

обьединениыя ИНСТИТУ ААерНых исследования дубна

E2-84-126

M.Bordag

RADIATIVE CORRECTIONS
TO PHOTON STATES BETWEEN PLATES

Submitted to " $\boldsymbol{\Omega}{ }^{\circ}$ "

1. INTRODUCTION

Boundary conditions are a simple model for the interaction with an external field/1'. The corresponding examples are the interaction of the electromagnetic field with macroscopic bodies (conductors), the bag model in QCD, field theory at finite temperature (boundary conditions in imaginary time) and so on.

An interesting example here is the propagation of light in the presence of boundary conditions when radiative corrections are included. It is known that in heated QED the photon acquires a mass ${ }^{\prime 2 /}$. There are further mass effects coming from bounuary conditions (see ref. ${ }^{/ 8 /}$ for example). They are due to radiative corrections. In this paper we investigate the radiative corrections to photon states between superconducting plates. This seems to be the simplest example for such corrections and has a direct and obvious physical interpretation. Furthermore though the order of magnitude of these corrections turns out to be very small they are much larger than the thermal photon mass for example.

To handle radiative corrections it is useful to work in covariant gauge. There were some confusions in literature on the canonical quantization of covariant gauge electrodynamics in the presence of boundary conditions. Namely, the authors of ref. $/ 4 /$ state that it would be necessary to introduce ghosts in this case, especially in order to obtain the right result for the Casimir energy. In ref. $/ 5 /$, however, it was shown that there is really no reason for ghosts and that the usual GuptaBleuler quantization method works well and is equivalent to the path-integral quantization method for the same problem derived in ref. ${ }^{/ 6 /}$. The essential point in refs. $/ 5,6 /$ was the observation that the presence of boundary conditions does not influence the gauge freedom, so that the function $\phi(x)$ in the gauge transformation $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{x_{\mu}} \phi(x)$ is not restricted by the boundary conditions.

For our investigation of the photon states between superconducting plates we use the quantization procedure of ref. ${ }^{1 / 6}$. In doing this we show, that this procedure is consistent within the perturbation theory at least at the one-loop level. For the photon states it turns out that they remain massless, whereas the photon energy will be shifted. This shift can be interpreted as a renormalization of the distance between the plates,
seen by the photon. We use a simple model, in which the boundary conditions are realized by two parallel, infinitely large and thin superconducting plates, oriented perpendicular to the third axis and intersecting it at $x_{g}=0$ and $x_{8}=a$. Further we assume that the electrons do not feel the boundaries, so that we have boundary conditions to the electromagnetic field only.
2. THE RADIATIVE CORRECTIONS TO THE PHOTON STATES

We start with the QED Lagrangian in covariant gauge ($a=1$)
$L(x)=\frac{1}{2} A_{\mu}(x) \partial_{x}^{2} g^{\mu \nu} A_{\nu}(x)+\bar{\psi}(x)(i \hat{\partial}-m+e \hat{A}) \psi(x)$
and the corresponding action
$S(A, \bar{\psi}, \psi)=\int d^{4} x L(x)$.
The boundary conditions for the electromagnetic field read
$\mathrm{n}^{\mu} \cdot \mathrm{F}_{\mu \nu}^{*}(\mathrm{x})=0$
$x_{3}=0, a$
with
$\mathrm{n}^{\mu}=(0,0,0,1), \quad \mathrm{F}_{\mu \nu}^{*}(\mathrm{x})=\epsilon_{\mu \nu \alpha \beta} \cdot \mathrm{F}^{\alpha \beta}(\mathrm{x})$.
whereas there are boundary conditions for the spinor field.
Now, we are interested in the photon states only, so we can exclude the spinor field in order to get an effective action. Because we have no boundary conditions to the spinor field, this can be done in the usual manner and we get the effective action
$S(A)=\frac{1}{2} \int d^{4} x d^{4} y A_{\mu}(x)\left[\partial_{z}^{2} g^{\mu \nu} \delta(x-y)-\Pi^{\mu \nu}(x-y)\right] A_{\nu}(y)$
with the standard polarization operator
$\Pi_{\mu \nu}(x-y)=-1 e^{2} \operatorname{Sp}\left[\gamma_{\mu} \hat{S}(x-y) y_{\nu} \hat{S}(y-x)\right]$.
Hereby we assume that the renormalization in $\Pi_{\mu \nu}(x-y)$ is carried out in the usual way. Now the effective action $S(A)$ (4) has to be considered together with the boundary conditions (3). Following the quantization procedure of ref. $/ 5 /$ we introduce the polarization basis $E_{\mu}^{\mathbf{s}}\left(-i \partial_{\mathbf{z}}\right)$

$\mathrm{E}_{\mu}^{3}\left(-\mathrm{i} \partial_{\mathbf{z}}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$,

$$
E_{\mu}^{0}\left(-i \dot{\partial}_{\Sigma}\right)=\left(\begin{array}{c}
-i \partial_{\mathbf{x}_{0}} \tag{6}\\
-i \partial_{\mathbf{x}_{1}} \\
-i \partial_{\mathbf{x}_{2}} \\
0
\end{array}\right) \frac{1}{\sqrt{-\partial_{\mathbf{x}_{0}}^{2}+\partial_{\mathbf{x}_{\|}}^{2}}} .
$$

Here $s=0,1,2,3$ denote the polarizations. The subscript " means the 1,2-directions: $x_{y}^{2}=x_{1}^{2}+x_{2}^{2}$. The polarizations (6) satisfy the following orthogonality relation

$$
E_{\mu}^{s}\left(-i \partial_{z}\right) g^{\mu \nu} E_{\nu}\left(-i \partial_{z}\right)=\vec{B}^{8 t}
$$

with $\overrightarrow{\mathbf{B}}^{\text {st }}=$ diag $(1,-1,-1,-1)$. The normalizations in (6) are chosen so that the root on-shell (i.e., for $\partial_{x_{0}}^{2}+\partial_{z}^{2}=-\partial_{x_{3}}^{2}$) be real and that the operators $E_{\mu}^{8}\left(-i \partial_{z}\right)$ be Hermitean. The decomposition of the potential $A_{\mu}(x)$ over this basis reads
$A_{\mu}(x)=\sum_{s=0}^{s} E_{\mu}^{s}\left(-\dot{i} \partial_{z}\right) a_{g}(x)$.
The boundary conditions (3) imply for a (x)
$a_{s}(x)=0$ for $s=1,2, x_{3}=0, a$.
Substituting the decomposition (7) into (4) we obtain the effective action in the form
$S=\frac{1}{2} \int d^{4} x d^{4} y \overline{a_{s}(x)}\left[\partial_{x}^{2 \bar{g}}{ }^{s t} \delta(x-y)-\pi^{s t}(x-y)\right] a_{t}(y)$.
Here $\Pi^{\text {日t }}$ is the projected polarization operator
$\Pi^{s t}(x-y)=E_{\mu}^{s}\left(-i \partial_{z}\right) E_{\nu}^{t}\left(\dot{i} \partial_{y}\right) \Pi^{\mu \nu}(x-y)$.
Using ${ }^{17 /}$
$\Pi_{\mu \nu}(x-y)=\left(g^{\mu \nu} \dot{\partial}_{z}^{2}-\partial_{x}^{\mu} \partial_{z}^{\nu}\right) \tilde{\Pi}(x-y)$
seen by the photon. We use a simple model, in which the boundary conditions are realized by two parallel, infinitely large and thin superconducting plates, oriented perpendicular to the third axis and intersecting it at $x_{3}=0$ and $x_{8}=\mathrm{a}$. Further we assume that the electrons do not feel the boundaries, so that we have boundary conditions to the electromagnetic field only.

2. THE RADIATIVE CORRECTIONS TO THE PHOTON STATES

We start with the QED Lagrangian in covariant gauge ($a=1$)
$L(x)=\frac{1}{2} A_{\mu}(x) \dot{\partial}_{x}^{2} g^{\mu \nu} A_{\nu}(x)+\bar{\psi}(x)(i \hat{\partial}-m+e \hat{A}) \psi(x)$
and the corresponding action
$S(A, \bar{\psi}, \psi)=\int \mathrm{d}^{4} \mathrm{z} L(\mathrm{x})$.
The boundary conditions for the electromagnetic field read

$$
\begin{equation*}
\mathrm{n}^{\mu} \cdot \mathrm{F}_{\mu \nu}^{*}(\mathrm{x})=0 \quad \mathrm{x}_{\mathrm{s}}=0, \mathrm{a} \tag{3}
\end{equation*}
$$

with
$\mathrm{n}^{\mu}=(0,0,0,1), \quad \mathrm{F}_{\mu \nu}^{*}(\mathrm{x})=\epsilon_{\mu \nu \alpha \beta} \cdot \mathrm{F}^{\alpha \beta}(\mathrm{x})$.
whereas there are boundary conditions for the spinor field.
Now, we are interested in the photon states only, so we can exclude the spinor field in order to get an effective action. Because we have no boundary conditions to the spinor field, this can be done in the usual manner and we get the effective action
$S(A)=\frac{1}{2} \int d^{4} x d^{4} y A_{\mu}(x)\left[\dot{\partial}_{x}^{2} g^{\mu \nu} \delta(x-y)-\Pi^{\mu \nu}(x-y)\right] A_{\nu}(y)$
with the standard polarization operator
$\Pi_{\mu \nu}(x-y)=-1 e^{2} \operatorname{Sp}\left[\gamma_{\mu} \hat{S}(x-y) \gamma_{\nu} \hat{S}(y-x)\right]$.
Hereby we assume that the renormalization in $\Pi_{\mu \nu}(\mathbf{x}-\mathrm{y})$ is carried out in the usual way. Now the effective action $S(A)$ (4) has to be considered together with the boundary conditions (3). Following the quantization procedure of ref. $/ 5 /$ we introduce the polarization basis $E_{\mu}^{s}\left(-i \partial_{\mathbf{z}}\right)$

$\mathrm{E}_{\mu}^{3}\left(-\mathrm{i} \partial_{I}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$,

$$
E_{\mu}^{0}\left(-i \partial_{I}\right)=\left(\begin{array}{c}
-i \partial_{\Sigma_{0}} \tag{6}\\
-i \partial_{I_{1}} \\
-i \partial_{I_{2}} \\
0
\end{array}\right) \frac{1}{\sqrt{-\partial_{I_{0}}^{Z}+\partial_{I_{n}}^{Z}}} .
$$

Here $\mathrm{s}=0,1,2,3$ denote the polarizations. The subscript " means the 1,2-directions: $x_{\|}^{2}=x_{1}^{2}+x_{2}^{2}$. The polarizations (6) satisfy the following orthogonality relation
$E_{\mu}^{s}\left(-1 \dot{\partial}_{x}\right) g^{\mu \nu} E_{\nu}\left(-1 \dot{\partial}_{\mathbf{x}}\right)=\tilde{g}^{s t}$
with $\overrightarrow{\mathbf{g}}^{\text {st }}=$ diag $(1,-1,-1,-1)$. The normalizations in (6) are
 be real and that the operators $\mathrm{E}_{\mu}^{\mathrm{s}}\left(-1 \mathrm{~d}_{\mathrm{z}}\right)$ be Hermitean. The decomposition of the potential $A_{\mu}(x)$ over this basis reads
$A_{\mu}(x)=\sum_{s=0}^{s} E_{\mu}^{s}\left(-i \partial_{z}\right) a_{s}(x)$.
The boundary conditions (3) imply for $a_{8}(x)$
$\mathrm{a}_{\mathrm{g}}(\mathrm{x})=0$ for $\mathrm{s}=1,2, \mathrm{x}_{3}=0, \mathrm{a}$.
Substituting the decomposition (7) into (4) we obtain the effective action in the form
$S=\frac{1}{2} \int d^{4} x d^{4} y \overline{a_{s}(x)}\left[\partial_{z}^{2} \tilde{g}^{8 t} \delta(x-y)-n^{s t}(x-y)\right] a_{t}(y)$.
Here $n^{8 t}$ is the projected polarization operator
$\Pi^{\mathrm{Bt}}(x-y)=E_{\mu}^{8}\left(-1 \dot{\partial}_{z}\right) E_{\nu}^{t}\left(\dot{\partial}_{y}\right) \Pi^{\mu \nu}(x-y)$.
Using ${ }^{17 /}$
$\Pi_{\mu \nu}(x-y)=\left(g^{\mu \nu} \partial_{\mathbf{x}}^{2}-\partial_{z}^{\mu} \partial_{z}^{\nu}\right) \tilde{\Pi}(x-y)$
we rewrite (10) in the form

$$
\Pi^{s t}(x-y)=\left\{\tilde{g}^{s t} \dot{\partial}_{z}^{2}-\left(\begin{array}{c}
i \sqrt{-\partial_{x_{0}}^{z}+\partial_{x_{\|}}^{2}} \tag{12}\\
0 \\
0 \\
\partial_{\mathbf{x}_{3}}
\end{array}\right)^{s}\left(\begin{array}{c}
i \sqrt{-\partial_{x_{0}}^{2}+\partial_{x_{11}}^{2}} \\
0 \\
0 \\
\partial_{x_{3}}
\end{array}\right)\right\} \tilde{\Pi}(x-y) .
$$

From equation (12) it is clear that $\Pi^{8 t}(x-y)$ is diagonal in the physical polarizations (for $s=1,2$ as well as for $s=3$, when it is independent of x_{g}).

As was shown in ref. $/ 6 /$, the physical state space is spanned by the polarizations E_{μ}^{8} with amplitudes $\mathrm{a}_{\mathrm{g}}(\mathrm{x})(\mathrm{s}=1,2,3)$ with the restriction $a_{3}(x)$ to be independent of \mathbf{z}_{3}. So this diagonality shows, that the physical state space is invariant with respect to the interaction, represented by the polarization operator (5). It seems to be nearly obvious that a higher loop correction does not change anything.

Now, once the physical polarizations including radiative corrections are clear, the problem is reduced to a scalar one for a_{1} and a_{2}. For the amplitude $a_{9}(x)=\operatorname{const}\left(x_{3}\right)$ it reduces to the corresponding problem in (2+1) dimensions without boundary conditions. In this case it is well known that the polarization operator can be absorbed into the wave function normalization, so that this contribution is not interesting from the point of view of boundary conditions.

It remains to consider the scalar problem for $a_{1}(x)$ and $a_{2}(x)$ (hereafter denoted by $a(x)$) only. The action reads
$S(a)=\frac{1}{2} \int d^{4} x d^{4} y a(x)\left[-\partial_{z}^{2} \delta(x-y)+\partial_{x}^{2} \Pi(x-y)\right] a(y)$
with boundary conditions

$$
\begin{equation*}
\left.a(x)\right|_{x_{3}=0, a}=0 \tag{14}
\end{equation*}
$$

Now the variational principle yields the equation of motion
$-\partial_{x}^{3} a(x)+\int d^{4} y \partial_{x}^{2} \tilde{\Pi}(x-y) a(y)=0$
for $\mathrm{x}_{3} \neq 0$, a (remember $\delta a(x)=0$ for $x_{3}=0$, a due to the boundary conditions). To satisfy the conditions (14), we introduce the corresponding Fourier representation
$a(x)=\int \frac{d^{3} p_{a}}{(2 \pi)^{3}} e^{i p_{a} z^{a}}\left[\theta\left(-x_{3}\right) \int_{0}^{\infty} \frac{d p_{3}}{\pi / 2} \sin p_{3} x_{3} \quad a_{-1}\left(p_{a}, p_{3}\right)+\right.$
11

$$
\begin{align*}
& +\theta\left(x_{g}\right) \theta\left(a-x_{3}\right) \frac{2}{a} \sum_{n>0} \sin \omega_{n} x_{3} \quad a p_{a}\left(p_{n}\right)+ \\
& \left.+\theta\left(x_{3}-a\right) \int_{0}^{\infty} \frac{d p_{3}}{\pi / 2} \sin p_{3}\left(x_{3}-a\right) \quad a_{1}\left(p_{a}, p_{3}\right)\right\} \equiv \tag{16}\\
& \left.\equiv \sum_{i=-1}^{1} \int d^{4}(p) \psi_{i}(x,(p)) a_{i}(p)\right) .
\end{align*}
$$

Substituting (16) into (15) we get the equations of motion in the form
$\left(\Gamma^{2}-\left(p_{s^{\prime}}\right)_{i}^{2}\right) a_{i}\left(p_{a},\left(p_{a^{\prime}}\right)-\right.$
$-\sum_{j=-1}^{1} \int d\left(k_{s}\right)_{j} \Pi_{i j}\left(\Gamma^{2},\left(p_{3}\right),\left(k_{s}\right)\right) a_{j}\left(p_{a},\left(k_{3}\right)\right)=0$.
with $i=-1,0,+1$ and $\Gamma^{2}=p_{0}^{2}-p_{1}^{2}-p_{2}^{2}$. Here is $\left(p_{8}\right)_{1}=p_{3}$ for $i= \pm 1,\left(p_{8}\right)=\omega_{n} \equiv \pi n / a \quad$ for $i=0$, and $\int d\left(k_{3}\right)_{ \pm 1}=\int_{0}^{\infty} d k_{8}$ $i=\mp 1, \int d\left(k_{g}\right)_{0}=\Sigma_{n}$ for $i=0$. The polarization opérator $\Pi_{i j}$ is given by
$\delta^{9}\left(p_{a}-k_{a}\right) \Pi_{i j}\left(\Gamma^{2},\left(p_{3}\right),\left(k_{3}\right)\right)=\int d^{4} d^{4} y \overline{\psi_{i}(x,(p))} \partial_{x}^{2} \Pi(x-y) \psi_{j}(y,(k))$
and it is symmetric under the change $i \rightarrow j$. With the standard momentum representation
$\tilde{\Pi}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p(x-y)} \tilde{\Pi}\left(p^{2}\right)$
we get
$\Pi_{i j}\left(\Gamma^{2},\left(\mathbf{p}_{\mathbf{3}}\right),\left(\mathbf{k}_{\mathbf{g}}\right)\right)=$
$=\int_{-\infty}^{\infty} d q_{3} \frac{p_{3}}{p_{3}^{2}-q_{3}^{2}} \frac{k_{3}}{k_{3}^{2}-q_{3}^{2}} M_{i j}\left(\Gamma^{2}-q_{3}^{2}\right) \tilde{\Pi}\left(\Gamma^{2}-q_{3}^{2}\right)$
with
$M_{i j}= \begin{cases}\frac{1}{\pi^{2}} & \text { for } i=j= \pm 1 \\ \frac{1}{2 \pi}\left(1-(-1)^{n} e^{i q_{g_{8}^{a}}}\right) & \text { for } i=-1, j=0 * \\ \frac{1}{\pi 2} e^{i q_{8} a^{a}} & \text { for } i=-1, j=+1 \\ \frac{1}{a \pi}\left(1-(-1)^{n} e^{i q_{g^{2}}}\right)\left(1-(-1)^{n^{n}} e^{-i q_{8^{2}}}\right) \text { for } i=j=0^{* *} .\end{cases}$
The system (17) is non-diagonal in 1 . This is due to our assumption that electrons do not feel the plates, and consequent$1 y$, photons penetrate them via an electron-positron pair creation. However, having in mind a realistic situation, where the plates are not infinitely thin, the nondiagonal terms are small like $\exp \left(-d m_{0}\right)$, where d is the thickness of the plates and m_{e} is the electron mass. Thus we neglect these terms.

After this simplification the system (17) gets diagonal. Consider the case $i=0$, i.e., the region between the plates. Here we have (writing a instead of a_{0})

$$
\begin{array}{r}
\left(\Gamma^{2}-\omega_{n}^{2}\right) a\left(\Gamma^{2}, \omega_{n}\right)-\sum_{n^{\prime}>0} \omega_{n} \omega_{n} \cdot f_{n, n} \cdot\left(\Gamma^{\ell}\right) a\left(\Gamma^{2}, \omega_{n} \cdot\right)=0, \tag{20}\\
(n=1,2, \ldots)
\end{array}
$$

with
$\mathrm{f}_{\mathrm{n}, \mathrm{n}} \cdot\left(\Gamma^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d q_{3} \frac{\left(1-(-1)^{n} e^{i q_{8} g^{2}}\right)\left(1-(-1)^{n^{\prime}} e^{-1 q_{8}{ }^{n}}\right)}{\left(\omega_{n}^{2}-q_{8}^{2}\right)\left(\omega_{n}^{2}-q_{8}^{2}\right)} \times$
$\times\left(\Gamma^{2}-q_{3}^{2}\right) \tilde{\mu}\left(\Gamma^{2}-q_{3}^{2}\right)$.
Equation (20) can be solved in perturbation theory. In a standard way ${ }^{* * *}$ we find that solutions are possible for
$\Gamma^{2}=\omega_{n}^{2}\left(1-f_{n, n}\left(\omega_{n}^{2}\right)\right)$, i. $\epsilon_{,}$, for $\quad p_{0}^{2}=p^{2}+\omega_{n}^{2}\left(1-f_{n, n}\left(\omega^{2}\right)\right)$

[^0]only. They look like
$a\left(\Gamma^{\mathcal{R}}, \omega_{n}\right)=\sum_{n>0}\left[\delta_{n, n^{\prime}}-\frac{\omega_{n} \omega_{n}^{\prime}}{\omega_{n^{\prime}}^{2}-\omega_{n}^{2}} f_{n, n^{\prime}}\left(\omega_{n^{\prime}}^{2}\right)\right] \times$
$\times \delta\left(\Gamma^{2}-\omega_{n^{\prime}}^{2}\left(1-f_{n^{\prime} ; n^{\prime}}\left(\omega_{n^{\prime}}^{2}\right)\right)\right) \tilde{a}\left(p^{2}, \omega_{n}\right)$,
where $\bar{a}\left(p^{2}, \omega_{n}\right)$ are arbitrary parameters. Transforming (23) back into x-space we obtain the solutions in the form
$a(x)=\theta\left(x_{8}\right) \theta\left(a-x_{g}\right) \int \frac{d^{3} p_{a}}{(2 \pi)^{s}} \frac{2}{a_{n}} \sum_{n} \sum_{n^{\xi}>0} e^{i p_{a^{2}} x^{\alpha}} \sin \omega_{n} x_{3} \times$
$\times \delta\left(p_{0}^{2}-p^{2}-\omega_{n^{2}}^{2}\left(1-1_{n^{\prime} ; n^{\prime}}\left(\omega_{n^{\prime}}^{2}\right)\right)\right)\left[\delta_{n, n^{\prime}}-\frac{\omega_{n^{\prime}} \omega_{n}^{0}}{\omega_{n^{2}}^{2}-\omega_{n}^{2}} f_{n, n^{\prime}}\left(\omega_{n^{2}}^{2}\right)\right] \tilde{a}\left(p^{2}, \omega_{n}\right)$.
It remains to get a more explicit representation for the function $f_{n_{n}}$ ($\omega_{n_{0}}^{R_{0}}$) than (21). Using the well-known representation (see $\mathrm{ref}_{\mathrm{n}} \mathrm{n} . / /^{n}$ for example)
$\Pi \quad\left(\mathrm{p}^{2}\right)=\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d a a(1-a) \ln \left(1-a(1-a) \frac{p^{2}}{\mathrm{~m}^{2}}\right)$
for the polarization operator we get after a deformation of the integration contour in (21)
$f_{n, n} \cdot\left(\omega_{n^{\prime}}^{2}\right)=\frac{a}{a m_{e}} \frac{4}{3 \pi} \frac{\int^{\infty}}{\sqrt{4-\left(\frac{\pi n}{2 m}\right)^{2}}} d \underline{1+(-1)^{n+n^{0}}-\left((-1)^{n}+(-1)^{n^{\prime}}\right) e^{-k a m_{e}}} \frac{2\left(\left(\frac{m n}{a m_{e}}\right)^{2}+k^{2}\right)}{} \rho\left(k, \frac{m^{\prime}}{a m_{e}}\right)$
with
$\rho(k, \omega)=\frac{\sqrt{k^{2}+\omega^{2}-4}\left(k^{2}+\omega^{2}+2\right)}{\left(k^{2}+\omega^{2}\right)^{g / 2}}$,
where a is the fine-structure constant*. Special values are
$f_{0,0}(0)=\frac{a}{a m_{e}} \frac{3}{18},\left.\quad f_{n, n}\left(\omega_{n}^{2}\right)\right|_{\omega_{n}=2 m_{e}}=\frac{a}{a m_{e}} \frac{28 \sqrt{2}}{9 m}$

[^1](up to contributions small like $\exp \left(-2 a m_{\theta}\right)$). For $0 \leq \omega_{n} \leq 2 m_{\theta}$ the function $f_{n, n}\left(\omega_{n}^{2}\right)$ is monotonic and analytic in n, at $\omega_{n}=2 m_{0}$ it has a cut, corresponding to the creation of real electron-positron pairs. Furthermore, the function $f_{n, n} \cdot\left(\omega_{n}^{2}\right)$ has for $\omega_{\mathrm{n}}<2 \mathrm{~m}_{\mathrm{e}}$ the asymptotic form
$f_{n, n^{\prime}}\left(\omega_{n}^{2}\right)-\frac{1}{n} \frac{2 \alpha}{3} \frac{1+(-1)^{n+n^{\prime}}}{2}$
for $n \rightarrow \infty$
What physics does this mean? First, for the stationary photon states between the plates one observes an energy shift due to the radiative corrections given by (22). One may imagine the photon to create near a plate an electron-positron pair that does not feel the boundary and cannot be reflected in order to contribute to the stationary wave. This can be seen also from equation (15). We write it in the form $\partial_{x}^{2} a(x)=j(x)$ with $j(x)=\int d^{4} y \partial_{x}^{2} \Pi(x-y) a(y)$ and consider the region $\mathbf{x}_{9} \mathbf{y}_{8} \in[0, a]$. One observes that integrating ∂_{z}^{2} by parts is not possible because $\Pi(x-y)$ does not satisfy boundary conditions. So, we have $j(x) \neq 0$ for $\partial_{x}^{2} a(x)=0$. Consequently, the radiative corrections can be considered as a source generated by the photon when it is reflected from the boundary. For the same reason the x_{3}-dependence of the wave function for a given frequency ω_{n} (resp. for a given p_{0}) is no longer simply $\sin \omega_{\mathrm{n}} \mathrm{x}_{3}$, but
$\phi_{n} \cdot\left(x_{3}\right) \equiv \sum_{n>0} \sin \omega_{4} x_{3}\left[\delta_{n, n}-\frac{\omega_{n} \omega_{n}}{\omega_{n^{\prime}}^{2}-\omega_{n}^{2}} f_{n, n} \cdot\left(\omega^{2}\right)\right]$.
Due to (27) the sum over n converges and $\phi_{n}\left(x_{3}\right)=0$ for $x_{3}=0$, a, i.e., $\phi_{\mathrm{n}}{ }^{\prime}\left(\mathrm{x}_{\mathrm{g}}\right)$ is continuous at $\mathrm{x}_{\mathrm{s}}=\epsilon$ and $\mathrm{x}_{\mathrm{s}}=\mathrm{a}-\epsilon, \epsilon>0, \epsilon \rightarrow 0$.

What about the order of magnitude of these corrections? For real macroscopic plates the distance a between the plates is much larger than $1 / m_{\theta}$ so that $1 / a_{\theta}$ is very small. Furthermore, the energy shift (22) can be interpreted as a renormalization of the distance between the plates
$a \rightarrow a_{\text {ren }}=a\left(1+\frac{1}{2} f_{n, n}\left(\omega_{n}^{2}\right)\right)$.
So, due to radiative corrections a photon with energy $p_{0}=$ $=\sqrt{p_{11}^{2}+\left(\frac{\pi n}{a_{m}}\right)^{2}}$ sees a larger distance $a_{\text {ren }}>a$. This distance
renormalization, however, is much smaller than the uncertainty of the distance coming from the real surface structure of the plates. This comes, of course, from the mentioned above fact that
the virtual electron-positron pairs contribute essentially in the region $-1 / m$ only. The deviation of the x_{8} dependence of the wave function from $\sin \omega_{n} x_{3}$ is of the same order. This deviation, however, is present in the whole x_{3}-region from $x_{8}=0$ to $\mathrm{x}_{3}=\mathrm{a}$ and not near the surface only. Moreover, it is present also in the case of one plate only. This can be shown easily by taking the limit $a \rightarrow \infty$ in (22) and (28). For this aim one has to substitute
$\omega_{n} \rightarrow p_{3}, \frac{1}{a} \Sigma_{n>0} \rightarrow \frac{1}{\pi} \int_{0}^{\infty} d p_{3}$.
Then the energy shift, of course, vanishes. The function $\phi_{n}\left(x_{g}\right)$ gets simplified in this case, and we have after straightforward calculations
$\underset{\substack{n \\ \text { with } \\ \phi_{3} \\ \mathrm{x}_{3}} \underset{\substack{a \rightarrow \infty \\ \infty}}{\longrightarrow} \phi_{\mathrm{p}}\left(\mathrm{x}_{8}\right)=\sin \mathrm{p}_{3} \mathrm{x}_{3}}{ }+a \frac{\mathrm{p}_{8}}{\mathrm{~m}_{\mathrm{e}}} \frac{2}{3 \pi} f\left(\frac{\mathrm{p}_{3}}{\mathrm{~m}_{\mathrm{e}}}\right)\left(1-\cos \mathrm{p}_{3} \mathrm{x}_{8}\right)$
$\mathrm{f}(\mathrm{p})=\int^{\infty} \mathrm{dk} \rho(\mathrm{k}, \mathrm{p})$.

$$
\begin{equation*}
\sqrt{4-p^{2}} \tag{31}
\end{equation*}
$$

The function $\mathbb{P}(p)$ (31) is essentially the same as (25), and we have $f(0)=3 / 8, f(2)=\frac{56 \sqrt{2}}{9 \pi}, f(p)$ analytic and monotonic for
$0 \leq p<2$ and has a cut from $p=2$. Now the small parameter is $\mathrm{p}_{3} / \mathrm{m}_{\mathrm{e}}$. From (30) we see that the effect (i.e., the deviation from $\sin p_{3} x_{3}$) does not decrease if one is far from the plate.

3. CONCLUSIONS

In the previous section we have considered the photon states between parallel superconducting plates when radiative corrections are included. We have used the canonical quantization procedure of covariant gauge electrodynamics with boundary conditions developed in ref. ${ }^{5 /}$. Thereby it was shown, that the physical polarizations of the photon in the presence of boundary conditions introduced in ref. $/ 5 /$ are not mixed when radiative corrections are included. This shows at once that this quantization procedure is convenient for calculations in perturbation theory (at last at the one-loop level) and is therefore the appropriate extension of the Gupta-Bleuler method to the case with boundary conditions.

Concerning the radiative corrections to the photon states we get the result, that the polarizations in the first order of the perturbation theory are the same as in zeroth order. They are given by $\mathrm{E}_{\mu}^{\mathrm{s}}(\mathrm{s}=1,2)(6)$ as well as by E_{μ}^{3} (6) with an amplitude independent of x_{3}. The last polarization turns out to have no radiative corrections specific for the presence of boundary
conditions. For the first two polarizations the problem is reduced to a scalar one. It is shown that the radiative corrections to the corresponding scalar amplitude result in a shift of the photon energy, which can be interpreted as a renormalization of the distance between the plates seen by the photon. Furthermore, the \mathbf{x}_{8}-dependence of the photon wave function differs slightly from the usual $\sin \omega_{n} x_{g}$. All corrections are small by an order of $a / a m$, where a is the finestructure constant, a the distance between the plates, and m_{b} is the electron mass. Namely, the renormalization of the distance a is much smaller than the uncertainty of the distance due to the real surface structure and therefore not measurable. The corrections to the x_{3}-dependence of the photon wave function are also small by an order of $a / a m$. between the plates resp. by $a p_{8} / m_{0}$ if there is one plate only (p_{3} is the perpendicular momentum of the photon). However they are present in the whole xg-region, and not only near the plate. This leads to the hope that they can be observed experimentally.

The author thanks Prof. D. Robaschik for stimulating discussions and Dr. V.Rubakov for the idea to consider radiative corrections to the photon states as well as for many discussions.

REFERENCES

1. Гриб А.А., Мамаев С.Г., Мостепаненко В.М. Квантовис эффекты в интенсивных внешних полях. Атомиздат, М., 1980.
2. Babu Joseph K. Phys.Lett., 1982, 115B, p. 252. Peresutti G., Skagerstam B.-S. Phys.Lett., 1982, $110 \mathrm{~B}, \mathrm{p} .406$. Tarrach R. Preprint CERN, Ref.Th., 1983, p. 3680. Nieves J.F., Pol P.B., Johnson K. Phys.Rev., 1983, D28, p.4.
3. Peterson C., Hansson T.H., Johnson K. Phys.Rev., 1982, D26, p. 415. Toms D.J., Phys.Rev., 1980, D21, p. 928. Forf L.H., Yoshimura T. Phys.Lett., 1979, 70A, p. 89. Choios A., Thorn C.B. Phys.Lett., 1974, 53B, p. 359.
4. Ambjørn J., Hughes. R.J. Nuc1. Phys., 1983, B217, p. 336.
5. Bordag M. JINR, P2-84-115, Dubna, 1984.
6. Brrdag M., Robaschik D., Wieczorek E. JINR, E2-83-488, Dubna, 1983.
7. Богопюбов Н.Н., Щирков Д.В. Введение в теорию квантованных полей. "Наука", М., 1976.
8. Ландау Л.Д., Лифшиц Е.М. Квантовая механика /нерелятивистская теория/. "Наука", М., 1973.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US 8 ,

including the packing and registered postage

04-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.
D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the a - and β-Decays of Transfermi um Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on Kigh Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativistic Nuclear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Problems of Collective Methods of Acceleration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

D2,4-83-179 Proceedings of the XV International School on High-Energy Physics for Young Scientists. Dubna, 1982

Proceedings of the VIII All-Union Conference on Charged Particle Accelerators. Protvino, 1982. 2 volumes.

D11-83-511 Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna, 1982.

D7-83-644 Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.

D2,13-83-689 Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.

Received by Publishing Department on February 27, 1984.

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR
Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
 Subject

1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Ma thematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Бордаг M.

Радиадиониые поправки х состояниям фотонов мехду зеркалами
Радиационные поправки к состояниям фотонов рассматриваются при наличии граничньх условий, задаваемых двумя сверхпроводящи ми параллельными пластинами. Использована развитая ранее процедура канонического квантования электродинамики в ковариантной калибровке с учетом граничньх условий, которая очень удобна в данном случае. Для фотонов, находящихся между пластинами, наблидается смещение энергии, обусповленное радиационными поправками. Это смешение может быть интерпретировано как реяультат ренормировки расстояния между пластинами, которое увидит фотон. Кроме того наблодается изменение волновых функций фотонов в импульсном пространстве, которое также обусловлено радиационными поправками.

Работа выолнена в Лаборатории теоретическо貫 физики оияи.

Препринт Ооъедниениого ивститута ядерных исследований. Дубна 1984

Bordag M.

Radiative Corrections E2-84-126
Radiative corrections to the photon states are considered in the presence of superconductor boundary conditions given by two parallel plates. The developed earlier canonical quantization method for covariant gauge electrodynamics in the presence of boundary conditions is used and it turns out to be convenient for handling this problem. For the photon states between the plates one observes a shift of the photon energy due to radiative corrections which can be interpreted as a renormalization of the distance between the plates seen by the phaton. The photon wave functions are found to be spread in the momentum space, also due to radiative corrections.

The investigation has been performed at the laboratory of Theoretical Physics; JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984

[^0]: *Here is ($\left.{ }^{2}.\right)^{2}=\omega_{n}$.
 ** Here is $\left(\mathrm{p}_{\mathrm{g}}, \mathrm{g}^{2}\right)=\omega_{\mathrm{n}},\left(\mathrm{k}_{3}\right)=\omega_{\mathrm{n}}{ }^{\prime}$.
 *** See the perturbation theory for a quantum mechanical system in ref.!8/. for example.

[^1]: * This is, of course, nothing else than the usual spectral representation.

