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fields interacting with scalars in the fundamental representa­
tion the Higgs phase is the confining phase. In other words, 
in certain cases а gauge theory with а spontaneously broken 
(global) symmetry can Ье considered as а completely confining 
theory without symmetry breaking. There is no conti~uous phase 
boundary between the confinement and Higgs phase, and а conti­
nuous (without phase transitions) passage may occur from one 
state to another. 

The complementarity principle extended to the theory with 
fermions may result, for instance, in а composite structure of 
quarks and leptons at the energy scale _ 1 TeV 1.
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The phase structure of Higgs-gauge theories with different 
symmetry groups is investigated in а number of papers (see, 
e.g., / 8-13/ ). In most of them 'the radial mode of the Higgs 
field is frozen: 

1 ф 1 ;", 1. ( 1 • 1) 

Studies of the phase structure of Higgs-gauge theories with 
radially varied scalar fields for Abelian 18 • JO/ and non-Abeli­
an SU(2) symmetries 191 have shown that the form of phase diag­
rams will essentially change when the assumption (1.1) is re­
jected. 

The present paper is devoted to the study of the phase 
strчcture of the theory of SU(2)-gauge fields interacting with 
Higgs fields. The Higgs fields are considered in the findameri­
tal representation with radially varied mode, i.e., 1 Фl ~ . const. 

Using the Monte-Carlo method and analytic approximations 
we have investigated the phase structure of our theory for two 
variants of the radial measure of integration over Higgs fields. 

We note that our results somewhat differ from those of 
ref. / 9' . 

The model we consider is described in the . next paragraph; 
in the third paragraph we · give the details of our Monte-Carlo 
calculations and, finally, we summarize the numerical results 
and compare them with some mean-field estimates in the fourth 
paragraph of this paper. 

2. ТНЕ CHOICE OF ТНЕ MODEL ) . 

The action for а system of SU(2)-gauge fields and Higgs 
scalars in the fundamecital representation of the gauge group 
has the form: 

S=fJlS +lSL• 
о 0 L 

(2. 1) 

where S0 = 1- 112 Sp Up with Up = Uij UjkUkfUfi and Uij = UL 
is а gauge field defined on the lщk L=(i,j) which originates ... _ 
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from the site labelled Ьу i and ends at site j, The second term 
in (2.1) is а sum over all links and is of the form: 

1 m2 * * 2 * * 8=-(-- ф . ф. +Л(Ф. ф . ) )+(Ф· ф . -RеФ . u .. ф . ). 4 2 1 1 1 1 1 1 1 1J j 
(2.2) 

The Higgs field фi is defined at each s~te i, and Фi is а co­
lumn of two rows. It is convenient to represent the field Ф i 

----
in terms of а pair of variaЬles (Ri, Фi ),where Ri =v' -ФfФ i 

, and Фi is а unitary 2х2 matrix: ф ~ SU(2). Then the action 
SL can Ье rewritten as 

4 

1 m2 2 4 2 1 * S =-(- R . +ЛR . )+R . -R . R . -Sp(ф . U . . ф . )). 
L 4 2 1 1 1 1 J 2 1 IJ J 

(2.3) 

As а rule, in what follows m 2 <О .The partition function in 
the model (2.1)-(2.3) has the form 

-S 
Z=J 9 d/L(R i )dф i ~ dULf , , (2.4) 

wh~re dUL and dфi are Haar' s measures on the SU(2) group. 
The radial measure of integration is to Ье chosen in accor­
dance with the model. If the radial mode is frozen, as, for 
instance in / ll-lЗfhen ' . 

\о 

d/L(Ri)-8(Ri -1)dRi. (2.5) 

In this paper we have chosen the radial phase in two variants: 

d~t (R'i)- dRi , 

d/L ( R. ) - R~ d R . 
1 1 1 

(2.6) 

(2. 7) 

The variant (2. 7) for diL (R) for SU(2)-symmetry group was also 
used in / 91. · The simple choice of the radial mode (2.5) ("fro­
z~n radial mode") comes from the belief that in the continuum 
limit, when the correlation length tends to infinity, fixation 
of the radial mode in the lattice (bare) action (see (2.5)) 
is no longer essential. Indeed, as the fixed point of the re­
normalization group is char~cteristi~ only of the very renor­
malization-group transformation and has nothing to do with the 
choice of the initial action, it might Ье assumed that fixation 
of the radial mode is not very strong constraint. However, it 
may Ье true if the theory contains only one fixed point~ If, 
that-i s more realistic, the theory contains several fixed 
points, the choice of the Ъаrе a·ction (the choice of а point 
on the canonical sufrace) may turn out to Ье essential / 21, 

А different cho~ce of the bare action in the course of 
studying renormalization-group properties of the theory may 
result in different fixed points and, consequently, in dif­
ferent physical theories in continuum. 

All the aforesaid signifies the necessity of an accurate 
examination of the proЬlem of choosing the lattice (bare) ac­
tion for а system of gauge-fields interacting with matter fields 
and, in particular, the necessity of studying the dependence 
of the phase structure of the theory on the radial measure. 

3. MONTE-CARLO PROCEDURE 

The numerical study of the model (2.1)-(2.3) was made Ьу 
the Monte-Carlo method. All our numerical experiments have been 
performed on 4 4 - and 64-lattice with periodic boundary condi­
tions. According to our calculations the results on 4 4 lattice 
do not in practice differ from those on 6 4 lattice. 

In our calculations we have used the Metropolis algorithm / 14/ , 

The order parameters we have used are the mean action per 
plaquette <8 0 > and the mean squared radial part of the Higgs 
field <R 2 >. 

The Higgs field at each site was renewed in two steps; first 
the radial part of the field, and then the angular part were 
changed to new ones. New values of both the scalar and gauge 
degrees of freedom are accepted or rejected in accordance with 
the prescription of the Metropolis algorithm. 

Foe each change of the field value on а link or at а site 
5-10 triels were undertaken. The acceptance rate on the average 
was about 50%. 

The behaviour of order parameters near phase-transition 
points was investigated Ьу two different techniques: 

I. Thermal Cycles 

One of the parameters of the model ( {3 or m2 ) is gradually 
varied up to а given value and back. At each intermediate step 
а given number of iterations is performed starting from the 
last configuration reached at the preceding step. If the ther­
mal cycle carried the system across а point of phase transition 
this produces а typical hysteresis loop on t he thermal cycle 
curve for the order par~m:ter. 

11. Simulations from Different Types 
of Initial Configurations (Starts) 

/ 

а) The start ordered in the radial part of the Higgs field 
with small values of Ri: R ~о) =О at different (ordered or dis-

1 
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ordered) initial conf i gura tions f or the angular part of the 
Higgs f ield ; 1 

Ь) The s tart ordered in t he radial part with large values 
of Ri : R\o) "' 3+5 at disordered init i al conf igurations for 
the angular part of the Higgs fields, etc. The init i al configura­
t ions of the gauge f ield were e i ther t otally ordered ( UL = 1 ) 
or totally randoтized. The sequence of renewing of variaЬle s 
on links and at sites was chosen in а randoт way (stochastic 
sweeps). 

4. MONTE- CARLO RESULTS AND ТНЕIR INTERPRETATION 

In this ;вection we shall present our results obtained Ьу 
the Monte-Carlo calculation and сотраrе theт with the r esul ts 
of approxiтate calculations with an effective potential. 

All our calculations were carried out for two r adial тea­
sures : d1-1(R)-dR , d/l(R) - RЗdR. 

4 . 1. Radial Measure dll (R) ... dR 

At f3 =О and sтall Л there· occurs а first-order ;ьаsе t r an­
sition. In Fig. 1 we show the thermal cycle over т for the 
order paraтeter <R2 > at f3 =О and ,\ = 0.1. That the fi rst- or der 
phase transition does exist can Ье seen froт the dependenc e 
of o!der paraтeter <R2 > on the i teration nuтber N iter (F ig. 1Ь) . 
At f3 = О, ,\ = О. 1, and т 2 = - 5 two " l ong-lived" states are 
observed, one of theт being staЬle and t he other тetastaЬle. 

I f we consider ana l ytic cont inuation in f3 to negative va­
lues we shal l observe that the characteristic ~hys teresis loop 
gradual1y shr i nks to vanl sh coтpletely for {J' = - 3 ( Л = О. 1). 
At tha t point the dependence of <R2 > on т2 has а sharp break 
f or т2 .. -6.25 (see Fig . 2а). With further decreasing f3 this 
break gets sтoothing . Froт

1 Fig.2b i t is seen tha t when f3 = - оо 
the dependence of <R 2> on т2 is smooth enough. 

Thus, we observe that the curve of first-order phase t ransi­
tions in the (т2 , {3)-phase plane has an end point tha t тау Ье 
interpreted as а point of the second-orde! phase transition . 

For positive values of f3 up to inf i nite the behaviour of 
the order parameter <R2> testifies to the existence of fi rst­
order pha se transit i ons. In Fig.3a we present the values of 
Monte-Carlo calculations obtained in t he thermal cycle over m2 

at f3 =oo ; ,\ = 0.1; and in Fig .3b, the dependence of <R 2> on 
the ite r a tion nuтber at f3 coo ; т 2 = -3.7 , ,\ = 0 . 1 f or two dif­
ferent s t arts. When f3 = оо the phase transit i on occurs ·at т 2"' · 
"'-3 . 57 (,\ = 0.1) . The final shape of phase-t r ans i tion curves 
at different ,\ is plo tted in Fig .4 . 
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Sol i d curves represent first - order phase trans itions for 
different Л and t hese curves have endpoints. 

Wi th increasing Л the curve is sh i f ted t o the r i ght and up­
ward on t he phase plane. 
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The nature of phase transitions can Ье understood from an 
approximate calculation of the effective potential vefl • 
' At {3 =, О the integration over gauge fields Uij can Ье 

carried out exactly, and as а result . the partition function 
becomes -I s .. 

·• IJ 
Z"' ( I_I d 11 ( R i ) е IJ (4. 1) 

1 

The action Sij depends now only on the radial variaЬles of the 
Higgs field Ri : 

m2 2 л 4 S L = S iJ. = (1 + - ) R . + - R . - ln W ( R . R . ) , 
8 1 4 1 1 J 

W(z)=_g_I
1

(z). (4.2) 
z . 

and 11 is а modified Bessel function. 

8 
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With the help of action (4.2) we obtain in the lowest appro­
ximation (see/ 15/) the following expression for the effective 
potential*: 

veff = (1 + ~2 ) it2 
+ ~ ii4 

-ln w (R2 > •. (4 .3) 

where R"' <R>. · 

& 

а) 

,...... 
~tl( ...... 
~ 

> 
':€ 
> 

Ь) с) 

R R 
Fig.S~ The qualitative dependence of effective potential 
Veff (R) for {3 = о, sufficiently small Л, and different 
values m2a) 1 in21 < 1 in~l; Ы m2 .. m~; с) 1 m21 > lin~l. 

, At Л small enough expression (4.3) may have two m1n1ma, 
one of them being at zero. At values of lin21 smaller than some 
"critical" value of 1 in~l the minimum at zero is below the 
other minimum and corresponds to а staЬle phase, whereas the 
second to а metastaЬle phase (Fig.5a). At m2 "'m! the value 
of Vefl at both the minima equals zero (Fig.5b), and for 
1 in21 > 1 m~ 1 · the second minimum corresponds to the s taЬle phase, 
whereas the first one to а metastaЬle (Fig.5c). Thus, the point 
m2 "' m~ is the point of first-order phase transition. 

Formula (4.3) gives for the phase transition at Л= 0.1, 
m2 = -5, that is in good agreement with the Monte-Carlo cal­
culations. And what is more, this formula provides also а good 
numerical agreement for the order parameter <R2> in both the 
upper and lower phase of the hysteresis loop (Fig.la). With 
increasing Л the magnitude of the jump of the order parame-
ter calculated Ьу (4.3) becomes decreasing and at Л .. 0.5 ({3.., О) 

* Really the effective potential must Ье apparantly а convex 
one (see, for instance 16-18)). But the definition of Veff we 
have used (15) is absolutely noncontradictory for the lowest 
appro~imation and is rnore convenient for calculations. 

9 



\ , 

it vanishes. The effective potential V eff here can no longer 
have а . two-minimum structure: for 1 tn2 1 < Hn~ 1 • the only minimum 
of Verr is at zero, and for lin 2 l>lin~l it is not at zero(Fig.6). 
This situation is characteristic of а second-order phase tran­
sition. When Л>О.S, the effective potential (4.3) testifies 
to no phase transitions (at f3 = О). This Л -dependence is in 
good agreement with the one obtained Ьу Иonte-Carlo calculq­
tions (Fig.6). 

When f3 = оо , all the gauge fields may Ье replaced Ьу uni ty, 
however, in this case one can no longer remove the integration 
over angular variaЬles of the Higgs field and thus reduce the 
proЬlem to the calculation of the effective potential over the 
radial variaЬle R • 

Nevertheless, one may calculate the effective potential as 
а f unction of averages of real and imaginary parts of the Higgs­
field components Фо( а) , where 

1 

Фош = Re С Фi ) I , 
1 

Ф(_2) =lm(Фi)2 • 
1 

Ф~З) =Re(Фi)2, 
1 

Ф~4) = lm(Фi)2' 
1 

and from the behaviour of the effective potential guess the 
dependence Verr on <R>. 

The parti tion function Z for f3 = оо can Ье represented in 
the form 

Z=(П 
. i 

where 

А dф (а) -S(ф) 
i е 

a= l 
(4.4 ) 

S(Ф)=l[l(Фо*Фо -RеФ~Фо )+V(Ri)], 
i о 1 1 1 1+/l (4.5 )_ 

2 2 4 3 о 2 V ( R о ) = _r.n:: Ro + Л R о + -- ln R о 
1 2 1 1 2 1 

The effective rotential in the lowest approximation following 
from (4.5) is of the form 

~ m2 ~2 ~ 4 3 ~ 2 
V ff ( R) = - R + ЛR + - ln R 

е 2 2 

~ -4--~---

where R=v' l (ф(а) )2 
a • . l 

ф(а) = <Ф(а) > . 
i 

(4.6) 

The effective potential (4.6) turns to minus infinity as 
R-+ О and may possess а local minimum at nonzero R. The va­

lut! of m2 at which this local minimumo appears is determined 
f rom the equation 

---- =0 . (4. 7) 
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Fig . 7. а) Therma l cycle in m2 

for f3 = О, Л = 0.05. Ь) The de­
pende n ce of the o rder p a rame­
ter <R2 > on the iteratio~ 
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The value of m2 determined from (4.7), at which nonzero local 
minimum appears, equals approximately m2 ~-2 .2 (Л = 0.1) and 
is in good agreement with the value at which the hysteresis loop 
starts, c~lculated Ьу the Monte-Carlo method (see Fig.Зa). The 
value of R2 as а function oof m2 corresponding to the location 
of that minimum of the effective potential (4.6) almost coin­
cides with the upper branch of the hysteresis loop in F ig .Зa 
constructed f or the order parameter <R2 >. 
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4.2. Measure d!L (R)~ RзdR 

When the radial mode is defined Ьу (2.7), the phase diagram 
differs noticeaЬly in form from the one for the radial mode 
(2.6). At finite {Зand· Л small enough the first order phase 
transition is also observed in this case. In Fig.7a,b we draw 
the hysteresis loop versus m2 at {3 =О, Л= 0.05 and the 
dependence of the order parameter <R2 > on the iteration num­
ber Nit at {3 =О, Л= 0.05, m2= -2.23. With growing л 
the hysteresis loop gets narrowing and then disappears at Л = 
= О. 1 and {3 = О (Fig. 8а)- whereas at Л = 0.1, {3 = 1 it is still· 
present (Fig.8b). This picture is in good agreement with predic­
tions obtained in the lowest approximation for the effective 
potential. 
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Fig.9. Qualitative dependence 
of Verr for Л= 0.05, {3 = О 
and different values m2. 
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Fig.10. The dependence of the 
order parameter <R2 > on m2 
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Following the procedure described in sect.4.1, it is easy to 
find the effective potential at {3 = О in the lowest approxi­
mation in the form: 

-2 
m2 -2 Л -4 211(R ) 3 -2 

V 11 = ( 1 + -) R +- R -ln ------- ln R 
е 8 4 R,2 2 

(4.8) 

In Fig.9 we show а qualitative dependence of Ve!f (R) for dif­
ferent masses at Л = 0.05 and {3 = О. 

· тhat the effective potential has two minima points to the 
presence о~ а first-order phase transition (cf.sect.4.1). With 
growing Л there are no two minima of V rr for any m2, and 
the first-order phase transition vanish:s. 

•· When {3 i.s growing and Л is fixed, the hysteresis loop be­
comes narrowing and then disappears. In Fig. 1 О < R2 ;> -depen­
dence of m2 is shown for {3"'"" and Л= О. 1. There is no hys­
teresis loop, and at positive m2 а sharp break occurs in the 
behaviour of <R2 >. From considerations based on the calculation 
of the effective potential (cf,sect.4.1) it follows that this 
point may Ье identified with the second-order phase transition • 

Тh~ phase diagram for the SU(2) gauge-Higgs model with the 
radial measure (2.7) is similar in form to the one plotted in 
Fig.4 . 

In the (m 2 ,{3)phase plane at · Л fixed there is а curve of 
phase transitions with the left end point that may Ье identi­
fied with the second-order phase transition. At finite j3 
(/3 <"" ) each point of the curve corresponds to а first-order 
phase transition. When {3 ~ оо, the first-order phase transition 
disappears, and the curve of the m 2 -dependence of <R2 > for 
m2 positive gets а sharp break which may represent the second­
order phase transition. With increasing Л the curve of phase 
transitions shifts to the right and upwards • 

5. CONCLUSION 

We have analysed the phase structure of the lattice SU(2) 
gauge-Higgs theory, and Higgs fields are allowed to vary ra­
dially. 

Our Monte-Carlo calculations are in good agreement with 
approximate calculations with an effective potential. 

We have used two different radial measures for scalar fields. 
Main conclusions are as follows. 
Т~е radial mode of Higgs fields affects the whole structure 

of the theory. 
Phase diagrams (the order of phase transitions their positi­

on on the phase plane) depend crucially on the choice of radial 
measure. 

13 

"' 



At present it is difficult to answer the question of which 
of the critical points we have observed may correspond to the 
continuum limit of the theory. This requires further studies. 

At the same time in both the models we have considered the 
curves of phase transitiqns do not divide the whole phase plane 
into two separate parts: this means that there exists а region 
of analyticity, where one can pass from one phase . (say, below 
the line of phase transitions) to another (above that line) 
without jump of the order parameters or its derivatives. This 
is an argument in favour of the complementarity principle. 

In conclusion we would like to thank N.N.Govorun, V.A.Mat­
veev, T.Margaritis, M.G.Meshcheryakov, V.A.Meshcheryakov ·, 
D.V.Shirkov, A.N.Sissakian, K.Szlachanyi for useful discussion 
and interest in the work. · 
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