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I. INTRODUCTION

After more than ten years of explosive growth the interest
to nonlinear models possessing soliton solutions and to their
applications in various branches of physics still does not di-
minish. One of the most popular among them is clearly the non-
linear Schrédinger (NLS) equation. Its simplest cubic-nonlinea-
rity form (S3), possessing U(1) symmetry, iy, + hxx +g¥|9¥|2=0
describes the quasiclassical gas of Bose particles with & -
function two-body interaction. In the case of attraction
(g positive) the stable ground (vacuum) state of the system
is trivial, i.e., ¥ vanishes everywhere. Excitations over
this vacuum are either linear waves (continuous spectrum) or
drops, i.e., solitons. In the case of the repulsive potential
the condensate constituted by an infinite amount of bosons can
serve as a stable vacuum along with the trivial one. In their
turn, excitations over the condensate are subdivided into the
Bogolubov spectra and hole-like soliton modes/1/. The more
complicated situation arises for the NLS equations possessing
noncompact global invariance groups, where mixed hole-drop so~
liton modes become possible /2/,

The other way to have both the types of stable ground state
in the frame of the same, say, U(l)-invariant model implies
increasing the degree of nonlinearity in Hamiltonian. The simp-
lest instance of this is given by adding the next, y® -term
to the S3 Hamiltonian. Earlier this way obtained the so-called
Y4-y% theory occured in context of several physical problems.
Friedberg et al.’3 have derived this equation (in static form)
studying soliton models for hadrons. It shed as well a new
light on the description of heavy ion collisions, involving
both the time-dependent Hartree-Fock approach/4/ (for review
see/5 Yand the nuclear hydrodynamics with Skyrme’s forces /6/.
The said model appeared to be also interesting from mathemati-
cal point of view, for it is the simplest nonlinear theory,
possessing stable many-dimensional solitons /7.8/ and admits
rigorous existence theorems /9:19/

However, it is the soliton solutions over the trivial va-
cuum that have been considered in all mentioned papers. Here
we look at this matter the other way round. Namely, we find
a solution, describing a very heavy nucleus* such that in

*Here and below we make use of the nuclear language mainly
for convenience. ——
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the limit of infinite number of nucleons it is transformed
into the condensate, or "nuclear matter". Then we analyze the
spectra of elementary excitations over this condensate,which
thus correspond to internal excitations in heavy nuclei.

In this sense the present paper continues the study of con-
densate excitations in different NLS modifications 7211/, From
other point of view, the y4-y6 theory is now seriously trea-
ted as to describe the dynamical properties of heavy nuclei.
Specifically, such remarkable phenomena as nuclear molecules
and "fusion windows" (i.e., resonant in energy and angular
momentum fusion regions of two collided nuclei) have been found
by computer simulations in the frame of the above said equa-
tion/4/. The former is by now a well-established experimental
fact, while the latter may throw a crucial light on the possi-
bility of superheavy nuclei production in heavy ion collisions.
Thus, the detailed study of various partial solutions of this
non-integrable NLS version seems to be extremely interesting
and even necessary.

Here we do not derive the ¢4—¢6 NLS equation on the ba-
sis of nuclear theory concepts and give no arguments in its
favour since all this has been done not far ago/5/.

The remainder of this paper is organized as follows. In
Sec.Il we give some connection between different versions of
the ¢4y ¢ NLS equation, find the soliton-like solution under
the vanishing boundary conditions and demonstrate how it is
transformed into the condensate. Sections III and IV are de-
voted to soliton-like excitations in the condensate (i.e., so-
lutions under constant boundary conditions), which are found
approximately in Sec.III and exactly in Sec.IV. The stability

analysis is in the Vth Section followed by discussion of the
results (Sec.VIl).

II. GENERAL RELATIONS AND PASSAGE
TO THE CONDENSATE

The evolution equation of the ¢%-y® theory is of the form
Wy + Aty g |92 ray |y 4=0,

where a <0. It describes, for instance, the Bose-gas with
d-function interaction potential, which is attractive for
two-body collisions, and repulsive for three-body ones. In
order to get solutions in a closed explicit form, we analyze
the one-dimensional version of the above equation

i+ tU v (Y2 eap (g *=0 (2.1)

§

) -

(subscripts denote differentiation with Fespect tot a?d x,
respectively). A simple scaling of the field and coordinates
yields the equivalent form,

| 2.2
ig +y, +ag+ ¢ |9 -yt =0, (2.2)
where @ now can be both positive and negative: As soon as the
nonlinearity ¢3-y¢5 appears "in a pure form" in eq.(2.2? and a
may be completely arbitrary, we believe that eq..(2.2) is more
useful and illuminating than (2.1). Another version of (2.1)
and (2.2) is given by

i, + b, ~To(2g + AV + 2A2rg + A)|H|26 - 3|4| 44 =0, (2.3)

where rg > 0, 2rg+A>0 and A/rg is a function of a:

_To 3 3 /1a+4al.
Al’z-—z"*'—‘l——z;im—\/ + ‘

(2.4)
Eq.(2.3) turns out to be the most convenient.in finding solu-
tions under constant boundary conditions, while one-parameter
eq. (2.2) is important in classifying them..From eq:(2.4) we
learn that the one-parameter version (2.2) is reducible to
(2.3) only when a>-1/4.

Note that the ay term in eq.(2.2) may be removed by the
substitution

Y¥(x, t) = expliat} x J(x, t) (2.5)
only in the case of vanishing boundary conditions, because
otherwise (2.5) is inconsistent with
+
ifg
Wz, ) ~gge O as xstw, (2.6)

i.e., boundary conditions corresponding to the condegsate at

rest. L
Let us first consider the case of the zero conditions,

W(x,t) -0 as (x| oo (2.7)

The first two integrals of motion for eq.(2.2), viz., energy
and number of nucleons read

E=fdxjy, |2 -1/2|9] *+1/314|%} (2.8)
and |
N = fly|%dx. (2.9)
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Under assumption (2.7) eq.(2.2) can be two times integrated
to give a soliton ("nucleus") at rest*

v (2, )=0 "% *ﬁ"x[ 16-a) . ]‘/2.(2.10)
1+V1+(16/3) (a - B) coshi2yB-a (x—xg)}

The travelling solution is obtained from (2.10) via the Gali-
lean boost:

2
i5x~ = t+Bt+0g) 4B -a) 1/2
Y, x,t)=e = L +oxL —— : - ] < (2.11)
+1 +-1-g-(a-B)coshl2\/B—a(x—vb-xo )

This solution depends on four real parameters, X, , 6, , v and B.
The first three of them are completely arbitrary, while the
last one (B) lies within [a,a+ 3/16] interval. The corres-—
ponding conserved quantities (2.1), (2.8) are now

N (a-B)=v3costi! [1 +—!3§-'(a— L akat (2.12)
B,@-P=w2-3+B-aN,G-B+3Vh-a. (2.13)

When (a- B) — -38/16,N, increases infinitely along with the
soliton”s width, while the amplitude approaches the constant
value of V3/2. This saturation is a crucial feature of nuc-
lear many-body systems (see, e.g.,/5/). If (a-P) is exactly
(-3/16), (2.10) is none other than the condensate,

¥, (x, ) = exp i@ + B x V3/2.

This fact implies that superheavy (N, »=) nucleus (2.10) may be
regarded as the condensate state, i.e., as a transition to the
"nuclear matter". Together with the saturation, this feature
is believed to be one of the most seducing attributes of the
discussed model.

The next step consists in examining of small oscillations
about such a condensate. Here eq.(2.3) assumes its importance
since it explicitly involves the condensate density rg , so we
stud; its solution of the form ¢(x,t) = g, g being merely
{dol Perturbing the condensate biharmonically,

Nz, t) =g + &x, 1),
£, t) = 7, expli(kx — wt)} + 7 9expl-i(kx — wt)},

*An equivalent solution has been independently found by
Kartavenko /6/.
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and equating coefficients of equal phases yields the set
2 - =
on, -k, - 2@y — A - 262 (g — Mg =0,
x2
oty ~KEy ~ 20 (e — ATy + 205 (A —tg)n; = 0.

Putting its determinant equal to zero, we find the dispersion
relation for the Bogolubov (phonon) spectra as
02 =k2[k2+ 41y (g — AN. (2.14)

From (2.14) the vacuum stability condition is straightforward,
rpg> A (2.15)
02 .

Relation (2.i4) also defines the velocity of acoustic waves,
- M2 (2.16)
¢= lim— =2, (, — Al .
ka0 K oveo
TII. SMALL AMPLITUDE NONLINEAR WAVE APPROXIMATION

In order to obtain a weakly nonlinear solution to eq.(2.3)
we make use of the polar decomposition of ¢,

x, t) = p(x, t) explif(x, )}; p, OCR (3.1
and arrive at

(3.2)
Py = P-20,p,

0,=p, 0" -62 -0 ~1g)Bpl-rg-2A). (3.3)
i he following new variables
It appears useful to introduce here t e eabiL
instead of p and @ : r=p2; w=0,. Then eq.(3.2) is equiva
lent to
(3.4)
rl =—2(Wf)x ’

while differentiating of eq.(3.3) leads to
2
1 = 173 o D@ —rg—2A), . (3.5)
w' =(-2- :! - T :-2—)1 2w,+[(l‘o r) (& ro ) x

ime" frame, travelling
Let us pass to the "slow ti reference » tI
with the velocity of sound 12/ E=\elx —cty; r=¢ /azt. Then
the nuclear hydrodynamics equations (3.4), (3.5) become



€Ir—crg +2(wn) £=0, (3.6)

Returning to the eq.(2.3), we find that the soluticn (3.15) is
transformed into the following one:

2
r r . L i .
Wee —ew, +c(-—2§r£- - zfz—)f - 2wwy + (g —r)(3r—-r0—2A)]§ =0. (3.7

. ‘ 1y p(x, 1) = Iy - x sech” Va (x — ot s 22 xo)}l/z ’ (3.16)
We expand nowr and w in powers of small magnitude ¢ around e ’
the vacuum configuration r= fgs W=0 ith
, wi
2 il
T=T) +€@, +6°0,+ ... W=ecw &
0 1 9 PHE Wyt <
& = = 2[' “A >0- (3.17)
28( ) )2

and insert these expansions into eqs.(3.6), (3.7). Equating

::;he'zn the coefficients at first and second powers of ¢, we ob-
ain

and the inequality 2t ~A> 0 being simply consequence of the
stronger relation (2.15).

The solution (3.16) to eq.(2.3) (or, equivalently, eqs.(3.2)-
Crg=2rgwis, ‘ (3.3)) describes a localized rarefaction domain, propagating

¢ (3.8) with the velocity close but less than that of the acoustic

waves. From KdV representation of our model it follows that
_ localized stable nonlinear waves of compression, or humps,
ra¢ =Nr +2(w1rl)§ +2r0w2§ : (3.9) travelling through the condensate are not eigenmodes of the
system. An initial excitation of that kind will decay into
CWy = Ao ~ A) a dispersive succession of linear acoustic waves with periodi-

1€ 0 1 (3.10) ‘ cally alternating rarefactions and compressions (the last comp-
ression may be rather strong but gradually damping shock).In-

r deed, the hum litons are the solutions of that KdV version
cw = ...—!.f& 2 » e p so a L]
2= "1 2r, + B W 2 By 430y, 3.11) which in the laboratory frame looks like
. 2yt (t — A) (¢ cry2)+ Lt a2 -AGCH, =0
Integrating eq.(3.8) (or equivalently eq.(3.10)) gives Ve (6 ) (ry, + l§)+ 5 l§§§+3( A )('l)f 1 (3.18)

while eq.(3.13) in this frame is

w, =(c/2rg)r, . (3.12) : ) 1
2, (t, — A) (¢ erig)~ =t 2 -AEH,=0 .

The set (3.9), (3.11) added by the relation (3.12) is easily Vg (5 ) (), +oryg 5 lfff*a( o @ & (3.19)

reduced t - : .
© the celebrated Korteveg-de Vries (KdV) equation, The dispersion relations of eqs.(3.18) and (3.19) are, respec-

2 “Ar, -1 tively
\/ro(l‘o )rlf 5 rlfff+3(2r0 - A) (l“z){__-o, (3'13) kz
After the space and time scaling w=k(c —%) (3.20)
~1/2 _
RIC Y S P e
V2 m=k(c+.gc_). (3.21)

eq.(3.13) becomes KdV in the familiar form,

_ 2 The dispersion (2.14) of Bogolubov”s spectra o = k (k2 +c2)l/2
r r -0 , ,

I g +3(rl)f ’ (3.14) ; for small k transforms into the formula (3.21), but by no
means into (3.20).

which posses - i T . .
p ses the well-known soliton solution: The second consequence of the KdV representation consists

g 2 VB in the fact that a localized rarefaction produced by decay of
r = = 2k C . 512 /
169 P) sech [E_(‘f"'g""‘fo)]' (3.15) a hole-like initial condition "sends" ahead linear waves,
6 "forerunners”. Having information on the rarefaction”s veloci-
ty (or, equivalently, on its amplitude) and on the separation
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distance between the soliton and the forerunners, one can es-
timate the propagation distamce back to the source. This pro-
vides a means of estimating the location of the initial wave
form.

IV. EXACT SOLUTIONS UNDER THE NONVANISHING
BOUNDARY CONDITIONS

Let us impose the following boundary conditions on the
field ¢:
¢aﬁthamw§} as X -+ teo, (4.1)

In order to assure the finiteness of energy and to obey the
equation at |x} = » simultaneously, rqg =p% must be the double
zero of polynomial part of the energy, viz.

E=[dx{l$, (% + (|2 -rg) 2 (¢|2 - AN (4.2)

Here A is a real constant. As is easily verified, the evolu-
tion equation related to.the Hamiltonian (4.2) is exactly
eq.(2.3). This observation reveals why we have chosen just

the ¢ notation from the beginning of this Section. A is there-
fore given by formula (2.4). The number of nucleons for eq.
(2.3) is

N=fdx{|¢|® -rql. (4.3)
As 'soon as the motionless condensate conditions (4.1) vio-
late the Galilean invariance (it”s impossible to boost a solu-

tion keeping (4.1) unchanged), we search for the travelling so-
lutions from the very beginning, i.e.,

¢(x1 t) = ¢(Or £= X —-Vvt, (4 04)
The polar decomposition (3.1) of the field ¢ appears help-

ful again and the set (3.2), (3.3) with ansatz (4.4) is con-
verted into
P +v0p -0 )2p-p(p2-p2) (3p2 - p2-24) =0, (4.5)
-vp 4+ 207 +07p=0; ‘=d/dl. (4.6)
Upon multiplying (4.6) by p and integrating we arrive at

209°, YV (,2_ .2y 4.7

boundary conditions (3.1) having been used. Expressing 6’ from
(4.7), substituting it into (4.5) and integrating with the fac-
tor 2p° gives finally

- 2 .
2~ = [ -1 x@® —ea- 12

where r=p2. Let z=r-ry and

a.=r2 — Ar

2 _ar, __‘4'3=(c2 —v2)/4, (4.8)

then the integral becomes standard,

12(0-Lo) = fdzx 2! x (22 +(Hg—A)z+a)"1/2 (4.9)

Localized solutions z({) emerge only if a>0, 1i.e.,

v? <c2. (4.10)

The inequality (4.10) states that solitary wave solutions to
eq.(2.3) under conditions (4.1) can travel not faster than
acoustic waves. Two appearing solutions are defined by

+2a

2, ()= —
VAZ + v2coshi2ya (£~ Lol £ (A - 25y)

The first one is however singular due to (4.10). The modulus
of it looks like

2
ps(o={ro + - }"2- (4.11)

——

VA? 4 vZcoshi2ya({~ L)+ A - 2ry

Expression (4.11) is defined only outside the interval ({,, {),
where {; , {, are two roots of equation

VAZ + vZcoshi2Va({- Lo)i=21y —A.

When {+{} -0 or {+{4+0, solution (4.11) becomes infinite.
The condensate, in which ¢4({) propagates is stable under
condition (2.15).

The second solution defined by &_ .is obviously regular and
approaches the stable vacuum at the spatial infinities, inequa-
lity (2.15) being the consequence of (4.10). Here we are to
distinguish two cases.

The first one is 0 <A <ry, or in terms of the single-pa-
rameter eq.(1.2)-1/4<a< ~3/16, when the solution in the
rest frame looks like

8, @ =00 Vigoom (G ) x B 4 s S - M2 (4.12)
9



For (4.12) we observe that
A>0: 3% (5. 4.3 3
Ph(xo)’—'vA)Oy a—(xo)—ov (

i.e., the solution is hole-shaped. We shall call it simply
"hole".

A different situation arises for the second case, viz.
or, equivalently, a> -3/16. Here for the rest frame form we
have

A <0

%, () - ei00 \/Eo_ta.nh(% x-xg)xil +%——[cosh (—‘2’—(x -xp 2 -1/2 (4. A%

and we notice that in contrast to (4.13)

Py (39) = 0; ‘;‘ﬁ" (x0) = v-Ard/%>0.

Hence at a> -3/16 our model possesses a kink solution.

The phase of both the kink and the hole solutions is strza1ght-
forward from eq.(4.7). The result is the travelling form,

tanh W& ({ - Co)ltg% +i

. x t)=6"9
! 1 + tanh2 {y/a (¢ - Co)}tg2 i2f-

4. 19
P VA2 4+ v? coshi2va({ - &)}
0 +-2— +l'0 + O (0 l/2
X .
2o — A+ VA2 +vZcoshi2ya(l- (g}
Al’o +V2/2 R —l,le
Here as before {=x~vt, coshy= ~—— , the kink and tf ¢
l‘o\/Ai +v2

hole being distinguished by the sign of A. The related inte; 8~
rals of motion are

17 &o —A
Nkh=—008hl—"—0———- . (4' 16)
v \/A2 +V2
- A v2 A2 4 17)
E, ,=Va(g+r)+ N, x(Arg + —5—=). (4.

It is worth noticing that in spite of the fact that the kintk
and the hole are described formally via the same formulae
(4.15)-(4.17), they are essentially different solutions.
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At small amplitudes a and at v only slightly differing
from the sound velocity, the modulus of (4.15)

PO=p, &b ={r0 - - }'/2
’ VAZ 4+ v2cosh{2y/a({ - Co)l+2ry-A

coincides with the approximate solution (3.16).
Finally, the last possibility of boundary conditions to be
compatible with finiteness of energy is the following.

dX, )0 asx+—w, G, t)- roeig0 as X -» +oo, (4.18)

or vice versa. The mixed conditions are permissible for A =0,
or e = -3/16.In this case we obtain two pairs of solutions in
the rest frame: singular ones, for which

I, (2) = ro[1 — 2rg expi+2ry (x — x5 )1 ! (4.19)
and a régular pair ("precipice" solutions)

i0 o -
¢p (x)=¢ 9 Vrglt + 2y explt2r (x — xo)}] 1/2. (4.20)

Regularization cannot be performed at calculating the number
of nucleons for (4.20). Of course we can count off some inter-
mediate value of r, say ro /2. However, since N defined in

this way as NP sf(rp - -r-ﬂ-)dx vanishes,the definition turns out
to be useless.At the same time, (4.20) are finite—energy solu-

tionsé

Ey, =15 /2. 4 (4.21)

Travelling precipices do not exist under the motionless
condensate boundary conditions (4.18). Indeed, the moving so-

, lution with different asymptotics in |¢|2  would be obviously

changing the area under the graph of |¢]2.The latter, however,
is forbidden by the nucleon number conservation. Nevertheless,
the precipice interacting with some other solution can be made
moving by permanent compensation of the mentioned area changing.
For example, assume that a plane wave falls on the precipice
from one of the infinities. In this case the precipice can be
shown to travel with a constant velocity against this flow of
nucleons.

The class of solutions under the constant conditions is
certainly not exhausted by (4.11), (4.15), (4.19) and (4.20).
There is a lot of solutions localized weaker than exponen-
tially, for example, at A=rg (a = -1/4) along with the "pure"
condensate (4.15) eq.(2.3) admits rational singular solution,
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¢, @ =e% Vir x-zxx-159)" =y’ -1/ (4.22)

(rest frame). It exists outside the region (-1/\/%'+x0,1/\/r_0—+ xy).

V. STABILITY UNDER SMALL PERTURBATIONS

Let us examine first the stability of the nucleus solt.xtion
(2.11) to eq.(2.2). Making use of the Galilean and U(1)-inva-
fiances, we pass to the V=xg =0 frame of reference and
choose 6 =0, denoting ®(x)exp {ift] (®=>*) solution obtained
in this way. The perturbed solution is chosen to be ¥(x,t)=
= (Mx) +7(x,t) x explift}. Assuming 7(x, t)/®(x) to be sm.'illl
everywhere (at least initially), we linearize eq.(2.2) with
respect to (n/®) and suppose the disturbance to possess the
usual time behaviour: 7(x, t)=Iif(x)+ ig(z) lexp(t); f, 8 v €R.
Then the linearized eq.(2.2) is reduced to

- = 2 2 ST 2 d"f=-
Uf=(-d2/ax® + B-a- 302+ 58H) =g, o

Lg=(-d®/ax® + B-a- 0 +0)g=f.

Following the Q-stability idea’1% we demand the fluctuation
not to perturb the initial number of nucleons N, 1.e.,

Niol =N[4+ 5. (5.2)
For sufficiently small(y/®) this implies
fo(z) f(x)dx = 0, (5.3)

The L operator is positive definite on the space of functions
orthogonal to ® as soon as ®(x) is its nodeless zero modo..a,
related to U(1)-symmetry. On the other hand, the translational
d®/dx zero mode to the upper operator in (5.1) possesses

a single node, hence U has a single negative eigenvalue. The
corresponding eigenfunction vanishes nowhere and cannot be
orthogonal to everywhere positive ®(x). This is so the case
of the Q-theorem applicability/!3:14/ which guarantees Q-sta-
bility of solution (2.11) if

dN_ /da <0, (5.4)

By means of the explicit formula (2.12) we make sure that

(5.4) indeed holds. .
Now let us turn to the hole solution (4.15). We examine

its stability at rest. Denoting ®(x) the xg=60p = 0 form

12

of ¢p(x) (4.12) ($=9*), and choosing the disturbed solution
eq.(2.3) as ¢(x, ) =0(x) +(f(x) + ig®))expht}; f, g v CR,
we arrive at the following symplectic eigenvalue problem,

0f = (—a%/ax® + (2 +A) —6(2y + A)B2 + 15091 = _vg
(5.5)
Lg=(-d2/ax?2 +10@rg +A) - 22+ A)O2 + 30N g = vo

As before, the condition (5.3) is imposed. The lower operator
in (5.5) is agajn positive definite on the space defined by
(5.3), because L&=0 is exactly the equation (2.3) for static
®. Since U®=0 is again simply d/dx(2.3), the eigenfunction
related to the single negative eigenvalue has no nodes. Q-theo-
rem is thus again applicable and the hole solution (4.12) is
stable when

dN, /dy <O, (5.6)
with y=-rg(A+2g). For v=0 eq.(4.16) is just

Ny =cosh™! ¢ —2 ____1),

2+ yr";z

whereby (5.6) is established.

Let us note that in the case of nonvanishing boundary con-
ditions (4.1) stability of the travelling solutions does not
ensue from their stability at rest since the presence of me-
dium violates the Galilean invariance. Whether the hole (4.15)
is stable or not for v#0 still remains the open question.

Another open question is stability of the kink (3.14) (at
least at the rest frame). In this case L is not positively
defined, since its gero mode is nothing but the kink itself.
On the other hand, U~! does not exjst even on the space de-
fined by (4.3). The reason is that U “s translational zero
mode obeys (4.3).

However, the two mentioned problems are trivially solved
when the kink or the hole travel near the speed of sound. In
Sec.II we have shown that in this case both of them are gover-
ned by the KdV equation. The KdV soliton moving with arbit~
rary velocity is well-known to be stable and this fact proves
the stability of the kink and the hole.

The remained unexplored regular solution is the precipice
(4.20). In this case both the upper and lower operators (5.5)
possess no negative eigenvalues at all since both the zero
modes are nowhere vanishing. In addition, the L-! operator
is well defined on the ® “s orthogonal supplement. Eq. (5.5)
is thus equivalent to

13



Uf=?izl 1. (5.7

The variational principle is applicable to the e%genvalue prob-
lems of this type/lsﬂ It states that the lowest eigenvalue to
(5.7) is .

{f(x)U t(x)dx

@ 17! f(x) dx

which is obviously non-negative. This implies v2< 0, and the
precipice is Q -stable.

2
'("0) = min

i

VI. DISCUSSION

In the present paper we have considered the one-dimensional
version of the nuclear matter theory,which describes the dyna-
mics of the so-called slabs/16/. In spite of the fact that the
picture simplified in this way is rather far from.re?11ty3the
one-dimensional description provides substantial 1ns1gh§ into
qualitative behaviour of possible solutions in hig?ef dﬁmen—
sions. For instance, now it is clear from the explicit "nuc-
leus" solution given above that such a cr?cial fgature of nuc-
lear many-body systems as nuclear saturatlon/5< is an gttrl—
bute of the ¢4-¢5 model. However, from our point of view, the
main result of the present work is that the Y 4-y6 theory not
only describes the motion of a nucleus as a.whole, but ?1§o
may be used to analyze its internal ?x?1tat10n§. We agt1C1?ate
this property to survive under transition to higher d}men31ons.
From the mathematical point of view, this means that 1in cont-
rast to all other previously amalyzed NLS versi9n§, solutions
both under vanishing and constant boundary co?dltlons are ex-
pected to exist in two and three space-dimensional versions
of the ¢4—l/16 model. o .

Despite the availability of several exP11c1t solutlo?s, we
have considered it useful to derive the simpler, ap?rox%mete
equation in addition to the initial one. The said s1mp1%f1ca-
tion is the KdV equation, which has been shown to describe )
small-amplitude rarefactions, propagating in a constant-densi-
ty medium with the velocity close but legf than that of sougd.
The reason in studying KdV rather than ¥ -y6 NLS cons1§ts in
that the former is exactly solvable and hence characterizes the
dynamics completely. For instance, stability of the ngar-gound
solitons is the trivial consequence of such an ap?rox1mat10n.
The passage to KdV allows one to obtain the N-soliton solut
tions, i.e., to describe interactions between :heﬁrarefactlo?
bubbles. This is impossible in the frame of ¥ "~y NL§ equation
due to the fundamental obstacles ensuing from its nonintegra-
bility.
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In conclusion let us summarize briefly our results concer-
ning exact solutions. Solution (2.11) to eq.(2.2), vanishing
at infinities, describes a "one-dimensional nucleus", or slab.
It is stable according to the Q-theorem (Sec.V). When the cor-
responding number of nucleons tends to infinity, the slab ap-
proaches the constant density condensate. The regular localized
excitations of the condensate are divided into holes and kinks,
which appear in different parameter domains. The hole solution
to eq.(2.3) exists for 0 <A <rg (or for -1/4 <a < =3/16 in
terms of eqs.(2.1), (2.2)) and is given by eq.(4.15). When
A<0 (a2 -3/16) eq.(2.3) admits the kink solution,which is
given by (4.15) as well. The motionless hole is Q-stable(Sec.V),
while both the hole and the kink are stable when travelling
with the velocity close to that of sound. This fact naturally
leads to the assumption that the two solutions are stable at
arbitrary speed. At A=0 (a = -3/16) eq.(2.3) admits the stable
static "precipice" solution (4.19) under the mixed boundary
conditions (4.18). In addition to the listed ones, the model
possesses a number of localized singular solutions (4.11),
(4.19), (4.22), and rich spectrum of cnoidal waves. The latter
can be explicitly found in terms of elliptic functions from
eqs.(4.5), (4.6), yet we do not discuss them here.
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