematical Physics :
Linear Operators on Hilbert Space II (in Czech), SPN,
Prague 1978.
4 Exner P., J.Math.Phys.,1983, v.24, pp.1129-1135,
5 Gradshtein I.5. and Ryzhik I.M., Tables of Integrals, Sums,
Series and Products (in Russian), Nauka, Moscow 1971.

Received by Publishi Department
on %&y 23' 193%- >

14

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8,

including the packing and registered postage

D4~80-385 The Proceedings of the International School on
Nuclear Structure. Alushta, 1980. 10.00

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Dubna, 1980. 25.00
2 volumes. .

D4-80-572 N.N.Kolesnikov et al. "The Energies and :
Half-Lives for the s - and B-Decays of 10.00
Transfermium Elements"

s

D2-81-543 Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 1981 9.50

D10,11-81-622 Proceedings of the International Meeting on
Problems of Mathematical Simulation in Nuclear
Physics Researches. Dubna, 1980 9.00

D1,2-81-728 Proceedings of the VI International Seminar
on High Energy Physics Problems. pubna, 1981. 9.50

D17-81-758 Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Dubna, 1981. 15.50

D1,2-82-27 Proceedings of the International Symposium
on Polarization Phenomena in High Energy
physics. Dubna, 1981. 9.00

D2-82-568 Proceedings of the Meeting on Investiga-
tions in the Field of Relativistic Nuc-
lear Physics. Dubna, 1982 7.50

D9-82-664 proceedings of the Symposium on the
Problems of Collective Methods of Acce-

leration. Dubna, 1982 9,20
D3,4-82-704 Proceedings of the 1V International
School on Neutron Physics. Dubna, 1982 12.00

D2,4-83~179 Proceedings of the XV International School on
High-Energy Physics for Young Scientists.
Dubna, 1982 10.00

Proceedings of the VIII All-Union Conference
’ on Charged Particle Accelerators. Protvino,
1982, 2 volumes. 25.00

D11-83-511 proceedings of the Conference on Systems and
Techniques of Analitical Computing and Their
Applications in Theoretical Physics. Dubna, 1982. 9.50

D7-83-644 Proceedings of the International School-Seminar
on Heavy Ion Physics. Alushta, 1983. i 11.30
.

D2,13-83-689 Proceedings of the Workshop on Radiation Problems
and Gravitational Wave Detection. Dubna, 1983. 6.00

Orders for the above-mentioned books can be sent at the address:
Publishing Nepartment, JINR
Head Post Office, P.0.Box 79 101000 Moscow, USSR



SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators

S
- O

o s WN
-

. Automatization of data processing
. Computing mathematics and technique

Chemistry

. Experimental techniques and methods

. Solid state physics. Liquids
. Experimental physics of nuclear reactions

16.

17

18.

19

.

at low energies
Health physics. Shieldings
Theory of condenced matter

Applied researches
Biophysics

Ourrpux A., Okcuep II. E2-84-353
TyHHenupOBaHHEe CKBOSb CHHI'VIISADHBE! NOTeHIHANbHbEI Bapbep.
Ipumep: V(X) = gx—2

lpomomxaeTca o6Gcyx[eHHe KBAaHTOBOrO TYHHENIUMPOBAHHS Hepens—
THUBHCTCKOI 4HacTHIB HA NpaAMOil CKBOSH CHHTYIIADHHE IIOTEHIIHAJIbHBI
Gapbep V. B mepBoif yacTH 3TOl paboThl Mbl IOKasajil, YTO ECIIH OHe-
parop Hls—dz/dx2+ V(x) ne sBAAeTCA, MO CymeCTBY, CaMOCONpPAXEH—
HHM, TO TYHHEJIHDOBaHue, B oOmeM, He HMCKINYEHO H SaBHCHT OT Ca-—
MOCOMNpDSIXEHHOT'O pacmupeHus oneparopa Hj, BuGpamsoro B xauecTsbe
raMunbToHMaHa Npobinemn. YTOGH NPOMIUINCTDHPOBATE 3TO ABIEHHE,
Mbl BeiuHCnAeM Ko3bbHIHeHT NPOXOXOeHHA LIS BCeX CaMOCONPAXeHHBIX
pacmupeHnuit oneparopa H; coorBercrsywmero V(z) = gx~ 2 npu
0<g<3/4. 8

Pa6ora BomosiHeHa B JlaBopatopuu Teoperuueckoit dmsuxm OUAH.

Coobmenne OGbpenMHeHHOro HHCTHTYTa AOepPHHX HccnenoBaHit. [Jly6ma 1984

Dittrich J., Exner P.
Tunnelling Through a Singular Potential Barrier.
An Example: V(x) = gx~2

E2-84-353

»

The study of quantum tunnelling of a non-reletivistic par-
ticle on the line through a singular potential barrier V is
continued. In the first part of the paper, we have shown that
if the operator H;=-d%dx2+ V(x) is not essentially self-
adjoint on its natural domain, occurence of the tunnelling is
not excluded, in general, and depends on the self-adjoint ex-
tension of Hy we choose as Hamiltonian of the problem. In order
to illustrate this phenomenon, we evaluate here the transmis-
sion coefficient for all self-adjoint extensions of the opera-
tor Hy referring to V(x)= gx™° with 0<g<3/4.

The investigation has been performed at the Laboratory
af Theoretical Physics, JINR.
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