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Cnaeaoe A.A. /E2 - 8308 
DepeHOpMHpOeKa· cynepCHMMeTpH'IHb!X Kann6pOBO'IHb!X Teopnfi. 
1. KeaHTOBasr aneKTpOi:tHH6MHKa 

nocTpOeHa HHBapuaHTHaSI nponeaypa nepeHOPMHPOBKH JlnSI cynepCHMMeT
PH'IHOH KB6HTOBOH aneKTpOi:tHH8MHKH. TTOK838HO, 'ITO ece ynbTpaqmoneTCBble 
pacXOJlHMOCTH ycTpaHSIIOTCSI o6mefi nepeHOpMHpOBKOH eonHOBb!X cjiyHKllHH n 
Mace nonefi MaTepHH H nepeHOPMHPOBKOH eonHOBOH cjiyHKllHH Kanu6pOBO'IHOro 
MynbTHnneTa. 

Coo6~eHHe 061.e~HeHHOro HHCTHTyTa Jl~epHblX HCCJl0~0Ba.HHI 

,l\y6Ha, 1974 

Slavnov A.A. 
Renormalization of Supersymmetric Gauge 
Theories. I. Quantum Electrodynamics 

E2 - 8308 

An invariant renormalization procedure for supersym
metric quantum electrodynamics is constructed. It is shown 
that all ultraviolet divergencies may be removeq by the 
common wave function and mass renormalization of matter 
fields and the wave function renormalization of the gauge 
multiplet. 
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The concept of supersymmetry introduced recently by Wess 

and Zumino
111 seems to open new possibilities for the construc

tion of weak electromagnetic and strong interaction models. 

Different aspects of this new symmetry were investigated by 

different authors ( for references see 121 ). Supersymmetry 

manifests itself, in particular, in the existence of strong 

constraints on renormalization constnnts. These constraints 

were shown to reduce in some cases the total number of renorma

lization constants to one /J/. The present paper is devoted . 
to the investigation/of renormalization program for supersym-

metry gauge theories. Supersymmetric generalization of quantum 

electrodynamics was given in paper / 4/ and of non-abelian gauge 

theories in papers / 5, 61- • 

Supersymmetric gauge invariant Lagrangians appear to be 

highly nonlinear and therefore at the first sight nonrenorma

lizable. However it was shown / 4 , 5 , 5/ that a .spec·ial gauge 

exists in which all terms containing more than four fields 

drop out and the Lagrangian reduces to the ordinary gauge in

variant terms plus some additional renormalizable interaction 

of scalar and spinor particles. Unfortunately, this re -
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markable gauge is not supersY=etric. So it is completely un

clear if it is possible to renormalize the theory in a s:uper

symmetric we::,. Up to now the problem was solved only for one 

loop diagrams. 

We propose manifestly supersY=etric renormalization 

procedure for gauge theories. SupersYlllilletric gauge will be 

used instead of the noninvariant Wess-Zumino gauge. It will 

be shown that in spite of nonlinear character of the Lagran

gian the total number of independent counterterms is finite 

and the renormalized Lagrangian is supersY=etric and gauge 

invariant. 

I. 

In this section we use the notation of the papers / 1 ,4 / 

except for our l -matrices satisfy the relation 

¥ f4 t' t- r ¥ f ::= 2 ~ fl V. • ~ ::= { 1 I - f I - fl - t} 
• J 

and ·Qµg":: ~f9'a,.1-16µ ~ Matter fields are combined in scalar 

supermultiplets 

S;:=(Jl;,,B<,'r~,~,GJ) 
. 
l = 1, 2 • (1) 

Multiplets S1 and &; corres~nd to the ~eal and imagina

ry parts of a complex scalar su1>ermultiplet. Gauge fields 

form vector supermultiplet 
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V=(c,t, M,N7 Vr,A, 'Zl) , (2) 

where ½M, N, 7J are scalars~ J, ). - .Maiorana spi-

nors and V~ - Hermitian vector field~ 

Generalized gauge transformation looks as follows 

SS1 = ~SJ; 

&S1 =-3Ss; 
& V = 'JS 

Here 3S is a vector multiplet with the components 

(.,) 

I I I r;- , I I j/ I C\ I (4) 
C =B j ='f M =J N =C. V"' =3µ .>. =0 JJ ==0 • 

I ) I It I I I 

Symbo~ S S.; means symmetric scalar product of S' and S', 

• 
I { I I I ,.,. I '} SS';_=S, = .A,,Bi/r';,:t; ,G, 

I 

.JI.== JI.It, -B.8i 
' 
I 

Bi =.J/Bi. t BJ!. 

~' = (A-YsB)~ +(A,-r.B;)lf (5) 

n-' er' -J. = 'l'JI, +J, 11 +GB· +G. B - 'f 'f: t. .J c. c.J1 L I. c. 

I c- -G, ==GJI. +-G;.Jl-:fB:-J.B-'f Ys-'f. 
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Scalar multiplets may be also combined into vector mul

tiplets 

V:r=f (S:xS, +S2 xS2 ) 
(6) 

and 

V-, = S AS2 .J I • 
(?) 

The first product is symmetric and the second one ant;r

symmetric. Their explicit fom may be found in / 4/~ 

Vector multiplets in .turn can be combined symmetrica]J.y 
, I 

into another vector multiplet V = V1 V2. 

C
1
=C1 C2 

J 1
=C1J2 + C2.J1 

I , -

• vi' = C1 V,.2 + Ci ~f + 1 /4 i's rl' X2. 

I -M =C1M2. +C,.M1-f f..1 Ys J2 

'- j_ -N -C1N2 +C2.N1 - :z_ X1 f.,. 

(8) 

t i." ~" fMv ✓ 1HYj A =C1>-.2+C2A,-2'dC1t2-roC2f1+?!: 1•s1-i+z 20s 1+ 
1 • • 

+ 2 Iv, J2. ti N2. 11 - i ~1 Ys~ X2 - i ~2 ls tt J.1 
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2) =C/D2. +C.._1)1 +'JC1 JC2. +'f 1 ~2 t-M1Mz. +N1 N2. -X.1 A2 -

- l - f' • -

-J",.A1 +r1Jrf1r 12. +t ,-12rl".x1 . 

The Lagrangian invariant with respect to the generali

zed gauge transformations (3) is. 

t=f (vll, e2iv+Ve e-23
~~ + t (s1 ~1 + S2 ~J~ -

(9) 

1.('l )2 
'-"I 1 2 -'f ,.vy-J)I~ -f~o.>.+ 2 '.D, 

where ( ) -n and ( ) 'i mean 7) and :r components 

of the vector and scalar multiplets, respectively, and 

Va.=\/,x +\4 
.!!. ' 

V6' = V.r-V11 . 
The Lagrangi~ (9) is invariant also with respect to 

supereymmetry transformations of S ~ and V • . 

s.A, = ii 't'i 

bB~=iiJ's•'f~ 
~'i'; = i (3tf A .. -rs BJ 1"')ot T ( J; 1' G, r r) 0( 

(Jr.- ·-" -o i.:::: .Li::/. cl l/' 

~ G ,·= i. ti y s ~ 'I' 
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·- " O '/)=lei.J's o). 

E,C =d.fsf 

- • - I\ &M = o.>. +Lot oj 

SN=-'J.ts>. +i.ayr~J 

&~ = -i.~ y"A + iJ: or f 

;1 = ir,. V,,d. -L·r/Jc QI. +(M +Yst.J)d. 

& .>. =½ (~,N,-o~~))'fl Yv cl. + 2) Yso< 

(11) 

Here d. is infinitesimal Maiorana spinor independent of X. • 

The Lagrangian (9) is high]J nonlinear and nonrenormalizable . 

in a usual sense. However gauge condition still should be im

posed. Wess and Zumino.noticed that one can choose the gauge 

C=M=-N:::::;(=O · (12) 

Ill this gauge . (Vt!) == 0 , for h ~ 3 , and interac

tion term in (9) becomes 

~VEV+3~V1:V2
• (1~) 

This interaction corresponds to renormalizable theory. But 

the gauge condition (12) destroys the invariance under the 

supersymmetry transfomations (10,11), and therefore the im

portant infomation is lost. 

• 

r 
I ,. 

Ill fact in this gauge we have some renormalizable La

grangi~ but we know nothing about its sµpersymmet:ry pro

perties. Ill particular, it is far from evident that renor

malized masses and coupling constants are equal~ 

For this reason we abandon the Wess-Zumino gauge and impose 

a supersymmetric subsidiary condition. To do that we add to the 

Lagrangian (9) a gauge fixing te:r,m 

{~ (oVxclV~1 
(14) 

where dV is a scalar multiplet constructed from the vector 

multiplet V : 

~ 
.II ~ tlt If - :F = O M 
8:::0C-Z> 
rv • I\ 
'f = D j ~ t _';)). 

(15) 

J G= □ N 

4 

The term ( 14) evidently preserves the invariance under the 

transformations (10 111). 

An explicit expression for the quadratique form defining 

tree propaga~rs is 

't-o= i ~ {(3J1.)2+('JBf +:r/ +G;-i ~ J4'~ +m(f.Ai+GiBi-½'ft lf.)I+ 
,=1,1. . '} 
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+ 
2
~ {[~t (□ c-7)))9· +[ 't(af v,)]2-i(□j-i'11Yf)3(□J-c'~x)+ 

'.2. ~ 2.} J_ )2. ' - " 1 2 .+(□ M) +(ON; - If (}\p-Jf~ -t>.n +2 2) ~ 
(16) 

The propagators have the following asymptotical behavio-

ur 

~n~1),,~D2iD~1. G-1/''l'~G>-~~1<-_1 

P.,,,,A~'De,a~'DA1~'Ds<;~'D.1> ~ 'l)vv ,.._, l<-2..~ Dc1.> 
(1?) 

er. <T\ - 'I r,-.. - 5" fl'\. - 6 
J...JHH"' IJfJN"' I< , J.J_,_/v k . !..Jee ~ I< . • 

In fact introducing more derivatives in the condition (14) 

one ma;y obtain flee • Z) Hit • 0/./AI and Z>.,r,r 

propagators decreasing a_s k - ., , ·with arbitrary h 

Therefore any diagram including at least one such line 

is superficially convergent. This fact simplifies enormously 

the analysis of primitive divergences. The interaction Lagran - . 

;gian is an infinite sum of the terms, which may be presented sym

bolically as 
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;f, ~ ~ A 2( C "• t) t-/C. n2. tC..,3\/. 2 tCn~V. f.2
t C n/i'I t-'JCn'/. 

2
tJC"1 Vµ) + 

:i; .. ,... . -r ; . , 1/ 

+ (ii \f'(3C011 +cm2.Vti)+J2.C 1113 +./l 'J:(c"'~+c"'J) tJ.:+iC m,_x t 

+Ar ( C •>1 1 >. +- d C 1"1•j f C "'~
3 +c"'«~ .X) (18) 

Being at present interested only in the calculation of 

the degree of divergency we omit in this formula all con

stants and tensor structure, and denote symbolically A= 
={Jl,B} • :F={J,G} 

Some vertices ma;y also have additional factors M 
and N , which we did not write explicitly because the 

diagrams with f1 M or N N internal lines are superfi

cially convergent~ 

Using (1~) one can easily calculate degree of diver

genay for arbitrary diagram. The answer is 

11~4-eA-2,e'I:l-ev-2.e;-,te'Y-½ e.,. · (19) 

Here er denotes the number· of external 

So only the diagrams with at most 2, 'J) , 

.>i external lines, and 4 A or vf 
diverge. Tbe number of . C1 MI N I J 

I -lines. 

:r . '+' 
external lines 

external lines, 

or· 

which correspond to gauge degrees of freedom ma;y be arbitra

ry, so there is an infinite number of primitively divergent 

d1:agrams and the theory is nonrenormalizable in a usual sen-

II 



se. ·But as we shall show below, generalized Ward identities 

allow to express Green functions with 11 extemal C -, M 
N or j.. lines in ~e:rms of Green functi9ns with h - t lines~ 

Therefore it is sufficient to eliminate divergencies in a fi

nite number of "basic" diagrams (i.e., diagrams without . C , 

M , N , ,J.. external lines). It will automatically make 

all Green functions finite. 

We shall write down generalizad Ward identities associa

ted with the transformations (.3) and (10~11) and show that 

due to these identities only three independent counterteiDIIS 

are needed - overall wave function and mass renormalization 

for matter fields, and wave function renormalization for 

gauge multiplet. 

So we claim that Lagrangian 

2 ( 2 V -29V) m r&m( r S )·. XR==Lf Va,e g +t{e Jn +l 2 .. S'1;)1+-S2 2~-

. (20) 

- ~
3 [('a;iVv-JY~/-2ifa>, +2'})1, 

where 2 Z3 and &rn are suitably chosen. countertems, 
) . 

leads to the finite S ;.;.matrix. This Lagrangian ·evidently pos -

aeasee the same invariance· properties as the original one. ·· 

This invariance manifests itself in the generalized Ward 

identities for the Green function generating functiona1 

· 12 

Z (Iv, rsJ =N-je,xp{if [t,,.rxJt-1(~ (;w)C;w>:, .. + 

· ~(Iv-V}z;,t-~.
2
(Is.·S'}}Jx} Jf'. (21) 

Here Js. and Iv are scalar and vector supermultiplets of 
' 

sources. 

Invariance of the functional (21) under the change of 

variables (.3) leads to the first set of identities which 

may be written in a compact form: 

J 
.~I( I( 

{,_~ ('JVx □ s):F+gi~,,,,~-1) [Is:(~·SK)]j:+(J;,·d51Jo]x 
(22) 

xe,xp{if[tix)+4~ twxJV,)1 ~{
1 
(1s. •s)F +(J.·V)1)}dx} Jf ::=O • 

Putting coefficients of JI , 8 ~ l.f , :f , C 
equal to zero one can easily obtain the explicit form of 

these equations. Thus the condition &2'/4A ::::o gives the 

' relation: 
. • ti< 

; 0
2

} f ~/xJ TL }Iv/x)-3~.,,(-0~{ ~Jx) /{Jx) + 
(2,3) 

.. \ f,Z +I s_z +T..- g_ +I. 62 · } =:-0 
+\Jx1 ~.T8.Jx) 'r, b.Ty,Jx) J-, &.T,rJx) . ", SG,Jx) 

which is nothing but the usual Ward identity for electro-

magnetic field ~ interacting with spinor lf and sca-

lars · JI , 8 • By the usual arguments it follows from 
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(23) that 

of n rv = 0; rJ: (p~ == 3 lq;,y, , etc. 
v-r'I' JP"' (24) 

Remaining identities (22) express Green functions with arbit

rary number of M , N , C , :X extemal lines in 

terms of lower Green functions. 

For example, 

J_ 0 2 IE_ +iK(-tt3{ JiJx) f}. (x) - ~Jx) &I,i (r)} + 
/3 S IM(x) ,,"= 1,2 ,.., s,, 

(25) 

+ i ~{x) = 0. 

In particular, 

/3 _,, 0 1"(M(x)M{'-J)).= b(:r-.Y) 
'I' (26) 

r1□ 2(N(x)~ (y)Jld,) ~=(-tJ"j &(:x:-~)<JJ,Jx) A,Ji)) 

.Analogous equations are valid for N ' C • j Green ~c-

tions (for C and .J. they are a little more complicated 
\ 

due to C 'Z)_ and _j). mixing, but the ~esult is the same). 

Therefore these Green functions need not independent renorma

lization and it is sufficient to reno:rmalize only diagrame 

without M , N , .· C , . .f. extemal lines. According 

to (19) there are a finite ~umber of such diagrams I which 

14 

are primitively divergent. Necessary counterterms are fixed 

by the second set of generalized Ward identities, associated 

with the invariance under the eupereymmetry transformations 

(10, 11). 

The second set of identities may be written as 

f er.rr{if[tix)+¢('JV)(3V)0 +(-Z,·V)1) +ti_/Is. ·S;)3:}dx] 11 

xf{[Tv(x)$V{x)l ~?,,
2
[J;(x)6SJx)]:r}Jx J,; =O, 

(27) 

where & S', and bV are given by the formula (10
1
11). 

It is convenient to express eq. (27) in terms of one

particle irreducible Green functions, generated by the 

functional 

r(Rv,Rs}==W-};{(J>R.",)+_~ (Ts, ·R.s)}olx 
D <=•,2. j ; 

where " 
W (Iv Js):::: l eh 2 (-Tv J"s.) 

J ' I L 

£W 
RV<sJ == & Im., 

Eq. (27) becomes 

Ives,, = - .l.L 
s R V(S,) 
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t(il{ ti t-i :Rr dr□~ 1-;4r :Rr )Ri+[½(o/'Rv-J.,R,)yt'ttR'l>1s] t[ + J1 D Vf "r ~ 

t' rsr ~r . F;r I\ • .sr ") 
i.~,.2.\&R.11t &Rs,tstt !R:;, 'd t-L SR,, .Ys-3 R'+', + 

(30) 

t-_~ [{R;, t-tRGJ-i 5(R.4,-/sRa)]:; } d2: ==0 
l-1,:l. ljl, 

(We omitted here the terms, originated from the sources of 

gauge components, as they give no new information). 

Differentiating eq,(30) one easily •obtains 

r r; 2 r' 1
i 2 r.. 2 r;. - A;A, =- B,s,=f 'l';'r,::::: p :J;J; = f r;,G; 

(2) -, ff) (Z) 

G-:r-=C,.=c ... r:Zl::::,A>. ==-n, r.". =o. 
\ l O; , T t. Ti,'. } JJ "' 

(31) 

where 

r '1[(1) rCZ.) n ( V tr )n -,~~=Pnt'n) ,v=f'O-'J'J" . 
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One can choose, for example 

GA == fe-B· = 0 . 
' ' '' 

(32) 

r I r I r (1) r: ,-, (1) 
- A·.A·=-1a.e :::r't'·'t'· = J:.•.=•G-G--=r'ilX>::=r;.A =i_ 

' ' l t 'l ,..r, c. ' 

r _,·i._
1 = r . . = r: . = r>, 'Y,'f', .A,.T, e,,, . f2.=0. 

It is a simple exercise to show that analogous relations pro

viding supersymmetry of renormalized theory are valid for 

three and four-point Green :functions, For example, 

r1JJl·B.=-r;.,4-s.=i rv11 . ..4.=-1. ~->.4'
1
•, 

' J J ' "11, J ' 

(33) 

where 

• rv A. ~. = Lo,. lvA · A . . r i.J:IJ I I • J 
Summarizing eqs,(24), (27), (28) we see that all ultra-

violet infinities may be removed by the common wave :function 

and mass renormalization of matter: field, and wave :function 

renormalization of gauge multiplet. As in the usual electro

ccynamics no mass renormalization for gauge fields is needed. 

That proves the assumption (20) • 

III, We showed that performing renormalization in the expli

citly aupersymmetric gauge one preserves symmetry proper-

17 



ties of the unrenormalized theory. Of course,supersyillIJ1etric 

and gauge invariant regularization was assumed. There is no 

problem in constructing such regularization for the model 

under consideration. One can introduce, for example., higher 

covariant derivatives / 7/, or use dimensional regularization 

/8/. 

The technique described ab.ove may be directly transferred 

to the non abelian supereymmetric gauge theories. Imposing 

supereymmetric subsidiary condition one can easi]J' deduce 

relevant identities by the method introduced in paper 

/9/. Detailed calculations will be presented elsewhere. 

Finally we mention that if one is interested on]J' in 

on-shell S -mat;ix then the supersyim.etry of renormalized 

theory ma;y be proved more easily with the help of S-matrix 

generating functional proposed in our paper / 1o/. 
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