


1. Introduction

The highest-weight representations of semisimple Lie algebras
are interesting from both the mathematical and physical point of view
(see, e.g., the references given in the papers 1,2 ). There is a clas-
sification theorem according to which the irreducible representation
with a given highest weight A of & complex semisimple Lie algebra
L 1is unique up to equivalence. However, not every member of such an
equivalence class is suitable for practical calculations. It motiva-
tes interest to various constructions of irreducible highest-weight
representations.

In the recent series of papers/2-4/, we have studied this prob-
lem for the Lie algebras An~«sl(n+1,c) ,» with a particular attention
paid to the case n =2 . The method used for the construction employ-
ed a family of canonical (or boson) realizations of gl(n+1,€) obtai-
ned earlier/s's/. For 81(3,C) , one can get in this way two sets of
suitable candidates for the role of highest-weight representations :
the so-called maximal and mixed representations. Another highest-
weight representations may be obtsimed by combining the latter with
suitable automorphisme of 81(3,C) sand of the corresponding Weyl al-
gebra. As a result, we have a family of infinite-dimensional repreesen-
tations, at least one toeach A including those cases where the irre~
ducible highest-weight representetions are finite-dimensional (and
well known -~ cf., e.g., Ref.7, Section 10.1).

Most of these infinite-dimensional representations are irreducibdb-
le : the proof for the maximal representatione was given in Ref.2,
while the remaining ones were treated in Refs.3,4 . However, the claim
mede in Ref.4, nemely that one obtains in this way a complete set of
(infinite-dimensional) irreducible highest-weight representations for
81(3,C) , appears to be not fully justified. It was overlooked in
Ref.3 that there are two subsets in the set of all weights A (the
sets Q(1,12) and {1(2,12) - cf.below) for which the irreducibility
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proof presented there failed to work. Even worse, for some of these
cases the constructed representations are in fact reducible, as we
shall see later.

It is the main aim of the present paper to rectify the situation.
Fortunately, it can be done in the same framework. We shall be able to
select explicitly a subspace in the representation space V of a gi-
ven mixed representation Pfso  that corresponds to its irreducible com-
ponent. It will be achieved by decomposing V with respect to the ir-
reducible representations of a subalgebra g1(2,€) contained in fA .
Moreover, the decomposition procedure works even for those weights for
which the irreducible highest-weight representations are finite-dimen-
sional (the set 'inn - see below). Hence the method of canonical (bo-
son) realizations is actually able to Yield a complete set of irredu-
cible highest-weight representations of s1(3,C) (of the form suitab-
le for practicsl calculations). We are convinced (heving various posi-
tive indications) that the extension of the last assertion to
s1(nt1,€) , n>2 , and eventually to other semisimple Lie algebras, is
mainly a technical matter.

2. Preliminaries

Here we shall resume briefly some notions needed in the follo-
wing ; for a2 more detailed information see Refs.2,6 . The Lie algebra
gl(n+1,€) has the standard basis formed by (n+1)2 elements

e
ij
i,j=1,...,n41 | that fulfil the relations

les5rex1) = Opgeq1- 9590y - m

The simple subalgebra sl(n+1,C) is generated by the elements e
i$ 3, and higeiﬂ.iﬂ'eii , 1=‘|,2....,n .

Let A :(AI"'°'An) with .Ai 8 being complex numbers. A repre-
sentation Q of 8l{n+1,L) on a vector space W is called represen-
tation with the highest weight A if there is a non-gzero vector
xy€ ¥ such that

i3

9(eij)xo=0 , jei |, (2a)
v(hi)xo = A1‘o ’ i=1,2,...,n , (2b)

and Xg is eyclic for ? y Lee., 9(UL)x°= W , where UL means the
universal enveloping algebra of L=s8l(n+1,C) . In view of the rela~

tions (1), it is enough to check the condition (2e) for i =j+1 only.

The representations trented below are expressed in terms of the
standard creation and annihilation (boson) operators. Let, e.g., VN
be the vector space spenned by the vectors [n,,nz,...,n“ > with
nie_No = {0.1,2,...} . Then the sction of these operators on VN is
given by the relations

Ei'"!""ni""nﬂ>'=(n1+1)1/2 [nyseengdt,oe,ng ) (3a)

1/2

b
91|n1v--snin--vnn>=ni 'n1l"'ni"1i"'nn> . (3b)

Since they fulfil the cenonical commutetion relations, ome cen oons-
truct to each A = (A,,Az) the representation ¢, of s1(3,€) by the
formula 4-

?A(hl) = -a,8, + a8, + t(h) , (48)
fu(hy) = -8,8) - 23,8, - R A L (4b)
faleyy) = 5231 + Tley,) (4c)
pesy) = -8, (4d)
9A(e32) = -8, (4e)
a6e12) A 3‘92 + tley,) (41)
Qers) = By(F 8, 4 Bya, - TRy ~A - 3 A v Eprley,) L (40)

- - - 1 1 -
fleas) = 8,(8 8 + 88, + 32Ny) Ay - 5A) 4 ETle,) , (4h)

where T 1is a representation of sl(2,C) on a vector space W .
Strictly speaking, one should write here =2a,® I' instead of a,, etc.,
but there is presumably no danger of misunderstending. In this sense
therefore, the relatione

[a,.0&)] = [8,,x)) =0 , 1=1,2 , (5)
are velid for 8ll ge€ s1(2,C) .

It is easy to see that if t(e,z)y°:=0 and T(hi)yo= A1y0 for
some y,€ ¥ , then the representetion @o fulfils the conditions (2)



with Xq =10,0> @ Yo - Two cases are of a particular interest :

(a) if W=V, and 7 is given by

z(h,) = -2‘a'3a3 + I\1

’ (6a)
i

t(e21) = -ag (6b)

T(e,,) = 53(5383 - A (6c)

for some Ale € , then the representetion (4) is called maximal
representation,

(b) if W is finite-dimensional with the basis 18>g » 8=0,1,...,A

for some A e No and '
thy)ledy = (A -28)l8), , (7a)
Tleyy)ledy = -sls-1), , (1)
ey sy = (s=Adle+1)y (7¢)

then the formulae (4) yield the so-called mixed representations

of 81(3,C) .

It is useful to decompose .the set ) =02 of all weights A into
Pisjoint subsets depending on whether the components Ai and their

combination 1+A.| +A2 belong to NOE{O,I,Z,...} or not (for real
A , it is sketched on Pig.1

together with the corresponding root
diagram of

81(3,€) ). In particular, we denote

R, = 201,2,12) = {A: Aen, ., Azeno . 'f"r“z"‘o} .
Dpay = 0B = { Az A¢NR,, AN, 1+A+AEN T,

and furthermore

DO1,12) = {A: AeBy, , A48, , 14 A +A e T

etc. (we mark the sets by the symbols of the conditions that are ful-
filled). Hence we have the decomposition

.Q=nmxulzmuQ(z)umm)um:,m)umz.1z)u.0ﬁn ' (8)

1eA +A,

(1)
¢ fin
o a01,12) —_— 8(2)
a a2y - a0

Pig.1- The decomposition (8) for real weights.



because [{(1,2)=@ ; the notation used here differs in part from
that employed in Ref.4 .

It is easy to see 2,3/ that in order to prove irreducibility of
the representations FA , one has just to check cyclicity, i.e., the
remaining requirement from the definitiom of the highest-weight repre-
sentations. The following assertions are valid @

Proposition 2,1 : (a) If AeJZmax s then the maximal representation
P given by (4) and (6) is irreducible and has the highest weight A .
(b) If Ae (1) , then the mixed representation @r given by (4)

and (7) is irreducible and has the highest weight A .

The part follows from Theorem 4.3 of Ref.2, while (b) has been pro-
ven in Ref.3 . As mentioned in the introduction, the last proof fails
to work for Ae f1(1,12) , because it uses linear combinations with the
coefficients which are eventually zero in this case. Using further an
sutomorphism of s1(3,€) that permutes h' and h2 (see Ref.3), one
can construct from (4) and (7) irreducible highest-weight representa-
tions referring to Ae {i(2) , while the case Aef)(2,12) is agein
left open. Finally, irreducible highest-weight representations for

A e l(12) have been constructed in Ref.4 .

3. Decomposition of the representation space

Hence we are left with the task to construct irreducible highest-
weight representations for A€ {(1,12) . To this end, we shall use
the mixed representations @, given by (4) and (7), with the repre~
sentation space V::Vzo W . To each x€eV , it is easy to find an
element geUL , L =81(3,C) , such that PA(g)x=on |0,0>GIO)' .
Since the relations (2) are valid with this Xg o it is enough to
gselect the irreducible component of f% acting on ?A(UL)xo . Notice
that the mixed representutions themselves may be similarly "reduced
out” from the maximal ones (up to the normaslization of the basis
vectors) @ the relation (7c) shows that we cannot get the vectors
{m,n) @|s) with s >I\1 staerting from the "vacuum" if A‘e No .

We are going to perform the reduction by decomposing V to a
direct sum of subspaces referring to irreducible representations of
the subalgebra g1(2,C) generated by e‘z,ez‘,h‘ and h2 . With
such a decomposition at hand, we shall pick up those subspaces which
are contained in QA(UL)xo .

The space V 1is spanned by the vectors |n‘,n2,s) =ln‘.n27 8|s>w
with € No and s =0,1,...,A'e Ho . Pirst we shall pass to another

basis. For arbitrary teN, end r=0,1,...,min(t,A;) , we denote

b
U > (:) [n!(t-n)!]1/2 |n,t-n,r-n> . (9a)
i n=0

Proposition 3,1 ¢ The vectors
= q, (9b)
Xy r,q - fh(e‘z) e
= - th
with teNo,r=0,1,...,min(t,i\1) and q-O.l,...,AIH: 2r span the
vector space V .

Proof : Pirst we check that all the vectors (9b) are non-zero. In

view of their definition, it is sufficient to verify that
+t-2r

L ti one finds easily

?A(etz) Xer 4 0 . By induction, N

t t -8)!
t = -1 t-k

91\(612) |n1'n215> ]éo ( ) (k) (A1-s-t+k)! o
n,!(n +k)!]1/2
2 __1 K,n -k,s4t-k >
X [(nz—kS!n1! Iny+kony-k, '

where the terms containing "negetive factorials"” in the dencminator
are suprosed to be zero. Thus we have
(A,-F+4n)! (t-n)?
! X

g X q-% fq\/T
! - -
Paley ) Xy p = éo 3;—'0 N (k)(n) (A,-T+n-g+k)!

(1)
1/2
X [ o ] | n+k, t-n=k,r-n+g-k > .

(t-n-k)!
Cranging further the summation indices k,n to l=n+k, n , one ob-
tei
i min(t,q+r) ,
(e))? (-1)3h Tl L
e x = Trog 1)t
Paleq2 t,r 1:max(0,r+q-A‘) 1 (155
1/2
1! N
X [TZ:TT?] }1,t-1,r+q-1>
with
. min(r,1} yn /T (Ai-r+n)! (t-n)?
ey’ = =k \n) (a-1+m)! (r-n)'

n=max(0,1-q)

¥riting the two quotients as the derivatives of suitable power func-
tions, we arrive after a short calculation at the expression



L-r-qthy) 40 -r

cbirea a d [fA qt'n(l-f)r] . (12b)
1 1--r-q+l\1 d t-1 ( )=(1,1)

af 7 $p=th
These relations show, in particular, that for any given t,r we have
QA(e,z)qxt p=0 12 q>A1+t-—2r , because in that case all terms of

14
the above derivative contain certain positive powers of ?-f , and
consequently, c{,r.q =0 for each 1 . Furthermore,

t.r,l\‘+t—2r r+l-t

¢ = (=-1) r!
is non-zero so b S " 40 holds for q= A,+t—2r . In view of (9b),
] ’
the same is true for q=0,l,...,A’+t-—2r-—1 .
Next one has to check linear independence of (any finite set of)
the vectors (9b). The reletions (3),{(4) and (7) imply
’ (138)

@A(hi)x = (A, +1-2r -2q)x

t,r,q t,r,q

’ (13b)

(A2+r+q-2t)x

?ﬂ(hz)xt,r,q t,r,q

eu(nF + 2h ¢ de e, x = (Ay+t-2r) (A, +t-2r+2)x i (13c)

t,r,q t,r,q

in the last case one can use commutativity of the operator involved
with QA(elz) and calculate the eigenvalue for q =0 only (see (15a)
below). It is not difficult to see that the values of t,r,q are de-
termined by the triplet of eigenvalues uniquely, and therefore the
linear independence follows.

Finally, we shall verify that the vectors (9b) span V . Let v,
denote the subspace of V generated by all |n,t-n,s) with Ogngt
and s=0,1,...,A‘ , and similarly, let Ut be spanned by the vectors
Xy r,q with 0grg min(t,l\,) and q=0,1,...,/\1+t-2r . In view of
(12a), we have Utcvt for each t ; we are going to show that their
dimensions are the same so Uy =V, . Clearly dim Vt = (A,+1)(t+1) H

on the other hand, the linear independence of X4 r q yields
’ ’
min(t, A‘ )
dim U, = Z (A1+t-2r+1) = dim V. .
r=0
Consequently,
0 o Lo -
v vt=Z, U, - (14a)
t=0

o o

The decomposition can be carried out further, in particular, we can
writs
8

00 min(t, A,)
® > @
V= Z. Z Ve r o (14p)
=0 ,

r=0

where Vt r is spanned by the vectors xt’!_,q with q=0,1,...

..,A,+t-2}.
Proposition 3.2 ¢ The restriction of the representation @4 to the
subalgebra gl(2,C) generated by €15 €59 hI ,h2 acts irreducibly
on each V

t,r °
Proof : Due to the definition, we have Paleg)x o 0= Tt,r,q1 for
’ b4 ? ?
:h:(:,!,...,/\l+t—2r—l and P"(eiz)xt,r,ﬁ+t-2r =0 . It is easy to see
a

falepydxy =0 (15a)
and

[621'3?2] = qe;lz-'(h’ -q +’) (15b)

= q-1 - - —2r-
80 Qaleny)xy 1 = a4 faley ) g n)-at)x, o = a(Att-2r—at )z, o,
In combination with the relatioms (13a,b), this yields the desired
result. ) |

Concluding this section, we are going to visualize the action
of the representation @A given by (4) and (7) in the newly introdu-
ced basis. It is convenient to change its normalization in the follo-

wing way

= (Aj+t-2r-q)t x (16)

Xt,r,q t,r,q °

for each telN,, r=0,|,...,min(t,l\,) and q=0,1,...,A1+t—2r . Then
we have

Proposition 3.3 ¢ The representation ?A acts on the vectors (16) as
wn,)xt’r’q = (A +t -2r—2q)xt'r'q , (17a)

X N = X 17b
Q,\(hz)xt’r,(l (A, +r+q 21;)11;’1,’q , (17v)
vﬂ(e12)xt,r,q =i (A"+t-2r-q)xt,r,q+1 ’ (‘70)
(173)

~ Ny
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t-r-

o~

e’\(e‘z)xtvr’q - t-2r+A1+1 xt"’"er"" -

(17e)
t-2r+ Aj—-q A y &
- t-2r+A‘+l (‘+A1+%—r)( (e xt+1,r+1,q '
t-r-
~ - ~ .
fale23)% v q tezr+ ATl t+1,Ta
(171)
+ ;:5;51;:7 (1+A'+A2-r)(A'-r) X1, re1,q-1 °
~ = r ; -
Oale3)%y r g =~ Toore A+l Tt-1,1-1,4
\17g)
T g-2r+ A1+1 (t—r)(t—r+A1+1) Xtet,r,q=1 *
% R errwel -
%(e32 XtoTeq  t-2r+ A1 t-1,r-1,q+!?
(17h)
t-2r+A,~q -
- ;:E;ITt:T (t-r)(t-r+A1f1) xt-!,r,q

Proof : Notice first that t-2r+A1+1 is slweys non-zero since
r‘min(t,A,) . One must find first Q),\(e“)xt'r from (4),(7) end
(98) ; it 1s a tedious but straightforward calculation. Using then

~ - q
Xira> M +t-2r-q)! ple ) x, o

together with (13a,b),(15b), we get the first four of the relations
(17). The remaining ones are obtained with the heip of the identities

(ey300%21 = [932"’?2] =0 (182)
[ea30ei2] = -qe‘};‘e” ' (18b)
[e510e%5) = aezles, - (18c)
which follow from (1) by imnduction. | ]
10

4. The irreducible representations

Now we are going to show how one can select the irreducible com-
ponent of the representation (17). To this end, we introduce for the
basie (16) a different notation that calls to mind the Gelfand-Zetlin

patterns (see BRef.7, Section 10.1) : the vectors ;t r,q will be writ-
| s
ten as
By3 My3 Wyg Ah, A 9
" Bp My | < Ajtt-r , (19)
my, r+q

where, of course, m12=/\1,A1+1,... 5 1:122=0,1,...,Al and myy=m,,,
m22+1,...,m12 . Let us stress that (16) and (19) differ just by the
numeration of the basie vectors, because there is a bijective corres-
pondence between the triplets (m12.m22,m11) and (t,r,q) . The for-
mulae (17) now acquire the following form :

()A(hi)m = (r2-2r‘)m , (20a)
9§h2)m = (r3-2r2+r‘)m , (20b)
S 3
ek, k-1)m = 35:_‘,1 o (@) By k=23, (202)
k-1
= ad =
ooy, )m = J{:‘, o &l |, k=23, (204)

where mi ’ ﬁi abbreviate the subtraction (addition) of 1 in the
appropriate index, symbolically

m{ = m(mjl—’ mjl-l) , ﬁi = m(mjl—a-mjl41)
and the numerical factors in (20) are the following
k
Tk = % Dyg * (21a)
a:(m)=m”-m22 5 bhm)=mw-m” , (21p)
(m, ,~ Y(m, ,+1)
ay(m) = - —12-23 2— vl (21¢)
By 27B2*
m
a2(m) = —28—— | (21d)
2 myg~Bypt!

11



. m -
b)(m) = —1212 (21e)
my o=y,

(my5-m,,t1)(m

By o0

"

-m._.)

b3 (m) 25_22° al(m) . (21£)

2 +1

The relations (20),(21) describe the representation fully, the action

of Q/\(ew) R PA(e31) being obtained from the commutation relatioms.
As we have explained above, in order to obtain an irreducible

highest-weight representation corresponding to a given A (with A1€ No)

one has to take the restriction 54\ of ¢, to the subspace PA(UL)xO,

where Xq is the would-be highest-weight vector,

A,+ A2 A, 0

x5 £ X5 0,0 F Ay, O . (22)
0

The following ceses are to be distinguished. If Aze No , then the
relations (20d),(2%e) imply /\' $my,¢ myy= A,#/\z . In another words,
one cannot reach in this case the vectors with Dy, >0y applying
successively the operators (20) to the "vacuum" (22). On the cther
hand, there sre no additional restrictions to B, if l\2¢ No . As
to my, s the relations (20d) and (21f) show that 11122_=0.1....,I\1 if
l'+A1+A2¢ By , or if 1+A1¢A26 N, end Az"' . On the other hand, if
1+A‘+A26 llo and Azg -2 , the values m22=0,1,....1¢A|+A2 are ad-
mitted only. The remaining relations impose no restrictions to the in-
dices LIPT PP of the vectors contained in @A(UL)xo B

The described procedure of selecting the irreducible component
of @4 is eketched on Fig.2 . The range of m,, 1is finite (cf.(19))
and may be evertually plotted at the third axis. Let us summarize the
above discussion @

Theorem 4,1 3 (a) Let Aze No » then V, EPA(UL)xO is spanned by
the vectors (19) with. /\,$m125A1+A2 » 0€m,, <A and my,<m <
€0y, - Consequently, ?,\ is reducible and the irreducible highest-
weight representation §A=?AbVA is finite-dimensional.

(v) If I+A1#A24N0 or A2=—1 y then V, =V so @A is irreducible.
(c) 1If 1+A1+A2€ No and A2$-2 » then V, 1is spanned by the vectors
(19) with m‘za/\1 , 0<m22s1+/\1+l\2£ A,-—l and My, €Wy &My, . Con-
sequently, @ 1is reducible and the irreducible highest-weight repre-
sentation ‘§A ie infinite~-dimensional.

12

m
12 Case(a) of Theorem4j
VR S & O© e 0O 0O O O OoO-0 O o
e e ¢ 0 © o0 0 o o0 O o
® € e 0 ©0 0o O o ©O o O
e 6 ® 0O O O O O O Oo o
0—06—0.—0 0 00O —0—0—O0—O0
A| A1 + AZ m22
My h 41
Case (c) of Theorem 4.
A1 O o [o] o o o o o O o o
o 0 0 ¢ 0O o 0o o0 O o o
o o 0 o o © o ©o o o o
A A e © o © ®© e ® ®» o o o

Fig.2. Illustration to the reduction process-

Let us comment on these results. Pirst of all, the assertion (a)
shows how one can get the standard irreducible highest-weight repre-
sentations from @a for Aeﬂnn . Actually, the formulae (20),(21)
are almost the same as those obtained by Gel Tand-Zetlin method (see
Ref.7, Sectim 10.1), the differences being due to different normalization.

Furthermore, the assertions (b),(c) make it possible to answer
the main question we addressed ourselves in this paper. Consider a
given Ae f)(1,12) . 1If A2=-l s then @, itself is the sought irre-
ducible highest-weight representation. On the other hand, if A2‘< -2 ,
one has to restrict @, to the infinite-dimensional subspaoce Va
specified in the assertion (c). The case A€ fl(2,12) may be dealt

13



with using the automorphism 2 of s1(3,C) (cf.the relations (16)
of Ref.3) that permutes h, and hz . The irreducible highest-weight
representations referring to Al =-1 and A1\< -2 @are then Q°T
and F&ﬂ t , respectively.
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