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1. INTRODUCTION 

It is known that the PrUfer transformation / l/is very useful 
in the investigation of the eigenvalues of the one-dimensional 
Schrodinger operators (defined, e.g., on the interval (0 , оо )) 

involving potentials represented Ьу а single ("scalar") function 
of the coordinate (see, e.g., refs. 12,3,4/ ) . In such а ca se 
the eigenvalue proЬlem defined originally for the Schrodinger 
equation may Ье reformulated in terms of а nonlinear Ist order 
differential equation for the PrUfer "phase function". Тhе phase 
function possesses some remarkaЬle properties which facilitate 
greatly the evaluation of eigenvalues.Moreover, the above-men­
tioned nonlinear Ist order equation has favouraЬle properties 
as regards the numerical integration (stability) - see also 
ref. / 4/, where а rnodified PrUfer transformation has been used. 

One would like to have an analogous procedure also for the 
matrix Schrodinger eigenvalue proЬlems. However, much less is 
known in this case. The corresponding generalization of the 
PrUfer transformation has been introduced Ьу Atkinson/5/,but the 
discussion in / 5/ has been restricted to а finite inte'rval only. 
In paper/6/ the Atkinson-PrUfer transformation has been used to 
develop the oscillation theory for coupled systems of the Schro­
dinger equations, which was subsequently applied to the nume­
rica l evaluation of the eigenvalues. In / 6/ the corresponding 
phase functions have been reconstructed Ьу means of а direct 
integration of the Schrodinger system in question. 

The encouraging experience with the method described in 
ref. 131 (which is based on а d.irect computation of the phase 
function Ьу integrating а Ist order differential equation) 
gave us the motivation to investigate the possibility of ex­
tending this method to coupled systems of the "radial" Schro­
dinger equations defined on the half-axis <O, oo ).As а first step 
towards the implementation of such а program we study in the 
present paper the properties of the Atkinson-PrUfer phase func­
tions and find the results analogous to the scalar case. Thus , 
it is possiЬle to generalize immediately the fundamental theo­
rems giving the connection between asymptotic properties of 
the phase functions and the eigenvalues. 

The second step should consist in analyz ing an appropriate 
system of nonlinear Ist order differential equations whi ch 
would provide us with the phase functions without referring to 
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the original Schrбdinger system. This point will Ье discussed 
in detail elsewhere. 

The paper is organized as follows. In Sect.2 the relevant 
phase functions are introduced Ьу means of а matrix of regular 
solutions of the coupled Schrodinger system. In Sect.3 the 
properties of the phase functions are investigated. Theorems on 
the eigenvalues, formulated in terms · of the asymptotic behavi­
our of the phase functions, are given in Sect.4. Some concluding 
remarks and an outlook are contained in Sect.5. 

2. BASIC DEFINITIONS AND PRELIMINARIES 

Let us consider the following system of the coupled radial 
Schrodinger equations defined on the interval <0, оо ) 

d2 u r~ - -- + (v(x)- f )u =О, 
dx2 

( 2 . J.) 

where u = u(x, f) is а column vector, С is а real symmetric nxn 
potential matrix and f is а real parameter, с= -к2 , к > О. For 
simplicity we suppose that 

(i) for any i,j the matrix element cij(x) is continuous for 
х Е <0, оо ); 

(ii) for х -. оо the absolute values of the matrix elements 
с (х) with i f. j decay faster than 1/х2 • whereas cii (х) may con­
tain а term di /х 2 with di >О. 

We look for the solutions of eq. (2. 1) satisfying the boun­
dary conditions 

U (0, f) = U (оо, С) = О. (2.2) 

The value of f for which such а solution exists is an eigenvalue 
of the Schrodinger operator corresponding to eq. (2. 1). 

Any solution of eq. (2. 1) satisfying u(O, Е) = О will Ье called 
regular in what follows. Тhе existence of such solutions is 
guaranteed Ьу the following theorem (see ref. / 7/ ): 

Theorem 2.1. For С satisfying the condition (i) and с= -к 2 

к > О, there is а fund.amental system G(x, к), Н(х,к) of the solu­
tions of eq. (2.1) ( G,H are nxn matrices formed Ьу columns 
which are linearly independent solutions of (2. 1)) such that 
for some 8 > О it holds 

G (х, к) = х (1 + о (х8 ) ) • Н(х,к) = l+o(x8 ); 1 = unit matrix (2.3) 

for х-. 0+ and the relations (2.3) may Ье differentiated. 
In the following we shall also need а theorem on the asymp­

totic behaviour of solutions of eq. (2. 1) for х -. оо (cf. again/ 7 t). 

z 

Theorem 2. 2. For С satisfying the condi tion ( ii) and с= -к 2 
, 

к> О there exists а fundamental system Ф(-)(х, к) , ф<+>(х, к) 
(in the matrix form) of solutions of eq. (2.1) such that 

(-) -кх о( ) Ф (х, к ) = е (I + 1 ) , 
(+) · +Кх 
Ф (х, к) = е (I + o(l)) (2.4) 

for х-.оо and the relations (2.4) may Ье differentiated. 
Let now U = U(x, с) Ье а nxn matrix of regular solutions of 

eq. (2. 1), i.e., the columns of U are n arbitrary linearly in­
dependent regular solutions of eq. (2. 1). Obviously, U also 
satisfies eq. (2. 1), i.e., (the prime denotes the derivative 
w.r.t. х) 

V '(х, f) + Q(x, с) U(x, с) = О, (2.5) 

where V(x, Е) = U'(x, с) and Q(x, f) = с- С(х). It is easy to show 
Lhat U may Ье expressed in terms of G (cf. Theorem 2. 1) 

U = G ·С, (2.6) 

where С is а constant nonsingular matrix. We shall define, ac­
cording to ref. / 5/ 

W(x, с)= (V + iU) (V - iU)-
1

. (2. 7) 

In ref. 151 а theorem is proved, stating that the existence of 
the unitary matrix W is guaranteed for any х, provided that u+v 
is Hermitean (U+ means Hermitean conjugate of U ) and (V- iU)-1 
exists for some х (see Theorem 10.2.2, р. 305 in ref. / 5/ ). In 
our case obviously х = О has the desired properties owing to 
(2.3) and (2.6). Also, it follows immediately from (2.6) that 
W does not depend on the particular choice of the regular solu­
tions forming the matrix U. It is interesting to note that W 
is also symmetric, owing to the symmetry of Q in eq. (2.5). То 
see this, one has to use the identity (0 means the transposi­
t ion of U) ... 
UV = VU (2.8) 

which can Ье easily obtained from (2.5) for any regular U. The 
s ymme t ry oL W follows immediately from the definition (2.7) and 
the rel a tion (2.8). The above results can Ье thus summarized as 
fo llows: 

Theor em 2. 3. J.et U Ье а matrix made up of n linearly independent 
regular solutions of eq. (2.1). Then 

а ) W defined Ьу (2.7) exists for any х~ <О,оо). 
Ь) W is symmetric and unitary for х ~ <0, оо). 
с) W is independent of the particular choice of the corres­

ponding regular solutions. 
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In the subsequent discussion we shall also need some impor­
tant differential equations valid for the matrix W = W(x, с) de­
fined Ьу (2.7) for regularU, namely: 

L W(x, с)= iW(x, с) Щх, с), 
дх 

where 
n = 2(v+ + ш+:r- 1 (vtV + u+Qu) (V- ш>·- 1 

and 

д~ W(x, с)= iW(x, с) О(х, с), 

where 

0= 2(V+ +iU+Г 1 [ju+(t, с) U(t, c)dt](V- iU)-1 • 

(2.9) 

(2. 1 О) 

(2. 11) 

(2. 12) 

The relationy (2.9) through (2. 12) may Ье proved in full analo­
gy with ref. 51 - cf. Theorem 10.2.2, р. 305 and Theorem 10.2.3, 
р. 307 therein. Evidently, bothП and П are Hermitean. Note 
also thatП may Ье expressed in terms of W and then (2.9) takes 
the form (cf. also the relations (10.2. 19) and (10.4. 19) in 
ref ./51) 

W '= ~ [(I + W) 
2 - (1 - W) Q(I - W)]. ( 2. 1 3) 

We now соте to 
W(x,c) is unitary 
may Ье written as 

the definition of the phase functions. Since 
for any х, its eigenvalues cu

1 
(х, с), ... , cu

0 
(х, с) 

iф 1 (х,с) iф(х,с) 
cu1 (х, с) = е , ... , си 

0 
(х, с) = е 0 

• 

Further, W (0, с) = 1, so we may set 

ф 1 (0, с)= ... = ф0 (0, с)= О. 

According to ref/51 it may Ье shown that Фi (х,с), j 
can Ье continued uniquely and continuously so that 
~ (х, с)_5 ф2(х, с) .5: ••• ~ ф0 (х, с) .S ~ (х, с)+ 2тт. 

(2. 14) 

(2. 15) 

1 ,2, .•. , n, 

(2. 1 б) 

Although other conventions are also possiЬle, we shall use 
(2.16) in the present paper. The passage from the matrix U of 
the regular solutions of the coupled Schrodinger system to the 
matrix W given Ьу (2.7) or, eventually, to the phase functions 
(2. 14), (2. 15), will Ье called the Atkinson-Prtifer transforma­
tion henceforth. Clearly, the Prtifer phase function z encountered 
in the scalar case is just ф/2. 

The phase functions posses а set of remarkaЬle properties, 
which will Ье described in the next section. 
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3. PROPERTIES OF ТНЕ РНАSЕ FUNCTIONS 

We shall denote the relevant properties of the phase func­
tions consecutively Ьу Р1 through Р5. 

Pl: Let с = -к 2 , к>О Ье fixed. Let х Е; < О, оо) and 
-- eiфk<xo,c> = 1 for some k, 1 < k < n. Тhen Фk is increa-

sing function of х at х = хо. - -
Proof can Ье found in ref.f5/ and is based on eq. (2.9). Тhе 
point is that for any vector w, w f. О, such that W(x0 , E)W"' w it 
can Ье proved w+n(x0 , c) w =2w+w, where П(х,с) is given Ьу 
(2. 10). That is, П(х0 ,с) is positive definite when acting on w. 
Taking into account eq. (2.9), Pl then immediately follows from 
Theorem V.6.2, р. 469 in ref./5/. 

Р2: Let с= -к 2 , к > О. There exists хо (с) such that if for 
-- some k, 1 ~ k ~ n and for some х 1 > х0 (с) one has 

i фk (х 1 , с) 
е =-1 (3.1) 

then Фk is decreasing function of х at х = х 1• 

Pr ~of is again based on eq. (2.9). In analogy with the pre­
ceding case it is not difficult to show that for any nontrivial 
vector w satisfying W(x

1
, с) w = -w (cf. (3. 1)) one has 

w+n(x, c)w = 2w+Q(x
1

, c) w. (3.2) 

However, with с = -к 2 , Q(x, к)= -к2 + Щх) and limC(x) = О. Thus, 
Х-> ОО 

it is easy to prove that for а fixed к> О there exists хо(к) = 
= х0 (с) such that Q(x, к) is negative definite for х > х0 (к). (То 
see this one has to employ the min-max principle for the eigen­
values of С ). Thus : the l.h.s. of eq. (3.2) is negative for 
х > х0 (к) and Р2 then immediately follows from the Theorem V.6.2 
in ref . 15/. 

Р3: Let хо > О Ье fixed. Then any phase фk(XQ,c), 1 _5 k ~ n, is 
---а continuous increasing function of с (i.e., for с=-к 2 

Фk (Хо, к) is а continuous decreasing function of к). 
Proof is1>ased on eq. (2.11) and is given in ref.f5/ (see 
р. 308 and Theorem V.б. 1 therein - the point is that the matrix 
а~. с ) is positive definite). 

Р4: Choose some с = -к 2 · с is а k -fold degenerate eigenvalue, 
О _5 k ~ n ( k = О denoting the case when с is not an eigen­
value) if and only if there are just k phase functions 
Ф. (х, с) , 1 < j < k , for which 

1 - -

lim t~ _l ф. (х, к) = - _1. 
х->оо 2 1 к 

(3.3) 
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and for the remaining (n - k) phases 

lim t~-2!. ф. (х, к) = + ..!. . 
х->оо J к 

(3.4) 

Proof: It is sufficient to prove the assertion in one direc­
tion only; t h e inverse can Ье then immediately proved Ьу contra­
diction. 

Suppose that f = -к2 is а k -fold degenerate eigenvalue, е. g., 
1 <;;.k < n (the modifications for k = О or k = n will Ье obvious). 
Тhis means that there are just k linearly independent regular 
solutions u\-) (х, f) of eq. (2. 1), which are linear combinations 
of the columns of the matrix Ф(-) defined in (2.4). In the rest 
of this proof we shall employ the parameter к instead of f . De-
note these columns Ьу Ф(Г ) (х, к), .. . , ф~-) (х, к) and, similarly, 
the columns of Ф(+) (х, к ) in eq. (2.4) Ьу ф~+)(х, к), ... , ф~+ ) (х, к). 
Thus 

n 

u~-) ( х, к)= I А . . ф<.-> (х , к) ; 
1 j=l Jl J 

i=1,2, ... ,k. (3. 5) 

The remaining (n- k) linearly independent regular solutions are 
then of the type 

(+) n (+ ) . (-) . 
u . (х,к)= I А . ф . (x,к)+tennswlthф.; 1 = k+1, .. . ,n. 

1 j=l )1 1 J 
(3.6) 

It is easy to s ec. that the linear independence of the solutio~s 
(3.5) and (3.6) implies linear independence of the columns 

n 
IAii 1 i=I of the matrix А = IA ji 1 for i = 1 , ... , k and 

=k+1, •.• ,n, separately. Let us now prove that, in fact, they are 
all linearly independent, and, consequently 

detA ,J О. (3. 7) 

То this end, we shall employ the iden tity (2 .8) which means 
that for any pair а, Ь of re s ular solutions of eq. (2 . 1) one has, 
for х Е <0, оо ) 

iЬ'-а'Ь=О. (3. 8) 

When (3.8) is applied to an arbitrary pair of the type 

а = u~-) , 1 < i < k ; Ь = u<.+>, k + 1 < j < n, 
1 - - J - - (3 . 9) 

then, using eqs. (3.5), (3.6) and Тheorem 2 . 2 and performing the 
limit х ... оо , we obtain the relation 

n 

;, А.1 Arj = О ; i = 1, ... ,k, j = k + 1, . .. , n. (3. 10) 

6 

) 

Since the columns of the matrixA must Ье nontrivial, the ortho­
gonality relation (3. 10) implies the linear independence of 

1Ak1 1:=1, !Akj 1:=1 for any pair i,j satisfying (3.9). This, 

in conjunction with the statement following the relation (3.6), 
l .eads to the desired result (3. 7). Note that for k = О or k = n 
the relation (3.7) is obvious. 

Let us now consider the characteristic polynom of W 

Р(Л, х, к) = det(W - Л1) = det[(V + iU) (V - iU) -l - Л(V - iU} (V - iU) -l ] = 

= detl[(1 - Л)V + i(1 + Л)U] (V- iU)-1 1. 

(3. 1 1) 

Using the fact that W does not depend on the particular choice 
of U (see Theorem 2. у), we may choose U so that the first k 
columns are just u i- , i = 1, .•. , k and the last (n - k) columns 
are just u~+), i=k+1, ... ,n. Then, using Theorem 2.2 and 
eqs. (3.5)

1

, (3.6), eq. (3. 11) may Ье rewritten, after some mani­
pulations, as follows: 

Р(Л, х, к) = 

-кх k кх n - k 
[е (-к(l- Л) + i(1 +Л))] [е (к(1- Л)+ i(l +Л))] det(A + 1'1) 

= -------------·-----·~ ~·- ~ ------------------------- х ----- = 
[е-кх(-к- i)l k [екх(к- i)] n - k det (А+ о) 

= (..!S..=l- _ Л) k (-IS...±.L _ л)n-k ...!!EillЬ_±_M_ 
к + i к - i det(A + В) ' 

(3. 12) 

where 
that 

1'1 "' Л (Л, х, к ), 
liml'l(Л, х, к) 

о = В (Л, х, к) are some nxn matrices such 
lim(J(Л. х, к) = О. Note that (3. 12) holds 

х .... 00 Х-> оо 

for any k, O:;; k :;; n. Obviously, (3.7) now implies that 

. det(A +М 
l1m -------- = 1 
Х ->00 det(A + о) 

and from (3. 12), (3. 13) we then get for any Л 

limP(Л, х, к) = J~ _ Л)k (~-Z~ _Л) n-k. 
к+l к-1 Х->оо 

(3. 1 3) 

(3. 14) 

Thus, assuming the existence of the limits for х ... оо of the 
eigenvalues of W(х,к), from (3. 14) easily follow the desired 
relations (3.3) and (3.4) . However, the existence of the limits 
in question i s guaranteed Ьу the existence of the limits for 
х _, оо of the coefficients of the characteristic polynomial 
Р(Л,х, к) (i.e. Ьу (3. 14)) *. The property Р4 is thereby proved. 

* We are grateful to B. Lonek for communicating this result to us. 
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Р5: For any phase function фi(х,с), 1.$j.$n, there exists с 0 
such that for с <с 0 , фi (х, с) < " for х ~ <0, со). 

Proof: The conditions (i), (ii) imposed on the potential mat­
rix С imply that the matrix elements of С are bounded for 
х~<О,со). Consequentl.y, there exists ко so large that Q(х.ко) 
=-к~ - С(х) is negative definite for any х ~ <О, со ) (cf. the 
proof of Р2). Since ф. is continuous w.r.t. х and the condition 
(2. 15) holds, from th~ proof of Р2 tl1en innnediately follows 
that for any j = 1, ... , n, фi(х,с 0) with с 0 =-к~ must stay 
below " for х ~ <0, со). Finally, according to Р3, for any 
х~(О,со) we have фi(х,с) <фi(х,с 0 ) <" ifc < c0 , апd Р5 is thus 
proved. 

We see that the phase functions_possess the properties analo-
gous to those of the Prtifer phase function relevant in the 
scalar case (notice the correspondence ф/2 .... z). This leads us 
to а straightforward generalization of the theorems relating 
asymptotic properties of the phase functions to the bounds for 
the eigenvalues of the original Schrodinger system, which for 
the scalar case have been proved in ref./3( Such а generaliza­
tion will Ье the subject of the next section. 

4. РНАSЕ FUNCTIONS AND ТНЕ EIGENVALUE PROBLEH 

Theorem 4. 1. Let с 0 Ье fixed. Denote ф 1 (со , с), ... , ф 0( со , f ) the 
limits limф 1 (x, с), ... , limф 0(x, с). Then 

х~ оо х-+оо 

I. There exists а positive integer m and а set of three nonnega-
tive integers ln 1 ,n2 ,n3 \ satisfying 

О _$n 1 _$n 2 _$n 3 _$n, 

if n 1 ~ 1 then n 3 = n 
such that 
..!.ф . (co,c0 ) = (m-1)"+arctg 1 , j=1, ... ,n 1 , 
2 1 ~~о 

..!. ф. (со, с 0) = m"- arctg 1 , j = n1 + 1, ... , n2 , 
2 1 ~~о 

..!.. ф. (со , с0 ) = m" + arctg 1 , j = n2 + 1, ... ,n 3, 
2 1 ~~о 

..!.. ф. (со , с 0 ) = (m + 1)"- arctg-_1-, j = n3 + 1, ... ,n *. 
2 1 уС€0 

(4. 1) 

(4. 2) 

(4. 3) 

(4. 4) 

(4.5) 

(4. б) 

* Eqs. (4-.3}-(4.б) are to Ье understood in the following sen­
se: If it happens that at least one equality in (4. 1) occurs, 
e.g., n 1 = n2 , then there is no phase function with the corres­
ponding property,i.e., for n 1 =n 2 there is no фi satis f ying 
(4.4), etc. 
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II. с 0 is an eigenvalue with the (n2 - nl + n - n 3) - fold de­
generacy iff n2 -n1 +n -n3 > 0. 

III. со is not аа eigenvalue iff n2 - n1 + n- n3 =О. 
IV. There are n(c0 ) = n·m -n 2 eigenvalues less than со if 

each of the different eigenvalues is counted together with 
its degeneracy. 

Proof is based on eqs. (2. 15), (2. lб) and the properties PI-P5. 
Now, keep с0 fixed and consider the functions Ф 1 (со, с), ... , 
Фn (со , f) in the interval 1( о =(-со' (о>. It holds 

Theorem 4. 2. I. For each j = 1, •. . , n the function фi (со, с) is 
positive, increasing and piecewise continuous in 1со· 

II. -; ~ 1со is an eigenvalue iff '; is а discontinuity point 
o f at least one of the functions Ф1 (со, f), .•• , Фn (со, с). 

III. Supposing i is а discontinuity point of а function 
фj (со , f) , 1 _$ j _> n , it holds 

lim [ 
2

1 ф. (со, f +'Г/)- .!..ф. (со , f- 'Г/)] = "· 
."...о+ 1 2 1 

(4. 7) 

Proof follows from the properties PI-P5, in analogy with the 
scalar case; cf. ref. / 3/ . 

Thus, all the eigenvalues contained in 1(
0 

could in principle 

Ье determined if the functions ф 1 (со, с), ... , ф (со , () were recon-
structed in 1(0 and their discontinuities fo~nd. Since we are 

not аЬlе to compute the functions ф 1 (со, f), ... , Фп<"" • с) numeri­
cally, it is а crucial point that the properties of these func­
tions are signalled already Ьу the behaviour of functions 
ф 1 (х 0 ,f), ... , ф0 (х0 ,f) with а suitaЬly large but finitex0 • 

Theorem 4. 3. Let ( = fo Ье fixed and х Ье such that for х > х 
the matrix (с 0 - Щх)) is negative definite when applied to 
eigenvectors of W(x,f 0) associated with an eigenvalue -1 (cf. 
the proof of Р2). Choose some х0 ~ (х, со). Then 

I. There exists а positive integer m and а set of nonnegative 
integers ln1,n2 ,n3 \ with the properties (4.1), (4.2) such that 

~фi(x0 ,f0 ) ~< (m-1)",m"-; >, j=l, ... ,n1 , (4.3 1 ) 

..!.ф.(х0 ,с0 ) -~(m"- .!!_,m"), j=n1 +l, ... ,n2 , 
2 1 2 

(4. 4 1
) 

..!.ф . (х0 , (0 ) <; <m", m"+ .!!_ > , j = n 2 + 1, ... , n3 , 
2 1 2 

(4. 5 1
) 

~ фi (х0 , (о) ~ (m" + ; , (m + 1) "), j = n 3 + 1, ... , n. (4. б 1
) 

(А remark analogous to the footnote concerning eqs. (4.3)-(4.6) 
applies also here). 
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II. Тhere are n(f 0 ) _ eigenva1ues 1ess than f 0 , n(fo) being 
а nonnegative integer which can take on one of the va1ues n · m -n2, 

n. m - n2 + 1, ••. , n(m + 1) - n 1 - n3. 
Thus, from the va1ues of the phase functions ф 1 (х,f 0 ) , ••• , 

ф 0(х, f о) at the point х о one obtains the information on the num­
ber of eigenva1ues 1ess than ( 0 . Moreover, reconstructing func­
tions ф 1 (х0 , f), ... , ф 0(х 0 , f) in the interva1 1( 0 for а given х0 
(with the properties required in Тheorem 4.3) one finds upper 
and 1ower bounds on each eigenva1ue 1ess than f 0 . It ho1ds 

Тheorem 4.4. Let f0 , х 0 , m, ln1 , n2 , n3! Ье the same as in 
Theorem 4.3. Suppose n · m -n2 ;::: 1, i.e., there is at 1east one 
eigenva1ue 1ess than fO, and consider the functions Фt (xo,f), .... 
Фn (хо, с) with Хо fixed and с varying within 1f 0 • For each j. 

1 ~ j ~n , suc~ that фi (х0 , f 0 ) ~ 2тт, define а set of interva1s 11ik-!, 
satisfying Ч с 1с 0 , Ьу the re1ations 

j - . 
1 = <(1 (1>. k k. k • 

1 ф - · 2 i (х0 • с~)= kтт-

1 ф ( =· 2 i x0 ,f~)=kтr. 

1 
2"' 

(4. 8) 

(4. 9) 

(4. 10) 

In this definition, for а given j, k is varying in the range 
1,2, ..• ,ni, where ~n = n·m-n

2
• The interva1s 1~ have the 

11 
. . 1 fo ow1ng propert1es: 

I. Each 1 L contains just one eigenva1ue с l < r 0 • 

II. When Хо is increased, the 1ength of each of the interva1s 
1~ decreases. In the 1imit х 0 ... "" each of the interva1s IL de­
generates into one point which is just one of the eigenva1ues 
( ~ <(о. 
Proofs 
and the 
ref / 31 

of Т11eorems 4.3., 4.4 are based on eqs. (2.15), (2.16) 
properties PI-P5 in ana1ogy with what has been done in 
for the sca1ar case. 

According to Theorem 4.4 one can find interva1s, each of 
which contains just one eigenva1ue 1ess than со, Ьу reconstruc­
ting the functions Фt<xo,f), .••. , ф0 (х0 ,с ) for f(; 1со · Ву increa-

sing х 0 one can in princip1e make the "eigenva1ue interva1s" 
sma11 enough to determine the eigenva1ues with the desired 
accuracy. This is а conc1usion comp1ete1y ana1ogous to that ob­
tained ear1ier for the sca1ar case (see, e.g., the 1ast two 
papers in ref. 13~. Of course, in the matrix case discussed 
in the present paper the situation is comp1icated Ьу the pos­
siЬle degeneracy of the eigenva1ues. 
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5. CONCLUDING REМARКS AND AN OUTLOOK 

We have discussed the phase functions defined Ьу means of the 
Atkinson-Prtifer transformation for а coup1ed system of the ra­
dia1 Schrodinger equations. We have shown how the asymptotic 
behaviour of the phase functions can Ье emp1oyed to find the 
eigenva1ues of the origina1 Schrodinger system. The resu1ts are 
ana1ogous to the sca1ar case except that in the matrix case, 
instead of one, severa1 phase functions have to Ье investigated 
simu1taneous1y and degenerate eigenva1ues may occur. 

The next step shou1d Ье the practica1 determination of the 
phase functions. Motivated Ьу the sca1ar case, we propose to 
emp1oy а suitaЬle system of Ist order non1inear equations either 
for the matrix W(x, f) or the phase functions themse1ves. 

As regards the first possibi1ity, one may use the Riccati -
type eq. (2. 13) together with the initia1 condition W~,c) = I. 
Standard theorems on the uniqueness of the so1ution of differen­
tia1 equations then obvious1y guarantee the one-to-one corres­
pondence between eq. (2. 13) supp1emented with the above-mentioned 
initia1 condition and the origina1 Schrodinger system. In such 
an approach, the matrix W should Ье diagona1ized in the course 
of the integration of eq. (2. 13) and the phase functions recon­
structed to Ье continuous w.r.t.x and (eventua11y) satisfy 
(2. 16). 

As to the second a1ternative (finding а system of equations 
for the phase functions), it may Ье imp1emented at 1east in the 
case of 2х2 potentia1 matrices, when W can Ье easi1y diagona1i­
zed exp1icit1y. Neverthe1ess, the situation is somewhat more 
comp1icated than in the sca1ar case and the corresponding non1i­
near Ist order differentia1 system as we11 as the resu1ts of 
numerica1 ca1cu1ations wi11 Ье discussed e1sewhere. Note that а 
system of non1inear Ist order equations based on an a1ternative 
transformation of the origina1 Schrodinger system has been a1-
ready discussed in ref .fвl. 

Finally., we wou1d 1ike to add the following comment. In this 
paper we have considered, most1y for the sake of technica1 simp-
1icity, on1y the regu1ar potentia1 matrices satisfying (i), (ii). 
Of course, physica11y interesting examp1es are described Ьу po­
tentia1 matrices singu1ar at the origin (due to Cou1omb-1ike 
terms or the ·"centrifuga1" terms "' 1/х 2 , etc.). However, we have 
reasons to expect that our resu1ts are re1evant a1so for singu1ar 
potentia1s. First1y, we .have checked exp1icit1y that the theorems 
given here арр1у, e.g., a1so to the 2х2 potentia1 matrices invo1-
ving Cou1omb-1ike and centrifuga1 singu1arities (the correspon­
ding ana1ysis wi11 appear e1sewhere). Second1y, working up а 
proЬlem with а singu1ar potentia1 numerica11y and trying to 
avoid computationa1 comp1ications, some authors /9/ uti1ize the 
approach based on regu1arizing the origina1 potentia1 near the 
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origin so as to satisfy (i), (ii). Then, the results of the pre­
sent analysis are directly applicaЬle. 

Note that the mentioned approach is justifiaЬle only if the 
sought solutions of the corresponding differential equations are 
asymptotically staЬle (we have in mind the asymptotic stability 
discussed, e . g., in /10/ ). This stability property is necessary 
to ensure that the solutions obtained Ьу the numerical integra­
tion of the equation with the potential regularized at the origin 
approach the proper solutions, corresponding to the original sin­
gular potential, for large х. Motivated Ьу our experience with 
the scalar eigenvalue proЬlems, as far as the stability proper­
ties are concerned (see the last reference in/3/), we expect 
that the relevant solutions of the Ist order nonlinear equations 
discussed in the present paper are asymptotically staЬle. Work 
on these proЬlems is in progress. 

·--~ 

[М.ЗМОЕI"аД",, lоржейши И. , У легла И. Е2-84-.< 
Преобразование Аткинсона-Прюфера и проблема собственных значений для систем 
уравнений Шредингера 

Матричное обобщение nреобразования Прюфера, введенное Аткинсоном, приме­
няется к системе радиальных уравнений Шредингера. Показано, что фазовые функ­
ции, соответствующие м~тричному случаю, обладают свойствами, аналогичными 
свойствам фазовой функции Прюфера в скалярном случае. Установлены строгие 
теоремы, на основе которых можно определить собственные значения для системы 
уравнений Шредингера по асимптотическому поведению фазовых функций. Обсуж­
дается возможность получения фазовых функций 11>И помощи интегрирования неко­
торой системы нелинейных дифференциальных уравнений первого порядка. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 
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Adamov~ D., Ho,ej~r J., Ulehla 1. Е2-84-21 
The Atklnson-PrOfer Transformatlon and the ElgenvaJ·ue ProЬJem 
for Coupled Systems of the SchrOdlnger Equatlons 

The matrlx general lzatlon of the PrOfer transformatlon lntroduced Ьу 
Atkinson ls applied to а coupled system of the radlal Schr8dinger equatlons. 
lt ls shown that the phase functlons correspondlng to the matrlx case 
exhiЫt propertles analogous to those of the PrOfer phase functlon encoun­
tered ln the scalar case. Rlgorous theorems are estaЬJ lshed which allow one 
to determlne the eigenvalues of the orlglnal Schr8dlnger system wlth an 
arЫtrary accuracy provlded that the asymptotlc behavlour of the phase func­
tlons ls known. The possiЫJ lty of obtalnlng the phase functlons Ьу means of 
the lntegratlon of ап approprlate system of nonllnear 1st order dlfferentlal 
equations ls briefly dlscussed. 

The lnvestlgatlon has been performed at the Laboratory of Theoretlcal 
Physlcs, JINR. 
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