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1. Introduction

The problem of vacuum structure in QCD is a matter of current in-
terest. In the non-Abelian gauge theories (as QCD) approximate calcu-
lation methods and analysis used are usually motivated by different
assumptions (sometimes only because of their symplicity) and often
lead to inconsistent results. An experimental test of most of these
assumptions is still not possible. Important conclusions may be drawn
by comparing the results of exact and approximate calculations in
exactly solvable field-theoretical models.

From such a point of view the vacuum structure of the Schwinger
mode1/1/ is very attractive. This model, as a theory of fermions in
one spatial dimension, may be bosonizod)2'3'4/ thus loosing the chi-
ral symmetry of the initial classical Lagrangian. For 1its restitution
the so-called 8 =vacuun 3 is introduced, so the theory acquires two
parameters - e and 8 . Later on it has been pointed out’> that
this procedure is equivalent to the introduction of a constant clas-
sical electric field defined by this new parameter © . The same 8 -
vacuum ig used when considering the massive Schwinger model. However,
there arises the quesgtion ;s why is 1t necessary to introduce such
an additional parameter € 1in this case too, 1f the chiral invari-
ance is broken from the beginning by the mass term for ¥(x)?

In pape 6 a new interpretation of 6 —vacuum in the Schwinger
model was proposed which 1s not connected with an artifioial restitu-
tion of the classical Lagrangian chiral invariance., It is shown that
the existence of the © -vacuum is caused by nontrivial topological
properties of the gauge field. In such an approach Coleman's constant
electric field appears as a quantum physical observable becauge of
discontinuity of the phase of the gauge field state function, The ei-
genvalues of this field aré labelled by the Brillouin zone number K
and an angle 0 :
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Here is a canonical momentum conjugated to the topological vari-

able N o
NIA] - e de A0,

This variable describes the gauge field infrared (longitudinal)
dynamics and is a continuous analog of the Pontryagin index
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So, dynamical treatment of this quantity appears as a main featu-
re of the approach proposed in

In the present paper it is shown that in the Schwinger model a
nontrivial topology leads to a physical vacuum with a structure of a
coherent state of observable fields., Part 2 is devoted to the model~
Hamiltonian construction when quantum motions of bosonic and fermio-
nic vacua are taken into account. In part 3 the ground-state structure
proposed 1s motivated. This ground state is used to obtain the quark
condensates and Green?s functions for the currents that is a subject
of part 4, Conservation of the cluster property and validity of Wil-
son's expansion in the Schwinger model are discussed therein;

2. e Role of Fe onic Bogonic Vacua Motions in the
Schw. er Model

The Schwinger model, massless quantum electrodynamics in two-
dimensional space-time, is given by

L) =4 Euf 1+ B0 (/9 -0y 1A ) W)
. - 0,4,
R

Conslderation of a simple example - free gauge field in the gauge

AO:O » is enough to convince us that the nontrivial gauge field
topology has an essential influence on'model properties. In this gau-
ge we have
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This Lagrangian is invariant under stationary gauge transfor:
mations M) ) S AGO
| LMK -
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In the clessical theory this leads to
' 1
Al(xt) = A, () + o 0, 2 (x). 4)

' Gauge transformations are given by the function A(x) , determined
on the line R(4), with the boundary condition
bive D (x) =0 -
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However, in the quantum theory the right-hand sides of egs. (3)
and (4) are not always equal to each other, because as a basic ele-
ment of gauge transformations there appears the Weyl phase pr{il(x)_}
determined on the c¢ircle. The requirement of the state-functlon gauge
invariance leads to the following boundary condition for this phase

aM eb/\(x) -{

Ixi—=>
ov ~© (5)
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Thues, we have a map of the line R;(‘l) onto the circle UU) charac-
terized by an integer n (which indicates the number of rotations of
R.(1) around U}y, Thie nontrivial topology disappeara in the classical
limit but in the quantum theory the gauge~field configuration space
{A,(“)(x)} is not simply connected and the "points™
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are physically identical that leads to the state-function phase dis-

continuity 0
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Condition (7) determines the constant electric field spectrum
mentioned above

F‘}"=p27§—1!’=fe;(ﬂ'“9)?r , K=0,21,22,. . (8

and points to the existence of a field analogy of Josephson's effect
{ K 1s the Brillouin zone number). This undamped collective motion
of the gauge vacuum is described by the following Hamiltonlian

ku:%(%y‘vzze/; s V-‘—de (9)

which coincides with the one for a free particle with a mass
Ut (2,7! W
FEvize .
The collective-motion Hamiltonian may be directly obtained pro-
Jecting the action and Pontryagin index as a dynamical variable onto
the general solution g the constraint equation
) -
5'40 SHh === AD: 3443044“'CX .
Thie method 1s used in paper 78/ to obtain the Schwinger-model
Hamiltonian, which differs from Coleman®s one /5/ by the last term.

(9). Thie 1is due to the choice of the gauge A‘:O . In this case

the gauge fleld is not a dynamical varisble, that is why it is more
difficult to establish its longitudinal dynamics. F‘or this reason one
mugt take into account that the connection between two gauges ;40=0
and A,=0 1is determined up to an integration constant which may be
fixed by the gauge field topology. This may be done by the following
substitution in the Hamiltonian of

-t ~1 . . e
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Thus, Coleman®s Hamiltonian coincides with the one from
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It is not difficult to obtain the equivalent bose-form of the
theory. As 18 known, in the axial current commutator there appears
en anomalous term

(12000, i p]= 5 2 Sg) S an

due to the negative-energy-state filling , m;ui;'?d for the positive
1,

/64,

" definiteness of the free-fermion Hamiltonian

The substitution
~ ] : ,
As,u(") = 9¢~4’(") (12)

transforms relation (11) into the scalar field 4’(X) commtator, The
equivalent bosonic Hamiltonian has the form

Hy = %de [a* (51¢)Lf M(p-F=) ], o
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where J- 3043 is a canonical momentum for the fleld 47()() 0 ML=Q/F.‘
The chiral charge in the model

Qs = §x oo 00 = L §dr 26 (1)

is not conserved. Thus, the quantum-theory chiral invariance is broken
by the "polarization" of the Dirac vacuum caused by the gauge field
rather than by the topological degeneration of the latter.

Hamiltonian (13) is not invariant under chiral transformations.
However, there appears an invariance under simultaneous transforma
tions of the observable fields )

S"Hyo™=H,, &%= expliru(as-24)]. (15)
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3. _The Vacuum Structure

Ag is mentioned above, the gauge field topological degeneration
is not connected with the chiral-symmetry breaking of the initial clas-
sical lagrangian. Nevertheless, this degeneration plays an essential
role in the Schwinger model. It is Just this role we are now going
to study.

It follows from (13), that the theory describes a massive scalar

) = dx) -

It is this compound field that vanishes when-xe.tﬂ « Hence, our task
is to construct a vacuum state that ensures the validity of the rela-
tion

field

Cvacl () vae> = 0. (16)

Let us write the field operator d)(l‘)as a sum of a positive- and
negative-frequency parts

() = d¥x) + ¢ (x)
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and denote by 07({2) the creation and annihilation operators of a(b -
boson with momentum «The vacuum state in the Pock space of these
opsrators is defined as ’

¢ l0>=0, <0[d*=0 , <o0l0> =4,

i.04
(OI 4) lo> (17)
So, vectors i (k)
= 0
(W = TK"' o>

contain the whole information about the¢ -bosons in a fixed state.
However, the vacuum state of the whole theory must also satisfy
one more condition (see (8)):

plvae> = (2xk +9)lvae> - (18)
Prom definition (4)and substitution (12) the relation
(@, . ) -7 (19)

follows.
Owing to (19) and to the commutativity of topological momentum
and chiral charge Q we arrive at the following vacuum structure
in the Schwinger model '

‘ lvee > = exp{-—me Jloy. (20)

Thus, the vacuum represents a coherent state of the observable
fields, It is not difficult to check that this structure ensures the
validity of (16) what means that there takes place

{voe| ¢>~£P—G[ voe > = 0.

4, Matrix Elements and Two-Point Green's Functions
for the Currents

Now we ere going to calculate some quantities, for example,
quark condensates < J(x)) and {J;(x) ), using the vacuum structure
obtained ebove, Here

T() = V()WY (x), ' ('21)
J, (¥)= ‘Tl(x)[, Y(x).

We need explicit expressions for these currents in terms of the
bosonic £ield §(x) .
Iet the two-component spinors W(x), V(x) have the form

N OE (\yf) ’ W()‘) = (W,_* » wk+)
and X‘-ltriccs are

B (20) s e (03) s fobpe (52

Then currents are written as )
MO AOLADEL A OEAT
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The spinors V(x)lndq‘(x) satisfy canonical equal-time commutation
relations. So, we find

[jo®, WP Y2 P] =2 8- p) “’3‘2}’ Valy)s @
[JSo (x)y WI. 3) Y. (‘7)] =~ 6(X‘ ) WR (}) Vo (3)

Pron lagrengian (1) and relation (12) it follows that )Jso(x)
is proportional to the momentum, conjugated to the field 47(1

\ Joo (0= £ 00900 = L TT(0)-
Introducing the notation
\t’: () W (x) = F,[ ¢(x)],
Yo (W (x) = F.[ $ (9]
7
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(these are Just the terms we went to express by 4)(1)) we may rewrlite
(22) as

[0, PTG ] = 2217 € lcy) Falgep)]

This is equivalent to the following functional equations

d‘¢ )F+[<P<y>] £2.00F ¢ () Fo[p(p].

Their solutions are
W] K exp{t UF $00] (25)

%e value of 1ntegration constant % may be easily obtained
!y,

Relations (22),(24), and (25) give us the following corresponden-
ce formulas

(see

T = 2% s VT () oy
T2 00 = 24 K 5¢n 2T ().

Note thqt the first of these relations allows us to bosonize
the massive Schwinger model too, because the mass term has the same
structure as J{(x) . All other considerstions (concerning the topologi-
cal degeneration and Dirac vacuum "polarization") sre valid in this
case, too,

So, we obtain the equivalent bosonic Hamiltonian for the massive

model
. %Svdx{m* + (3,4)* +M"(¢-£%\r)

It has the same invariance (15) as the bosonized massless one,
Thus, Coleman's question about the third-paremeter introduction in
the massgive model takes no longer place,

Using definition (20) and relations (17-19) we find

{voe| T()|vae > = LK w056,

* ¢ A ws,u}d)l

- (27)
voel T (ofvaey = 2o Hsenb-
Then it follows that
< vael IE(fvacy = %e g (28)

where

' =1 (360 £ 7,09).

It is not difficult to obtain vacuum expectation values of diffe-
rent products of currents T *(0) (with the assumption that a product
of two operators at one and the same point is equal to their normal

1 VT 2,40)
<V B Hlvoe> =
VL TN (29)
=Me

product):

II

Cvoe | TE(0) TE(0) vae >

Lvor| THO) TH (@ |voe> = K™

These results allow us to made some conclusions:

1. Both condensates <J) and {Tspdiffer from O because of the
nontrivial gauge field topology. The variable © has a dynamical con-
tent, it is a quantum physical observable. So, it is not correct to
put it equal to O. This is the reason for the difference between (27)
and the corresponding result in paper /9/.

2, There is a difference between vacuum expectation valuea of
current products when Xx=0 (see (29)) just for the same reason, Howe-
ver, at the same time a conclusion made in -1s confirmed about the
contradiction of these results with those obtained under the assump-
tion in /10./.

3, Cluster property is conserved, i.e.,

Lw <voe| T(I* T (@D 1voe> =

X0 _
= <voe | Tt vae H<voe | TTIvoe > .

Indeed, we have for the right-hand side .
MVx (4)(1)—(}(0)): R e~‘ﬂ't A(x):

i <va¢|?f(.": e
X200 i

{,L\Mv % ‘lfFlA(k) i %L
x> 0 b

that agrees with the left-hand side value according to (28), Here
A(x)ia Green®s function of the massive scalsr field, which tends
to O when X2.0 &

4, Prom (16), (18) it follows that the vacuum expoctation value
of the field ¢(x) is

{voe| P vae> = ~— (zrk+9)

So, for any function of 4>(X) the vacuum expectation value of each
term of Taylor's series and of each its finite sum will depand on the
Brillouin zone number K , when the vacuum expactation value of the
whole series will not depend on it, Hence, the Wilson expansion is
not always applicable in this model (except the case of zero sone,
when k =0 ),




Conclusion

Quantization of a two-dimensional Abelian gauge field in accor-
dance with its topological properties gives rise to an additional inf-
rared physlical observable, which depends on an integer K (the Brillo-
uin zone number) and on an angle 9 ’

The influenge of this observable (hence, of the gauge field to-
pology) on the vacuum structure in the Schwinger model is shown. The
ground state of the system is constructed to satisfy the requirement
of an assymptotical-vanishing value of the massive bosonic field.

This state represents a coherent state of the observable fields cha-
racterized by quantum numbers mentioned above. Quark-~condensates
values and Green's functions for currents are obtained. Some diffe-
rences from the results when the variable @ is not considered as an
observable are discussed., The vacuum structure proposed preserves
cluster property but at the same time shows that in the Schwinger
model the method suggested in /10/ is not aﬁBlicable and Wilson's
expansion is valid only in the Brillouin zone with K=0O .

I would like to thank V.N.Pervusﬁin for helpful conversations
and suggestions and B.M.Barbashov for discussions.
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Vacuum Probiem in the Schwinger Model

. The §chw|nger model with quantum motions of bosonic and fermionic vacua
is considered. The physical vacuum is defined as a coherent state of the
observable fields. Quark-condensate values are found, which depend on the
gauge field topological degeneration parameter.
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