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[lepeHOPMHPOBKA CYNEPCHMMETPHYHEIX KANTHGPOBOUHEIX TeopHil.
1. KpauToeag amekTpoaMHaMHKa

Cnaenos A.A,

Mocrpoena mHBapuaHTHaS Npouenypa IEpeHOPMHPOBKU OISl CYNEPCHMMET=
pugHOil xBaHTOBOM amexTpoanHaMukd, Iloxasalo, 4TO BCe yabTpaduonerorBkie
pacxoAMMOCTH yCTpaHdoTCd obllefi IMepeHOPMHPOBKOH BOMHOBHIX (yHKUMH M
Macc rnojaeli MaTepuM B NepeHOPMHPOBKOH BONMHOBOH ¢YyHKUHM KaauGpPOBOYHOrO
MyAbLTHINETE, - '

Coobmenne O6bemMHEHHOr0 MHCTUTYTa SAEPHHX WCCAelOBaHMH
Aybua, 1974
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Slavnov A.A.

Renormalization of Supersymmetric Gauge
Theories. I. Quantum Electrodynamics

An invariant renormalization procedure for supersym-

metric quantum electrodynamics is constructed. It is shown

that all ultraviolet divergencies may be rgmoved by the
common wave function and mass renormalizaFlon of matter
fields and the wave function renormalization of the gauge

multiplet.
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L o g T i

The concept of éupersymmetry introduced recently by Wess
and Zumino/1/ seems to open new possibilities for the construc-
tion of weak electromﬁgnetic and strong interaction models.
Different aspects of this new symmetry were investigated by
different authors ( for references see /2/ ). Supersymmetry
manifests itgelf, in particular, in thé existence of sfrong
congtraints on renormalization conétnnts. These congtraints
were shown to reduce in some cases the total number of renorma-
lization constants to one /3/ « The present paper is devoted
to the investig;tionlof renormalization program for supersym-
metry gaﬁge theories. Supersymmetric generalization of quantum
electrodynamics was given in paper /4/ and of non-abelian gauge
theories in papers /5, 6/’. ‘

Supersymmetric gauge invariént Lagrangians appear tb be
highly nonlinear ang therefore at the firét_sight nonrenorma-
lizable. However it was shown /4’5{6/ that a special gauge
exists in which all terms containing more than four fields
drop out and the Lagfangian redhces to the ordinary gauge in-
variant terms plus some additional renormalizable interaction

of scalar and spinor particles. Unfortunately, . this re -



markable gauge is not supersymmetric. So 1t 1s completely un-
clear if it ig possible to renormalize the theory in a super-
symmetric way; Up to now thev Problem was solved only for one
loop diagrams. ‘

We propose manifestly sgpersymmetric renormalization
procedure for gauge theories., Supersymmetric gauge will be
used instead of the noninvariant Wess-Zumino gauge. It willv
be shown that in spite of nonlinear character of the Lagran-
glan the total number of independent counterterms is finite
and the rt_anormalized Lagrangian is supersymmetric and geuge
invariant. ‘ ' .

I. _ ,
In this section we use the notation of the papers / 1’4/
except for our X -natrices satisfy the relétion

XF yreyryt= 29”.; 3 :‘{1; ‘1)-1/—1} '
ama 8"z 3'“/‘0-"6” . Matter fields ave combined in scalar
supermultiplets .

Si:(ﬂ;,B;,%,}:”GL.)) (=12. o)
Multiplets S, ana S, correspond to the real and imagina-
ry parts of a complex scalar supermultiplet. Gauge fields
form vector supermultiplet - '

V=(C,)(, MV, V,.,/\,@) , @

where CM, IV, D are scalars, X, A .
nors and V), - Hermitien vector field,

- Maiorana spi-

Generalized gauge transformation looks as follows

§5,=95%
©osV=38 . ©

$5,=-9S5
Here 35  1is a vector multiplet with the components
C'=8, X'=¥, M'=F, N'=C, . =34, 2=0, D=0 . @
gymbol § §, means symmetric scalar product of S and St

sei=s' =48 ¥ 56/}

A= AR, -BB;

B:=AB; +8A;

V.= (A-eB)Y: +(A)sBe)Y (=)

F'=FA+FA+CB, +C.B- TV,

C.=CA: +G. A-FB;-F.B-F ),V



Scalar multiplets may be also combined into vector mul-
tiplets

V=4 (5,75, +5%5) - ®

and

V‘; = S,/\Sz . ”

The first product 1s symmetric and the second one anty-
symnetric. Their explicit form may be found in /%, '

Vector multiplets in turn can be comb:Lned symetrica.uy
into another vector multiplet V ViV,

C,=C1C2
)(lch)(z +C X

Vi =CMoa+Colur + 4 X Js b, Yo

I - ‘ '
M =CJM2+C2M1‘%X1 Y5 Xa , (8
| o
N =C1Nz +C2N1 "% X1 X3 , ‘
r_ 80 y LA { MY +1M
>\ ‘C1>‘2+Cz)\1 f9C1X2 ;2' aC2X1+7};Mf - z,fz 23’5]1*'

4 Mt TN, o Ve b B, Yo = Ve K U,

e,

g':c,%gcmﬁac,acz /u /¢2+M4Mz NN, )(1

ARV AT B AT

The Lagrangisn invariant with respect to the generali-
zed gauge transformations (3) is -

= (Vo e Ve «’) 2 (5,5,+5,5,)
: a C)
q(av,—a,\?.) Laxt 20,
where ( ) ‘end ( )y meen D eama F components

of the vector a.nd ‘scalar multiplets, respectlvely. a.pd

Va.:VI f‘\/« Vg—'v Vr

n!he Lagrangian (9) is invariant also with respect to

Buperaymmetry transfomations of S, amd V .
§A; =4 Yi
§B,=ol ¥ Y

w;:i(a,‘[ﬂ;—y:BJl")df(?a”(};Xs)“ :
(10)
S.‘TL=L& '3‘1” i

§G;=idys3Y



§D=(ay3A

§C=ay X

SM=a\+(X 3K

SN=dysA +La,y,3)(

5V, = -taA JuA +& g

§X = ot =t g3C o HM+E N)o

A'—‘%(ﬁ/‘\/,—-a,%))’ﬂ)/y ot +@ysd

Qi)

Here A is infinitesimal Maio'réna spinor independent of J¢ .

The Lagrangian (9) is highly nonlinear and non.renomalizable .

in a usual sense. However gauge condition still should be im-
posed. Wess and Zunino noticed that one can choose the gauge

C=M=N=x=0 .. (12)

In this gauge (V”) =0 ', for 23 ', and interac;-
tion term in (9) becomes ' - T

gV V', V2. o

This interaction corresponds to remormalizsble theory; But
the gauge condition (12) destroys the invariance under the
supersymmetry transformations (10, 11), and therefore the :I.m-
portant information is lost.

o e, i

In fact in this gauge we have some renormalizable La-
grangian but we know nothing about its supersymmetry pro- n
perties. In particular, it is far from evident that renor-

malized masses and coupliﬁg co_nstants are equal;.

For this reagson we abandon the Wess-Zumino gauge and impose
a pupersymmetric subsidiary condition. To do that we add to the

lagranglan (9) a gauge fixing term

L (avxav), ()
4e 4 ﬁ
where 9V is a scalar mltiplet comstructed from the vector

multiplet. Vv H

2V
A=any F=0M | g
B=gc-D (15)
r~ '-/\ G=DN
W= D‘X'—.‘L?,\ - ; o -

4

v

The term (14) evidently preserves the invariance under the
transformations (10,11).

An explicit expression for the quadratique form defining
free propagatiors is

—

i .LE {(aﬂ) +(98)+j +Go-( Y0 wfm(jﬂ+GBt2vv)}

C=' 2



o2 { T (acn] (3 -E(OT 33 (or-i3+

+(DM)2+(DN)2}- %(;,},\g,—a“,) %HM%DZ .

— A

(16)

The propagators have the following asymptotical behavio-

ur

f.D?}' ~Dee~Dpp~1 Gy~ G ~ K

DAA”’DsBNDAINDBG"’ XA

-y -
ﬁHH’VﬂNNNK . ﬁ;XNK

-1

NDVV NK'Z’N DCD (17) /

DVCC ’VK-g,.

In fact introducing more derivatives in the condition (14)
one may obtain Dcc R Z)H,q

propagators decreasing as K~

' gfw and .le _
, 'with arbitrary N .

Therefore any diagram including at least one such line

is superficially convergent.

the analyeis of primitive divergences. The interaction Lagran - -

/"gian is an infinite sum of the terms, which may be presented sym-

bolically as

Thisg fact simplifies enormously

0

ey

BN

7 ¢ Yy PR mien
I:N?;‘ ﬂl(cmg+32C'-'z+cn3%2fc"v%x +C"5X +3C 41 +IC TVH)“'

P CC Y AT ) PR

_— m Mee 8
AT (cmaracmix P HCTY, X) o

Belng at present interested only in the calculation of
the degree of divergéncy'we omit in this formula .':;ll con—
stants and tensor structu.re, a.nd denote symbolically ﬂ =
={4,8} . F={F ¢} .

Some vertices may also have additional factors M
and N s Which we did not write explicitly because thel
diagrans with MM or MV  internal 1ines are superfi-
cially convergeni;§ «

Using (19) oﬁe can eas:|_.1y calcuiate degree of dilver-

genoy for ar‘bitrar;" diagrem. The answer is
SLI-EA‘ZeD_EV‘ze;“%gv"% e) * (19)

Here 5: denotes the number'of external I -1ines.
Bo only the diagrams with at most 2 D y ¥ s ¥ or-
A external lines, and 4 A or V/u- external lines

diverse; The numbexr of ,C, M) N, X . external lines,

which correspond to gauge degrees of freedom may be arbitra-
ry, 50 there is an infinite number of primitively divergemnt
dlagrams and the theory is nonrenormalizable in a usual sen-



se s But as we shall show below, generalized Wa:rd identities

Z(3, %) =N feapif (£t 55 (2v<2) _+

. (21)
allow to express Green functions with h external C , M . +(IV'V)D . 51 (J-SL Szz}dx} O//L{ . ‘
N or X lines in terms of Green functions with h-1 lines, :+ tEn

Therefore it is sufficient to eliminate divergencies in a fi- - Here J;; sand Jv are scalar and vector supermultiplets of
nite number of "basic" diagrams (i.e.,diagrams without  C , ,’ sources. -
M,V , X external 1lines). It will automatically make ‘ Invariance of the functional (21) under the change of

all Green functions finite. variables (3) leads to the first set of identities which

We shall write down generalizad Ward identities associa- - Bay be written in a compact form:
ted with the transformations (3) and (10,11) and show that . / 2K X [ _

e — {3V« ) + -1 (S ] ' .
due to these identities only three independent countertemms . - f{lﬁ ( vxOs F 9%_,2( ‘TS; (S SK) ¥ + (J:, QS)D x
K=,
are needed - overall wave function and mass renormalization (22)
for matter fields, and wave function renormalization for
: WLP{ [[;f (1t (gmv) 2 (% :5), +(3. V)]g/x]‘,//, 0.

gauge multiplet. . . :

So we claim that Lagrangian ' : ) Putting coefficients of f] . ¥, F , @

Y2 Ve 29 Ve_zg‘? 2 mrSm(S, S s 5) equal to zero one can easily obtaiﬁ the explicit form of
R™Yy ( at 1 0 these equations. ‘.'['hus the condition ¢ ZA’A 0 gives the
relations
- &l av)zz'ra“mm’f] (30,695 7,60 52
2 (g -04) =20 | Lo, g5 05, ) SE_
g L7/ /! 7 ’ 7 B S.Tv @Y 3l ez UATY SR o)
where Z’ 23 and S are sultably chogen..counterterms, o ’ ‘ (23)
S’ -natrix, This Lagrangisn ‘evidently pos - = :

leads to the finite matr s Lagrangi lyp 8 +J— (x) SJ' (ir) T 58—2 )+J‘}' £z +J;- SZ’ =0
sesses the same invariance properties as the original one. i Ty lx B SJE;“(I) o 5 G.(x)

1f in th sralized Ward:
This invariance manifests itself e gene which isvnothing but the usual Ward identity for electro-

t functional
identities for the Green function generating ction magnetic field V/4 interacting with spinor t,t/ snd seas

4

lars J] Cy B . By the usual arguments it follows from

I3
- 12




(23) that -

- — ol
'3/4”/41'-0) vw(f’)‘ =5 eto. - (24)

N\

Remaining identities (22) express Green functions with arbit-
rary number of M , vV , C , X external lines in
terms of lower Green functions.

For example,

1_0252 +2 POQ{T(QSI() C()gj(ﬂ

B SJ‘H(:r) (k=12
(25
+¢ J,;{(:r) =0.
In particule.r;
Ao IO ;
’3 4D <M(§I)M(9)>T— S(Q: 5) (26)

BTN T (D Au(2)2=(1)"g S-9<Auler) Acle)y

Analogous equations are valid for ¥ , C , X Green func-
tioné (for C and X they are a little more complicated
due to CD and XA  mixing, but the result is the same).
Therefore these Green funétiohs need ﬁot' independent renorma-
lization and it is sufficient to renormalize only diagrame
without M , ¥ ,-C ., ‘X - external lines.: According
to (19) there are a finite number of such diegrame, which

4

are primitively divergent. Necessary counterterms are fixed
by the second set of generalized Ward identities, associated

with the invarience under the supergymmetry transformations

- (10, 11).

The second set of identities may be written as

Jemp{if ot s (avxdVy +(T V), 3 (55, Joe ]
Sresve], w2 [Tss@]gfdz oy =0,

where 55, and §V are given by the formula (10,11).

7

It is convenient to express eq. (27) in terms of one-
particle irreducible Green functions, senerated by the
functional

PR R)=WA[ RS (T )b, o

ltl

where 4

W5, %) = i bn 2(7, T;,)

Ryoy=<W_ . 5 __r (29)
VT 8 T T SRy

Eq. (27) becomes



f(( 2oy SRV /JJ J}.SRV)R +[1-(9R -2,R )X"J fRDXSJsé_

S[— gr‘ . . Sr‘ A
t2 (3%, §R,, SRBXS SR, 'SRGiXSQ)R‘*

(30)

+S [(Rs, +¥;Re)-i 3Ry~ ¥R B)]ié— }o/a: 0

(1,2

[

(We omitted here the terms, originated from the sources of
gauge components, as they give no new information).

Differentiating egq.(30) one easily wobtains

where

One can choose, for example

(32)

It 1s a simple exercise to show that analogous relations pro-
viding supersymmetry of remormalized theory are valid for
three and fourbpoigt Green functions. For example,

MB f,') I_\:A-,a:"'&;w;, 22

(345
where

N .AAJ—LP/«’_;/AA .
Summarizing egs.(24), (27), (28) we see that all ultra—

violet infinities may be removed by the common wave function

‘and mass renormalization of matter fleld, and wave function

renormalization of gauge multiplet. As in the usual electro-

dynamics no mass renormalization for gauge fields is needed.

That proves the assumption (20).

III. We showed that performing renormalization in the expli-

citly supersymmetric gauge one preserves symmetry proper-



ties of the unrenormalized theory; Of course, supersymmetric
and gauge invariant regularization was assumed. There is no
problem in constructing such regularization for the model
under consideration., One can introduce, for example, higher
covariant derivatives /7/. or use dimensional regularization
8/,

The technique described above may be direct}y transferred
to the ron abelian supersymmetric gauge theories, Imposing
supergymmetric subsidiary condition one can easily deduce
relevant identities by the method introduced in paper
/9/. Detailed calculations wil; be presented elsewhere.

Finally we mention that if one is interested only in
on-shell S -matrix then the supersymmetry of renormalized
theory méy be proved more easily with the help of ég—matrix
generating functional proposed in our paper /HO/.
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