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Independent theoretical results (for reviews and more referen-'
ces see, e.g., ref. /194 jindicate that a scalar glueball is pro-
bably the lightest one with the mass around | GeV. There are an-
nounced candidates for this state 2.3/, however, not only their
existence but also the glueball interpretation are to be confir-
med.

Experimentally, the scalar glueball candidates 728/ are not
‘equally decaying (modulo phase %pace) to, e.g., ntn” - and KK ™
systems as one naturally expects 4/ for an SU(3)- symmetric coup-
ling of SU(3)-flavour singlet glueball to ordinary hadrons.

Thus, for a clear identification of glueball states one sho~
uld know not only their masses and quantum numbers but also
their decay properties. Since the scalar slueball is the ligh-
test one its hadronie decays are limited to lighter pseudosca-
lar mesons only, and thus to understand its decay properties
it is desirable to have a model describing interactions between
this glueball and pseudoscalar Goldstone bosons.There has been
an attempt in this direction and a simple Lagrangian model has
been suggested/ 5/ which unfortunately does not satisfy the im~
portant low-energy theorems found in refs.’/®

The purpose of this note is to present another effective
lagrangian model satisfying not only the anomaly relation of the
trace of the energy-momentum tensor of QCD/S/ but also low—-cner—
gy theorems of refs./8:7.8/_ It will be shown that an important
part of the Lacranglan descrlblng couplings between a hypothe—
tical scalar glueball and pseudoscalar Goldstone bosons is pre-
dicted if one knows the glueball mass. We shall see that these
couplings obey the SU(2) x SU(2) chiral symmetry pattern rather
than generally assumed SU(3)-flavour symmetry rule’4’ thus natu~
rally suppressing decay to pions (proportional to m‘) The model
will be shown to be in a reasonable agreement with the glueball
assignment for the g4(1240) scalar meson "2/ . :

We shall start our considerations assuming that the 1ow~energy
dynamics of the octet of pseudoscalar.Goldstone mesons is des—
cribed by the following generally accepted nonlinear effective
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Lagrangian®:
1 ; bt
£- T 6, 1@ U] + &5 (1a)
where
£sp =-Te[M@U +UM)]. (1b)

Here M is proportional to the 3x3 quark mass matrix and U(x) is
the 3x3 field matrix transforming under chiral U(3)xU(3) trans-
formations as (3,3) representation. This matrix satisfies the

constraint

Ux) Ut =1° (2)
and can be parametrized as follows:

8 A

U(x) = fexp( =
j=1

), (3)

where f is the pion decay constant (f = 93 MeV), ¢ . (x) s (j =

= 1,2,...8) represent the pseudoscalar Goldstone tJields and A’s
are the Gell~Mann A matrices normalized- to TrA ) =2 By -
Because of the condition (2) the field matrix U(x) m:st not chan-
ge under dilatations x-» px and thus its dimension (conformal
weight) is zero/1l/, Then after elementary calculations the tra~
ce of the improved energy-momentum tensor 6 V/iz/of the Lagran-
gian (1) is found to have the following form **

1 . .
6, =~ 5-Trl(3, ME" U] - 48, %)
where index "1" labels correspondence to eq.(l1). On the other

hand, in QCD the exact (on the mass shell and at nonzero momen=-
tum) result for the trace of the energy-momentum tensor is given

* we neglect a pseudoscalar non-Goldstone boson singlet field
{and correspondingly, a term in eq. (la) which solves the U(1)-
problem) since this neglect is not essential in our considera-
tion provided the scalar glueball is light and cannot decay into
the 7n° nor y’y” systems. For discussions and more references con-
cerning this Lagrangian see, e.g., ref./10/,

** An arbitrary constant can be added to ‘eq.{4). With opera-
tors on the r.h.s. of eq.{(4) in normal order, the constant is
chosen by right normalization of <@ “>0. As usual, we shall cal-
culate in tree approximation and states will be normalized cova-
riantly: <p|{p’> = (228 2mp8(3) ®~-p).

2
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where F® % (a=1,...,8) are gluon field strength tensors,
Bg) is e Callan-Symanzik function and y_(g) is the mass ano-
malous dimension. The term fggn(x) = 3Sm q.(x)q.(x) (m,, and

i q1 i i qi{
q.(x) being.the mass and field, respectively, aof the quark of
flavour i) represents the chiral symmetry breaking term in the
QCD Lagrangian.

In the pseudoscalar Goldstone boson sector described by eq.
{1) the relation (5) is effectively represented by eq.(4). How-
ever, chiral noninvariant pieces of eqs.(4) and (5) are formally
different (naive comparison gives the unacceptable result y (g =
= 3) because of different dimensions (conformal weights) of the
terms £gp and gggn in egs.(4) and (5). Although such a differen—
ce is legal for effective Lagrangians, nevertheless being guided
by eq.(5) we would like to enlarge eq.(1) in a way to include a
scalar field to it. In fact to be closer to eq.(5) the improve-
ment of the conformal weight of eq.(lb) is needed. This requires
the existence of a dimensional, flavour independent scalar field
o(x) (dimension d, =1) which can be used to write down the fol-
lowing symmetry breaking term:

£ () =~ Lo() 7T TrMEU@) + U m)] | 6)

instead of eq. (1b). Here Yo is a parameter to be specified la-
ter. We should remark that consistency with spontaneous chiral
symmetry breaking (requiring VEV <e>,=0, #0-) and correct be-
haviour of o(x) under dilatations (x -+px , o(x) » p~to(x))

need introduction of the actual field () through the parametri-
zation ~13.14/

o(x) = o_exp(Z8)) ' 100
0 9
where under X > px , o(x) » a(x) ~aglnp. It is worth noting here

that there is no need to change the dimension of the first chi-
ral invariant but dilatation noninvariant term in eq. (1), since
just this term gives a chiral symmetrical contribution to eq. (&)
in agreement with the QCD trace anomaly (eq.(5)). Moreover,this
piece of eq.(4) effectively represents the low-energy theorems
of refs.”® 7?7/ in the chiral symmetry limit:

<P@,) PO, 610> = q %, (8)

vhere q2= 2p,-P, = (pl+p2)2 is the invariant (mass)2 of the

PP system.




So, minimal enlargement of eq. (1) including o-field is assu-
med to be as follows:

compl SB

T g 1. e T -1

= E—(a“o) +-;- Tr[(auU)(a U) -V + £ )
where U,o and ESB are given by eqs.(3), (7) and (6), respecti-
vely, and V(o) is a flavour independent potential. The Lagran-—
gian (9) gives .

; . dv P
)y == 2 TG, DO UM +4Ve) —oSL - +7,)85, (10)

instead of eq.(4), and eq.(10) is already formally consistent
with eq. (5) We expect even that the parameter Ym in egs. (6)
and (10) is approximately g1ven by perturbation theory at some
low normalization point u, i.e., yp =y, (@BW).
The potentlal V(o) will be found through the expansion in the
field ¢': )
2
V) = Vo ) + <PV> 5+ 1LY, e
" s o0 2 a52 0
Using parametrizations (3) and (7) in eq.(9) and eliminating
term linear in & from eq.(9) by the use of vacuum stability con-
dition
g0V gl
do o 2 %9
we obtain correct form of Lagrangian (9). From thls Lagrangian
.one can easily find, e.g., the ¢ particle (mass)

+ i (11)

st f@mK+m), ‘ 12)

3~
i L - (13)
o d-2 0 00 do 0

and, the very important interaction term

1
gaPico ='-E;

8
Vm ox) ¥ m2p2%(@), (14)

f=1 1t

0
where m{s (i = 1,2,...,8) are the masses of the pseudoscalar me-
son octet members. It is worth noting here that just the const- ,
ructed Lagrangian (9) gives (combining eqs.(10)-(14)) a genera-
lized version (for nonzero quark masses) of eq.(8) in the follo-
wing form: L

2
_ m
B gn i3 2 2 2 15
<P )P, 16,710> =2p,-p, + @ Y, My — _q2+(1 +y Jug (15)
[44
which for higher o-particle mass (m§> q2> 4m%) behaves as
= #
<P@;) P(®,) 16, 10> = ¢+ 2m%+ 0@ah) + O(m)) (16)
4

[}
in full accordance with such a generalization of the low-energy
theorem in ref.’
It is seen from eqs.(5), (10), and (11) that the chiral inva-
riant piece of the trace anomaly is effectively given as

H@) = - 32(8) F2a) = 'r:[(a V) @ U] + Hy + H,5@)+ H5%(x) + 06,
g

an
where
- < BB g, a.,
Hy=-< m F* °0<d;>0 V),
acv dv
H, =0<—=—=>7 ~4<m—=a> , (18)
1 =% =370 el
3 2
1 d°v 4"V
H2=—2-[00< 850 -4<&_2>0]v
Using the low—energy theorem of ref.’% izens,
if dx<0|TE(X)H©) (0> = 4H [1 + O@,)], (19)
then from eq.(17) one finds
H} = 4o H (1 + O(m )] . . (20)

Analogously, generalizations of eq.(19), for example,

i®f dx [ dy <O |T(H®HE)H())| 0> = 16H , etc.,

can help us to calculate (unfortunately, in chiral 11m1t only)
all the coefficients Hi in terms of, e.g., M, and Hyp,and thus
to reconstruct the potential (11) 714/, Comblnlng eqs.(12), (13),
(18) and (20) we get

m:o: = 4H [1 + O(m )] 21)

and then eq. (14) can be rewritten in the following form (neglec—
ting 00n2) contr1but1ons)

. T VRN X PR Y 1T 5 m2 42 @) , (22)
2 4 ‘/Ho i=1

where for the SU(3)c and three light flavours



B(g) 2 -9 ag _ g 2
H0=—<-E€-.F )0 =?(—”—~.F >0 +0(as),
23)
" . 2a_(p) i (
Yy = Vp@W) & ——— + 0%) <05+ 062).
Here for definiteness we have taken a J(u) = 0.7 at u=0.2 GeV/ls{

. Eq.(22) allows us to write down explicitly formulae for partial
decay widths of ¢ into pseudoscalar pairs:

=2, o0 = mA@),

osuta— o+
- = mA (2
Lo aktx~ = To.goge = mgh@y) . (24)
r =1 niam?),
o+ 5 Sphm,)
where

%
(1 - 'él‘n')gm o

2 1/2
A@®) - = 4“'2 A
Sl 3 LY LA
4 0

Since the o-particle dominates scalar gluonic current in
eq.(17) it must be identified with a scalar glueball. Taking
eqs. (15) and (16) for all eight pseudoscalar mesons we easily
see that present model suggests bound m_>2m_ = 1.1 GeV. The
announced scalar glueball candidate gs(1240) ’2/ satisfies this
bound. Moreover, because it is so light its dominant hadronic
decays should be given by eqs.(24) and then total width I E

=Fss+'"' + Fga_. e - .Labelling x”=lgs_’ ””/ll ) Xpo= Ig-K'I{F

and using mg=m, = 1.24'Gev/2/ we obtain (x,xg) = 0.06 from

Bg
,= 0-012 cav® 715/

eqs. (24) and for y, = 0.5, <2 F% we find
w os

v
I' = 270 MeV while for <-f-'—-F2>0 <2 <:3- F2 one gets I =
4 4 0SVZ b

135 MeV. The agreement with the experimental values (x,x y) % -
0.04 (without errors indicated) and I' = (140+10) MeV is remark-
able 72/, Because of the lack of knowledge of p;écise values of
the phenomenological parameters Hgand y, (see eqs.(23)) it is
hard to say whether consistency with experiment requires defini-

tely higher value of <Jﬂ1F2%.Due to uncertainties in Hj we see
m

that the free quark model value y =0 is acceptable phenomeno=
logically too. It should be noted also that the decay pattern
of another announced scalar glueball candidate 'G(1590)73/ is
not consistent with eqs. (24)

6

In conclusion we want to stress that Lagrangian (9) illustra-
tes explicitly (eqs.(14), (22) or (24)) the SU(2)xSU(2) pattern
for coupling between a scalar glueball and pseudoscalar Goldsto—
ne mesons. At the same time just this Lagrangian (9) leads to
eq. (17) having besides a dominant glueball contribution also a
pseudoscalar meson (i.e., quark) contribution on the r.h.s. and
thus representing explicitly mixing of gluon and quark degrees
of freedom . This mixing’9/ gives low-energy theorems of
refs.”8 7/ and can be simultaneously responsible for the
SU(2)xSU(2) rather than SU(3) /4’ coupling rule. If g4(1240) to-
gether with its decay pattern predicted by eqs.(24) is confir-
med then we obtain support for both the presented decay scheme
based on the SU(2)xSU(2) rule and the glueball assignment of the
scalar state gg(1240) B/, At the end we note that tensor glue-
ball candidate @ (1640) also seems to obeY the SU(2)xSU(2) rule
for its coupling to pseudoscalar mesons 18/,

We are grateful to Drs. B.M.Barbashov, M.K.Volkov, J.Ho3ek
and J.Hotej8i for discussions and comments and to Prof. V.A.Mesh-
cheryakov for interest and support in this work.
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