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1. Introduction 

In the early fifties, in virtue of the successful results 
of quantum electrodynamics, of more interest has become 
the weak coupling theory as applied to strong interactions. 
The calculations under the weak coupling assumption have 
been performed for a lot of various meson models (re­
sults of these calculations are the subject of the book of 
R.Marshak/l/ ). · 

The predictions of the above models, as a rule, were 
not consistent with experiment in many important aspects. 
Nevertheless, even on the basis of results on the 
low-energy rr N -scattering it was possible to give pre­
ference to the model of rr N -interactions with the pseudo­
vector coupling (the PV -model). This model, at least, 
rather well described the energy dependence of cross 
sections up to about 200 MeV. 

For higher energies the PV -model led to the linear 
growth of cross sections while the experimental values 
increase to a maximum and then decrease. This model 
also gave zeroth values for the s -wave scattering length 
which contradicts the expeimental data. From the theoreti­
cal point of view the PV -model was considered to be 
unacceptable due to its nonrenormalizability. 

In previous paper /2/ we have attempted to remove the 
difficulties on nonrenormalizabitily of this model. We rais­
ed there the problem whether it is possible, within the 
framework of the usual PV -model, to obtain the finite 
results for observable effects without introducing any 
additional (indefinite) parameters into this model. We have 
succeeded in solving this problem with the use of the 
summation procedure of Redmond-Bogolubov-Logunov­
Shirkov / 3 / applied to a part of diagrams of the meson 
Green function. 
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The model we have suggested had some formal advan­
tages (it is renormalizable and the correspondence rules 
are rather simple), however, it did not describe satis­
factorily the rr N -interactions. 

Before to state a new problem, let us try to ascertain 
what requirements should be given to the quantum field 
model which pretends to describe the strong interactions. 
In our opinion, the basic requirements are as follows: 

1) Since the meson-nucleon coupling constant is large 
a great amount of virtual mesons is tightly linked with 
nucleon, therefore it might be well that the model, even 
at the first stage, would take into account (at least, in 
part) the back action on nucleon of the meson field produced 
by the nucleon itself, i.e., it would take into account the 
self-energy effects. 

2) Some indications (see, e.g., ref. '4 ) exist in fa-
vour of that in the limit of large momenta the strong inter­
actions should become extremely weak; this requirement 
can be satisfied if these interactions are described within 
the framework of super-renormalizable theory. 

3) As we have no methods other than those of pertur­
bation theory, it is desirable that in the lowest order the 
model does not give serious disagreements with experi­
ment. In particular, if one bases on the PV -model, it is ne­
cessary to allow for a mechanism which, on the one hand, 
would lead to correct values of the s-waves and, on the other 
hand, would prevent the energy growth for the rr N -scatter­
ing total cross sections (the latter requirement is connect­
ed, to some extent, with condition (2)). 

The above listed conditions allow one to state the follow­
ing problem: Does a method exist to make the PV-model 
super-renormalizable? These conditions also indicate 
partly a way to possible solution of the problem. Obviously 
(see(173)) it is necessary to sum up preliminary some class 
of self-energy nucleon diagrams which will result in the 
nucleon Green function with the asymptotic behaviour 
appropriate for the super-renormalizability of the model. 

Following paper /2/ we consider the chain of the dia­
grams of the nucleon Green functions: 
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..,.,..--.... .,.,.-- ,-, 
S(p) = + ' + " I \ + 

=So+So!So +So!So!So+··· (1.1) 

Here S 0 (p) is the nucleon propagator, ! ( p) is the 
operator of self-energy of the second order. To a part of 
diagrams (1.1) the summation of Redmond-Bogolubov­
Logunov-Shirkov / 3 / is now applied. 

The nucleon Green function 

(I) 2 " (2) ( 2) 
\(p)=MSA (p) + p SA p (1.2) 

found as a result of partial summation, will not have false 
poles on the first sheet, and with this we have 

( j) 2 1 1 
!SA ( p ):l,p2h>M2 = 0( IP212)(j=I.2) (1.3) 

Further we shall regroup the perturbation expansion series 
for the PV -model in such a way that each term include 
the function SA (p), instead of the nucleon propagator 
So(p). Conditions (1,3)) will ensure the super-renormali­
zability of such a model. Due to these conditions it is 
possible to overcome the difficulty of growing rr N -
scattering cross section at high energies. As far as the 
function S A (p) has no additional singularities on the 
physical sheet, the every term of the series will keep the 
correct analytic properties. 

In section 3, with the use of the obtained nucleon Green 
function SA (p), we calculate the s -wave scattering lengths 
in the Born approximation and in section 4 we find the 
proton-neutron mass difference in the lowest order of 
perturbation expansion. Our results: 

a
1 
-a 

3 
= 0.2904 

a 1 +2a3 = - 0.0371 
8 M= M -M = -0.455 MeV p n 

are rather close to the available experimental data, there­
fore, as we think, the model is worthy of further study. 
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2. Partial Summation and the Nucleon Green Function 

The Lagrangian for pion-nucleon interaction is taken in 
the following form* : 

f - a¢ 
£ N(x)= -: 'P(x)y ~ r. IP(x)-i: (2.1) 

7T ill 11 5 I ax 
11 

where m is the pion mass, f the coupling constant. 
Consider the series of diagrams (1.1) for the nucleon 

Green function. We want to make correspond (following the 
summation methods for asymptotical series) to it or to 
its part such a function SA (p) which, having correct 
analytic properties, would decrease for ! p 21 -+ "" not 
slower than 0 (1 I 1 p 2 12 ). 

It is just the behaviour that ensures super-renormaliza­
bility of model (2.1). Obviously, the formal summation of 
chain (1.1), as the summation under the spectral inte­
gral /3/, both do not give the desirable result. The nuc­
leon Green function obtained in this way will have either 
false poles on the physical sheet or the same asymptotic 
behaviour as that for the free propagator S 0 (p). We shall 
proceed in the following way. First we pick out of the 
series (1.1) the part 

(-}\) (-~) (-~' --s ( )- t \ AP- +• + 
/-......... ..--

' I '. -+-

= S 
0 

+ S
0 

(-A I ) S 
0 

+ S 
0 

(-A I) S 
0 

(-A I ) S
0 

+ ... (2.2) 

(1) A (2) 
=MSA (p2)+ pSA (p2) 

* The following notation is used: 

Ya Y {3 + Y {3 Y a = 2g a{3 ' Y 5 = .i Yo Y I Y 2 Y 3 

g a{3 = diag (1, -1,-1 , -1), y = y + 5 5 0 
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(Here A an arbitrary parameter and M the nucleon mass). 
Regrouping formally the remaining terms of the series 
(1.1) allows us to express them in terms of the functions 
SA (p) and I (p) in the following manner: 

(1.+") (f.-"1\2.' 

s , ( p) = ./ - ' - - / - " 
A ( ' ( " ( \ 

F ·+.. '+••• 

=(1+A) S
0

I S
0

+(1-A2 )S
0

! S
0

! S
0 

+ .... 

(2.3) 

=SA (1 +A) ! \ +SA ( 1 +A ) ! SA (1 +A ) ! SA + ... 

If one will succeed in summing (2.2.) in such a way 
that the functions s~>(p2 ) ( j = 1, 2) have correct analytic 
properties and an asymptotic behaviour similar to 
0 ( 1 I: p212 ), then every term of the series (2. 3) will also 
retain these properties. And what is more, any different 
diagram for the perturbation expansion for the inter­
action Lagrangian (2.1) calculated with the use ofthe nuc­
leon Green function SA (p) becomes finite because in 
the degree of divergence the theory (2.1) is equivalent 
to the model with Lagrangian -~ = g cb :l . · 

Now let us apply the summation method of Redmond­
Bogolubov-Logunov-Shirkov · :~. to the set of diagrams 
(2.2). In this case, allowing for notation (2.2), we get 

(•) 
(j) 1 '- dzpJ (z) . s <P ) = + r -- . )\____ c1 = 1 2 ) ,\ 2 2 2 , , 0 

M -p (\l+ml Z - p 2 - if 
(2.4) 

·Here 

(1,2) 1 + 2 I 2(z) 
rrp (z)= lm! --------·---'--'~~~ -----~-- !. (2.5) 

A M2 [ 1 - A 2 
1 

( z) ) 2 - z [ 1 + A 2 
2 

( z) ) 2 

The functions 2 
1 

and 2 
2 

are defined by the expansion 
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~ (p) == M ll (p2) + p ~2(p2) (2.6) 

and have the form 
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I (x) = 3 f
2 

I-2W+EnQ[_QQ-=..Q2__ 2Q +3Q 2]_ 
I 16172 Q 2x 2 

1 -5Q -2- -X 
2 

Q(6Q -20) 

y'4/Q -1 

arctg ( i_ _ 1) I /2 
Q -

(2.7) 

- QyA(x)_ [En x-1-Q +vA (x)_ -2i17e (x-(1+ v Q)2)]!' 
2x x-1-Q- v'ATXT 

3f 2 
I (x) =--I W(3-x) + 2(1+2Q) + 2 

16172Q 

+fuQ{ Q(1-Q-x) _ (1-x)I(1-Q)
2

-2x+x 2 l _2 Q2+ 3Q]-
2x 4x 2 

(1-x) (2-2Q + x) 

4x 
+ 

I /2 
4Q(Q-3) arctg(4/Q-1) -

v4/Q-I 

_ yA(x) [Q _ (1-x)(1-x-Q) ][fu x-1-Q+v'A (x) 

2x 2x x -1- Q -yTX'(XT 

-2i118(x ·- (1 +v'-Q)l] l. 

(2.8) 

'I 

I 

Here we have introduced the following notation: x = p 2/M 2 , 
Q=m2/ M2 , A (x)= (l..:...x-Q)2 -4xQ , W is an ar­
butrary subtraction constant. 

As has been mentioned, the model (2.1) is super-re­
normalizable if the condition (1.3) holds. For this it is 
sufficient to require that 

,,<P( ) "" <i>() . 
J A,W =1+ J dzpA. z ,..,o, (J=1,2). (2.9) 

(M+m)2 

The numerical analysis shows that in terms of the 
variables A and W the system of equations (2.9) has 
a single solution (A -solution) for Af 2 ::: 0.8 and W::: -1 
and many solutions ( B -solutions) for 0<Af 2,$0.04. To fix 
uniquely these parameters, in the next section, using the 
function SA (p), we calculate the 11 N s -wave scatter­
ing lengths in the Born approximation. It will turn out 
that only the A -solution will result in the correct values 
of the wave lenghts (the B -solutions give the combina­
tions a 1- a 3 and a 1 + 2 a3 of the same sign that contra­
dicts the experimental data). 

3. The 11N s -Wave Scattering Lengths 

In the lowest order in the coupling constant f the 
11N- interaction is described by two diagrams 

\ q.t•"' 

' .... 

Pt,tt 

q,a,f I 
I 

I 

-.... ~··o( IJ~ -........................ ___ _,.,., 
-.. ... -_ ....... 

- --
Pt;t, 

Fig. 1 

The solid line stands for the nucleon Green function 
SA ,p1 - the nucleon momenta, ': 

1 2 
the meson momenta, 

t 1 ,2 , i, f3 the isotopic indices of nucleons and mesons. 
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The invariant amplitudes A(±) and B (±) (we follow the 
notation of book15/) can be represented in the form: 

(±) 2 2 (I) (2) 2 
A (s,u)=-f Ml(s-M )[SA (s)+SA (s)] ±(u-M )x 

(I) (2) 
x[SA (u)+SA (u)]l, 

(3.1) 

B(±)(s,u)=f 2 !2M2 [S(~)(s) +S~1 )(u)]+ (s+M 2)S~)(s) 

(3.2) 

+ ( u + M2 ) S ~2 )(u) l . 

Hence for the 
relations 

s-wave lengths we have the following 

1 f2 M2 + - + -
- (a

1
-a

3
) =---I -M(S

1 
-S

1 
)+(M+rn)(S

2 
-S

2
) l, (3.3) 

3 477 (M+ m) 

2 2 . 
1 f M +- + -
-(a

1 
+2a

3
)=- ---I-M(S

1 
+5

1 
)+(Mm)S

2 
+(M-m)S 2 l, 

3 477 (M+m) 
(3.4) 

where + (j) 2 - (i) 2 
S. =SA ((M + m) ), S. =sA· ((M-m) ). 

J .l 
The calculation results for (3.3) and (3.4) depending 

on the choice of solution are given in the Table. We see 
that only one solution 

w = -1.195 
(3.5) 

Af 2= 0.782 

results in the correct values for (3.3) and (3.4), viz: 
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l 
~ 

I 
I 

l 
II 

al -a3 = 0.2904 
(3.6) 

a 
1 

+2a 3 = -0.0371 

(we have chosen f 2/4 77 = 0.072) that is in good agreement 
with the experimental data (we cite the value recommended 
in ref. 16 , ): 

a -a 
l 3 

a + 2a 
l 3 

+0.01 
0.29 

-0.02 

-0.045±0.045. 

Table 

(3.7) 

----------------------------------------------------
Af2 W al-a3 al+2a3 ----------------------------------------------------

0.782 
0.0478 
0.0474 
0.0470 

-1.195 
20.1 
20.4 
20.8 

0.2904 
-0.0244 
-0.0243 
-0.0248 

-0.0371 
-0.0064 
-0.0064 
-0.0063 

----------------------------------------------------
Here £2/477 = 0.072. We list only few B -solutions; for 
others the results change slightly. 

Thus, in comparing the calculation results with the 
experimental data on measurement of the s -waves it 
appears to be possible to fix uniquely all known parameters 
of the model. 

In the next section, within the framework of the pro-
posed model, using the obtained parameters (3.5) we shall 
calculate the contribution to the neutron-proton electro­
magnetic mass difference in the lowest perturbation expan-
sion order. 
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4. Proton-Neutron Electromagnetic Mass Difference 

In the lowest order of perturbation expansion the follow­
ing diagram 

K 

p.~.p 
Fig. 2 

contributes to the proton-neutron electromagnetic mass 
difference. The corresponding matrix element can be re­
presented in the form 

S2 (X , y ) = - i : qi (X) Z (X- y) \fl ( y): 

where 

and 

I (x-y) = - 1- f d tx e -ip(x-y)z (p) 
(277 )'~ 

(4.1) 

(4.2) 

i e2 d4k 
z(p) = -- f - y s (p + k )yll . (4.3) 

(277)4· k 2 11 A 

Inserting here the spectral representations (2.4) for the 
functions S ~I> and S ~2 > and integrating over k we get 

oM=M -M = z (M) 
p n 

where 

I(M)=aM ll_+J dz[2p~1 )(z)-p~2)(z)]x 
2 77 2 (M+m)2 

(4.4) 

+ [ 2_ en z-M 2 - en z- M 2 ] l. 
M2 z M2 
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In calculating the integral (4.3) we have used conditions 
(2..9) due to which this integral converges. 

The subsequent integration in (4.4) was made numeri­
cally. For solution (3.5) one obtains 

oM = -0.455 MeV (4.5) 

that coincides both in the sign and in the order of magnitu­
de with the experimental value 

oMex,r-1.293 MeV. (4.6) 

5. Concluding Remarks 

Recall briefly the results obtained in this paper. 
From the very beginning we aimed to achieve the super­
renormalizability of the model. This aim has been achieved 
with the use of the summation hypothesis 13 / and the cor­
responding regrouping of the perturbation theory expan­
sion. Then in the model there still were two free parame­
ters (solutions of the system (2.9))which we could fix 
uniquely by comparing the calculation results for the 
s -wave and experimental values. Using the nucleon Green 

function SA and the obtained values of parameters A and 
W, we have calculated the lowest perturbation expansion 
order contribution to the neutron-proton electromagnetic 
mass difference. 

Note that in previous models of "N -interactions the 
coupling constant was large and, consequently, it was im­
possible to employ the perturbation theory expansions for 
observable quantities. 

Within our model this difficulty is partly removed. 
Indeed, if the representations (2.4) and conditions (2.9) 
are taken into account, then it is easy to see that the 
functions S ~) and s ~2) can be represented in the form 

s<i> (p2)= J dz p~) (z)(z-M2) (5.1) 
A (M+m)2 (z-p2)(M2 _ p2) 

13 



and therefore the ''cut-off'' of divergent integrals occurs 
at the momenta 

(5.2) 

For the low-energy effects the parameter of pertur­
bation theory expansion will be the following quantity 

(~)2 = 1.. 
4 rrm 3 

therefore the obtained results (3.6) and (4.5) may be re­
garded not very sceptically. 

It seems interesting to analyse this model in more de-
tail. This work is now in progress. 

In conclusion the authors thank G. V. Efimov and 
V .A.Meshcheryakov for stimulating discussions and criti­
cal remarks. 
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