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1. INTRODUCTION 

Boundary conditions are а simple model for the interaction 
with an external field 111• The corresponding examples are the 
interaction of the electromagnetic field with macroscopic bodies 
(conductors), the bag model in QCD, field theory at finite tem
perature (boundary conditions in imaginary time) and so on. 

An interesting example here is the propagation of light in 
the presence of boundary conditions when radiative corrections 
are included. It is known that in heated QED the photon acquires 
а mass 121• There are further mass effects coming from bounuary 
conditions (see ref. 1 ЗI for example). They are due to radiative 
corrections. In this paper we investigate the radiative correc
tions to photon states between superconducting plates. This 
seems to Ье the simplest example for such corrections and has 
а direct and obvious physical interpretation. Furthermore 
though the order of magnitude of these corrections turns out 
to Ье very small they are much larger than the thermal photon 
mass for example. 

То handle radiative corrections it is useful to work in 
covariant gauge. There were some confusions in literature on 
the canonical quantization of covariant gauge electrodynamics 
in the presence of boundary conditions. Namely, the authors 
of ref. 141 state that it would Ье necessary to introduce ghosts 
in this ca se, especially in order to obtain the right result 
for the Casimir energy. In ref.f.Б1 , however, it was shown that 
there is really no reason for ghosts and that the usual Gupta
Bleuler quantization method works well and is equivalent to the 
path-intefral quantization method for the same proЬlem derived 
in ref. 16 • The essential point in ref s. 15•6 1 was the observation 
that the presence of boundary conditions does not influence 
the gauge freedom, so that the function ф(х) in the gauge trans
formation AIL(x)-+ AIL(x) +дж. ф(х) is not restricted Ьу the boun-

IL 
dary conditions. 

For our investigation of the photon states between super
conducting plates we use the quantization procedure of ref.1 r.1 . 

In doing this we show, that this procedure is consistent within 
the perturbation theory at least at th~ one-loop level. For the 
photon states it turns out that they remain massless, whereas 
the photon energy will Ье shifted. This shift can Ье interpre
ted as а renormalization of the distance between the plates, 
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5een Ьу the photon. We u5e а 5imple model, in which the boundary 
condition5 are realized Ьу two parallel, infinitely large and 
thin 5uperconducting plate5, oriented perpendicular to the third 
axi5 and inter5ectin~ it at х 3 == О and х з"" а. Further we a55ume 
that the electron5 do not feel the boundarie5, 5о that we have 
boundary condition5 to the electromagnetic field only. 

2. ТНЕ RADIATIVE CORRECTIONS ТО ТНЕ PHOTON STATES 

We 5tart with the QED Lagrangian in covariant gauge (а = 1) 

·L(x) = 
2
1 А (х) д 2 gllv А (х) + ф (х) (ia - m + еА) ф (х) 

IJ. х v 

and the corre5ponding action 

- 4 S(A, ф, ф) = (d xL(x). 

The boundary condition5 for the electromagnetic field read 

n1L .F * (х) = О 
ILV 

with 

х 
8 
=о, а 

nll ""(0, О, 0,1), .F* (х) = f f3 .Fa{J (х) , 
ILV 1-1va 

wherea5 there are boundary condition5 for the 5pinor field. 

( 1) 

(2) 

(З) 

Now, we are intere5ted in the photon 5tate5 only, 5о we can 
exclude the 5pinor field in order to get an effective action. 
Becau5e we have no boundary condition5 to the 5pinor f ield, thi5 
can Ье done in the u5ual manner and we get the effective action 

S(A) = ~ fd\d 4yAIL(x) [д;g~tv В(х-у)- п~LУ(х-у))Ау(у) (4) 

with the 5tandard polarization operator 

2 л л 

llllv(x-y) = - ie Sp[yiLS(x-y)yvS(y-x)). (S) 

Hereby we a55ume that the renormalization in П!J.V(x- у) i5 carried 
out in the u5ual way. Now the effective action S~) (4) ha5 to 
Ье con5idered together with the boundary condition5 (З). Fol
lowing the quantization procedure of ref. / 5/ we introduce the 
polarization ba5i5 Е; (-iдz) 

2 

.. 

1" 

.., 

' 2 
-д 

х 11 

. -а,, а,, ) 1 
Е 1 (-iд > =1 ' а~ \ )'ii' · Е:ца,> =\-д д v-ai v-a'i,••i" · IL х 

- Х ll ХО Х2 11 

1 о 'о 
(б) 

. 
о \ ' -iдхо 

о 

) . ~ -Ы, ) 1 Е з (-iд ) = \ о Е о (-iд > = . 1 2 а2 
IL х · а ...;-а + IL х 

1 -1 х2 х 0 х 11 

о 

Here 5 =0, 1 ,2,3 denote the polarization5. The 5ub5cript 11 mean5 
the 1,2-di:ection5: х~ - ~~+ хъ_ •. тhе polarization5 (б) 5ati5fy 
the follow1ng orthogonal1ty relat1on 

Е 8 (-iд ) g ILV Е ( -iд ) = i 8 t 
ll х v х 

with g 5
t= diag(l,-1,-1,-l). The normalizations in (б) are 

cho5en 5о that the root on-5hell (i.e., for д 2 +д 2 = -д 2 
) . х 0 х х 8 

Ье real and that the operator5 Е:(-iдх) Ье Hermitean. The de
compo5ition of the potential AIL(x) over thi5 ba5i5 read5 

з в 
А/х) = 

8
: 

0 
Е IL (-iд х) а 8 (х) • 

The boundary condition5 (З) imply for а (х) 
8 

а 8(х) =О for 5 = 1,2, х 3 = О, а. 

Sub5tituting the decompo5ition (7) into (4) we obtain the 
ef f ective action in the form 

S = .l. f d 4х d4y а ( х) [д 2i 8
t 8 (х- у) - П8 

t (х - у)] а t (у) . 
2 8 х 

Here ll 8
t i5 the projected polarization operator 

(7) 

(8) 

(9) 

8 t в t ' ILV 
П (х - у) = Е (-i д )Е (iду) П (х- у). (10) 

1L х v 

U5ing / 7/ 

п <х-у) =<g!J.Va 2 -a~tдv>ii<x-y) 
ILV х х х 

( 11) 
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seen Ьу the photon. We use а simple model, in which the boundary 
conditions are realized Ьу two parallel, infinitely large and 
thin superconducting plates, oriented perpendicular to the third 
axis and intersectinp; it at х 8 =0 and х 3=а. Further we assume 
that the electrons do not feel the boundaries, so that we have 
boundary conditions to the electromagnetic field only. 

2. ТНЕ RADIATIVE CORRECTIONS ТО ТНЕ PHOTON STATES 

We start with the QED Lagrangian in covariant gauge (а = 1) 

L(x) = 
2
1 А (х) д 2 gP.Y А (х) + ф (x)(ia- rn + еА) ф (х) 

р. J: у 

and the corresponding action 

- 4 S(A, ф, ф) = (d x·L(x). 

The boundary conditions for the electromagnetic field read 

nP..F * (х) = О 
р.У 

with 

х 
3 
=о, а 

np. = (0, О, О, 1), .F* (х) = f f3 .Faf3 (х) 
р.У р.уа 

whereas there are boundary conditions for the spinor field. 

(1) 

(2) 

(З) 

Now, we are interested in the photon states only, so we can 
exclude the spinor field in order to get an effective action. 
Because we have no boundary conditions to the spinor field, this 
can Ье done in the usual manner and we get the effective action 

S(A) = ~ fd\d 4yAp.(x)[a;gP.YБ(x-y)-Пp.Y(x-y)]Ay(y) (4) 

with the standard polarization operator 

2 ~ ~ 

Пр.у(х-у) =- ie Sp[yp.S(x-y)yyS(y-x)]. (S) 

Hereby we assume that the renormalization in llp.v(x- у) is carried 
out in the usual way. Now the effective action S~) (4) has to 
Ье considered together with the boundary conditions (3). Fol
lowing the quantization p.rocedure of ref J51 we introduce the 
polarization basis Е: (-iдх) 

2. 

.., 

Е 1 (-ia ) = 
р. J: \-id 

о 

о 

о 

ES(-ia)=\ 
/). J: о 

1 

2 . 
v-::дГ ' Ер.(-iдх) = 

х 11 

Е о (-iд ) 
р. J: 

' 2 

- дх '' 
-д. д 

хо J:1 

""'iдх0 

1 
-2 r/; 2 

v-дх v- хо+дх 11 
11 

(б) 

-iд ) 1 J:l 

-iд v-д2 + а2 
х2 хо х" 

о 

Here s=0,1,2,3 denote the polarizations. The subscript 11 means 
the 1, 2-di~ections: х~'"' ~i + xi. . The polarizations (б) satisfy 
the follow1ng orthogonal1ty relat1on 

Е; (-iax ) g /J.Y Е У ( -ta х) = i 8 
t 

with gst= diag(l,-1,-1,-1). The normalizations in {б) are 
chosen so that the root on-shell (i.e., for д 2 +д 2 = -д 2 

) . :ко :к :13 
Ье real and that the operators Е;(-iд:к) Ье Herrnitean. Тhе de
cornposition of the potential АР.(х) over this basis reads 

3 в 
А (х) = I. Е " (-iд ) а (х) • 

Р. в=О ,.. :1 8 

The boundary conditions (З) irnply for а (х) 
8 

а 8(х) =О for s = 1,2, х 8 = О, а. 

Substituting the decomposition (7) into (4) we obtain the 
effective action in the forrn 

S = l.. f d 4х d4y а ( х) [д 2g 8 t Б (х- у) - П8 
t (х - у)] а t (у) • 

2 8 х 

Here П 8 t is the projected polarization operator 

{7) 

(8) 

(9) 

п8t(х-у) Е 8 (-tд )Е t (iдy)ll р.У (х- у). ( 10) 
р. J: v 

Using / 7 / 

п <х-у) =<gP.Ya 2 -aP.aY>ii<:x-y> 
/).У J: :1 х 

( 11) 
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we rewrite (10) in the form 

iv'-д2 + а2 
хо х" 

iу'-д2 +д2 
XQ Xfl 

о о 
пst() ~-sta2 1 ни(~у). х- у = g х -

о о 

дхз дх 
(12) 

3 

From equation (12) it is clear that П 8 t(х-у) is diagonal in the 
physical polarizations (for s = 1, 2 as well as for s = 3, when 
it is independent of х 3 ). 

As was shown in ref. 15l , the physical state space is spanned 
Ьу the polarizations EДwith amplitudes а 8 (х) ( s = 1,2,3) with 
the restriction а8(х) to Ье independent of х 3 • So this diagona
lity shows, that the physical state space is invariant with 
respect to the interaction, represented Ьу the polarization ope
rator (5). It seems to Ье nearly obvious that а higher loop cor
rection does not change anything. 

Now, once the physical polarizations including radiative cor
rections are clear, the proЬlem is reduced to а scalar one for 
а 1 and а2 • For the amplitude . а3(х) = const(x 3) it reduces to the 
corresponding proЬlem in (2+1) dimensions without boundary con
ditions. In this case it is well known that the polarization 
operator can Ье absorbed into the wave function normalization, 
so that this contribution is not interesting from the point of 
view of boundary conditions. 

It remains to consider the scalar proЬlem for а 1(х) and 
а 2(х) (hereafter denoted Ьу а(х)) only. The action reads 

S(a) = . ..1 f d 4x d 4 y а(х) [- д 28(х- у)+ а 2fi(x- у)] а(у) (13) 
2 х х 

with boundary conditions 

1 -о. а(х) х3 = о, а - ( 14) 

1\1 

11\ 

Now the variational principle yields the equation of motion ~ 

8 4 2-
-дх а(х) + [d у дх П(х- у) а(у) =О (15) 

for х 3" О, а (remember Ва(х) = О for х 3 =О, а due to the bounda
ry conditions). То satisfy the conditions (14), we introduce 
the corresponding Fourier representation 

4 

d~a ipaxa оо dрз 
а(х) = f --е 1 О(-х 3) f -м-r sinp3 x3 (277) 8 о 77./ ;:. 

+ О(х 3)О(а- х 3 ) ~ I sinwn Xg 
а n>O 

а fp , w ) + 
(1' а n 

а_1(ра,р8) + 

( 16) 
оо dрз 

+ О(х 8 - а) f -- sinp3 (х 3 - а) 
о 77/2 

1 
= I fd\p)tfr. (х,(р))а . ((р)), 

i=-1 1 1 

а 1(Ра, р3) 1 = 
(а = 0,1,2) 

Substituting (16) into (15) we get the equations of motion in 
the form 

(Г 2
- (рз)~ )ai (ра' Срз)) -

1 
I f d(k

3
) . П .. (Г 2 , (р 3), (k

8
)) а . (р , (k 3 )) .. о _ 

(17) 

j =- 1 J IJ J а 

with i =-1,0,+1 and Г 2 =р~-Р~-Р=· Here is (р 8) 1 = р 3 оо for 
i = _::1, (р 8) = wn = 77n/ a for i =о, and fd(k3 ) ±1 = f dk 8 
i = .:!:_1, fd(k 3) 0 = I for i =О. The polarization op~rator П 1j 
is given Ьу n>O 

8 3(ра- ka) П iJ (Г 2 , (р 3 ), (k 3)) = Jd"xd4y ф 1 (х,(р)) а~П(х- у)фJ (у, (k)) 

and it is syпnnetric нnder the change 
mentum representation 

~j. With the standard mo-

П(х- у) 
f d4 р е lp(x-y) -

(277) 4 п (р 2) 
(18) 

we get 

пij <г 2, (р 8). (k 3)) 

(19) 

оо Р3 k3 2 2 - 2 2 f dq --- ---- М (Г - q ) П (Г - q ) 
з р 2 - q 2 k2 - q 2 lj 3 3 

-оо 3 З З З 
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with 

MiJ 

_1_ 
"2 

tor i "' j "'± 1 

_1_(1- (-1)n е iqsa ) 
а !Т 

1 tq8a 
-е 
~r2 

ror 1 "'-1 , j "' о * 

1 (1 n . ЗiТ -(-1) е 1qaa 

for i "' - 1, j "' + 1 

n' -iq а 
)(1- (-1) е з ) ror i"' j"' о**. 

The system (17) is non-diagona1 in i. This is due to our as
sumption that e1ectrons do not fee1 the p1ates, and consequent-
1y, photons penetrate them via an e1ectron-positron pair crea
tion. However, having in mind а rea1istic situation, where the 
p1ates are not infinite1y thin, the nondiagona1 terms are sma11 
like exp(-dm ), where d is the thickness of the p1ates and m е · 
• е 
1s the e1ectron mass. Thus we neg1ect these terms. 

After this simp1ification the system (17) gets diagona1. 
Consider the case i =О, i.e., the region between the p1ates. 
Here we have (writing а instead of а0 ) 

(Г 2-w2 )а(Г 2,w) 
n n 

I. w w , f , (Г 2) а (Г 2, w , ) = О , 
n '> 0 n n n, n n (20) 

( n "' 1,2, ••• ) 

with 

оо n iq а ' r ,(Г2) =-1- ( dq (1-(-1) е з )(1-(-1)n e-tq3a) 
n,n 31Т 3 х -оо (w2 -q2)(w2 -q2) n З n, 3 (21) 

х (Г2- q2) U(Г 2_ q2) • 
з з 

Equation (20) can Ье so1ved in perturbation theory. In а stan
dard way*** we find that so1utions are possihle for 

г2= w 2 (1 -с (w 2 )), i.e .• for n n,n n р2 = р 2 + w 2(1- f (w 2)) 
О n n,n 

(22) 

*Н . ere 1 s (k 3) = w n. 
**Here is (р 3 ) = w, (k 3) =w, . 

n n . 
*** See the perturbation theory for а quantum mechan1ca1 system 

in ref. 18 1 for examp1e. 

6 

~ 
\ 

on1y. Тhеу 1ook 1ike 

2 c.JnWn' 2 
а(Г , w ) ", I. [S n, - rn n, (w , )] х 

n . n>O n, ы2-ы2' n 
n, n (23) 

х S (Г 2 - ы 2, (1 - r , , (ы 2, ))) а (р 2 , ы , ) , n n ,n n n 

where а(р 2 , ы ,) are arbitrary parameters. Transforming (23) 
back into х-~расе we obtain the so1utions in the form 

d з . а 
Ра 2 lPa:l 

а(х) "' О(х ) О(а- х 3) J -- - I. ~ е sinыn х 3 х 
З (2rr) З а n > О n >О 

(24) 

2 ыnыn' 2 - 2 
xS(p2-p2-ы~(1-f, ,(w,)))[S ,- f ,(w,)]a(p ,w ,). 

О n n ,n n n ,n (1) 2 _ (1) 2 n,n n n 
n' n 

It remains to get а more exp1icit representation for the func
tion rnn'(Ы~') than (21). Using the we11-known representation 
(see rer. / 7/ for examp1e) 

- ее 1 р2 
П(р2) =- Jdaa(l-a) ln(1-a(1-a)-) 

2~r 2 о m~ 

for the po1arization operator we get after а deformation of the 
integration contour in (21) 

f , (w 2,) 
n,n n 

а 4 =--
1 ( n+n- n , 

f dlt ~---{{-1) +(-l)n )е -kame IТП' 

у4-(~)2 2((_!!!l_)2+k2) p(k,arn-) 
ame ame е 

00 

am 8 З~r 

(25) 

with 

p(k,(l)) = yk2+(1)2-4(k2+(1)2 + 2) 

(k 2 + (1) 2) З/2 

where а is the fine-structure constant *. Specia1 va1ues are 

ro,o (О) а 

= ame 
3 

18• f n,n 
=~~ 

ame 91Т 
(26) (w~ )J(I) =2me 

n 

* This is, of :course, nothing e1se than the usua1 spectra1 re
presentat ion . 
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(up to contributions small like exp(-2am~). For 0_5 си 0 _5 2m
8 

the 
function f 0 , 0 (си~) is monotonic and analytic in n,at си 0 ",2m8 it 
has а cut, corresponding to the creation of real electron-po
sitron pairs. Furthermore, the function fnn'(cи:,) has for 
сиn,< 2me the asymptotic form ' 

f n,n' (си;,) _ .!._ ~ 
n 3 

for n ... оо. 

1+(-l)n+n 
(27) 2 

What physics does this mean? First, for the stationary photon 
states between the plates one observes an energy shift due to 
the radiative corrections given Ьу (22). One may imagine the 
photon to create near а plate an electron-positron pair.th&t does 
not feel the boundary and cannot Ье reflected in order to contri
bute to the stationary wave.This can Ье seen also from_equation 
(15). We write it in the form д 2a(x)",j(x) .withj(x)=Jd4y~П(x-y)a(y) 
and cons.ider the region хЗ' Уз" ~0, а]. One ~bserves that inte
grating д~ Ьу parts is not possiЬle because П(х-у) doe!> not 
satisfy boundary conditions. So, we have j(x) ~ О for дiа(х) "' О. 
Consequently, the radiative corrections can Ье considered as 
а source generated Ьу the photon when it is reflected from the 
boundary. For the same reason the х 8 -dependence of the wave 
function for а given frequency си 0 (resp. for а given Ро) is 
no longer simply sincиnx 3 , but 

ф ,(х 3 ) = l sincи 4 x 8 [ 8 , -
n n> O n,n 

(U си , 
n n 

си2,-си2 
n n 

С • (си 2 )] n,n . (28) 

Du,e to (27) the sum over n converges and ф , (х 
3

) "' О for х 
3 
=О, а, 

i.e., ф0 ,(х 3) is continuous at x 3 =t and nx 3 ",a-f, t > O , t->0. 
What about the order of magnitude of these corrections? For 

real macroscopic plates the distance а between the plates is 
much larger than 1/ me so that 1/ am 8 is very small. Furthermore, 
the energy shift (22) can Ье interpreted as а renormalization 
of the distance betweeц the plates 

( 1 ( 2 )) а -+ а ren "' а 1 + 2 f n,n сиn • (29) 

So, due to radiative correctiops а photon with energy р0 "' 

= v р2 + (~) 2 sees а larger distance а > а. This distance " ~ ~ 
е 

renormalization, however, is much smaller than the uncertainty 
of the distance coming from the real surface structure of the 
plates. This comes, of course, from the mentioned above fact that 

8 

the virtual electron-positron pairs contribute essentially in 
the region - 1/ m е only. The deviation of the xg-dependence of 
the wave function from sincиnxзis of the same order. This devia
tion, however, is present in the whole x 3 -region from х3 ", О 

to х 3=а and not near the surface only. Horeover, it is pre
sent also in the case of one plate only. This can Ье shown 
easily Ьу taking the limit а-+ оо in (22) and (28). For this aim 
one has to substitute 

1 1 00 

сиn .... Рз • - l -+ - f dрз • 
an > O "о 

Then the energy shift, of course, vanishes. The function ф (х3) 
gets simplified in this case, and we have after straightfo~ward 
calculations 

фn (х з) 
with 
f(p) 

Рз 2 Рз 
--... ф (х3 ) = sinp

3
x

3 
+а- -f(-)(1- cosp3x 3) (30) 

а-+оо Р me h me 

I dkp(k, р). (31) 

у4-р2 

The function f(p) (31) is essentially the same as (25), and we 

have f(O) "' 3/8, f(2) = 5~ 2 , f(p) analytic and monotonic for 

О~ р < 2and has а cut from р = 2. Now the small parameter is 
p

3
/me.From (30) we see that the effect (i.e., the deviation 

from sinp
3

x
3

) does not decrease if one is far from the plate. 

3. CONCLUSIONS 

In the previous section we have considered the photon states 
between parallel superconducting plates when radiative cor
rections are included. We have used the canonical quantization 
procedure of covariant gauge electrodynamics with boundary 
conditions developed ·in ref. 1 5~ Thereby it was shown, that the 
physical polarizations of the photon in the presence of bounda
ry conditions introduced in ref. / 5/ are not mixed when radia
tive corrections are included. This shows at once that this 
quantization procedure is convenient for calculations in pertur
bation theory (at last at the one-loop level) and is therefore 
the appropriate extension of the Gupta-Bleuler method to the 
case with boundary conditions. 

Concerning the radiative corrections to the photon states 
we get the result, that the polarizations in the first order of 
the perturbation theory are the same as in zeroth order. They 
are given Ьу Е~ (s = 1 ,2) (б) as well as Ьу Е~ (б) with an ampli
tude independent Qf х8 . The last polarization turns out to have 
no radiative corrections specific for the presence of boundary 

9 



conditions. For the first two polarizations the proЬlem is 
reduced to а scalar one. It is shown that the radiative correc
tions to the corresponding scalar amplitude result in а shift 
of the photon energy, which can Ье interpreted as а renormali
zation of the distance between the plates seen Ьу the photon. 
Furthermore, the xз-dependence of the photon wave function 
differs slightly from the usual sinw0 x 3• All corrections are 
small Ьу an order of a/am 8 , where а is the finestructure con
stant, а the distance between the plates, and me is the electron 
mass. Namely, the renormalization of the distance а is much 
smaller than the uncertainty of the distance due to the real 
surface structure and therefore not measuraЬle. Тhе corrections 
to the x 3 -dependence of the photon wave function are also small 
Ьу an order of a/am

8 
between the plates resp. Ьу ap 3/ me if there 

is one plate only ( р 3 is the perpendicular momentum of the 
photon). However they are present in the whole x3 -region, and 
not only near the plate. This leads to the hope that they can Ье 
observed experimentally. 

The author thanks Prof. D.Robaschik for stimulating discus
sions and Dr. V.Rubakov for the idea to consider radiative cor
rections to the photon states as well as for many discussions. 
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