$27 / 11.84$

обьединенный ИНСТИТут лавриых
 исслвдовании

 дубна

 дубна}

D.Ebert, W.Kallies

BAG-MODEL MATRIX ELEMENTS
OF THE PARITY-VIOLATING
WEAK HAMILTONIAN
FOR CHARMED BARYONS

Submitted to " $\$ \Phi^{\prime \prime}$

1. Introduction

The underatanding of nonleptonic weak decays of baryons in the context of the unified electroweak theory has attracted considerable attention recently. A particularly convenient framework for calculating the relevant baryon-baryon matrix elements of weak baryon decays is the MIT-bag model/1/ which manifestly allows the confinement of relativistic quarke ingide hadrons. This model has been successfully applied to the calculation of the low-lying hadron mass spectrum and of static hadronic parameters, and later on, to a atudy of nonleptonic decays of hyperons ${ }^{/ 2-3 /}$ and charmed baryons $/ 4-6 /$. In previous approaches to nonleptonic baryon decay phenomena one considered only baryon-baryon matrix elements of the parity-conserving weak Ha-
 weak Hamiltonian must vanish in the limit of $\operatorname{SU}(3)$ or $\operatorname{SU}(4)$ symmetry due to the Lee-Swift theorem/7/, their contribution was generally ignored in the IIterature. In a recent paper $/ 8 /$ Golowich and Holstein adressed to this question once more in the framework of the bag model and argued that the corresponding contributions can indeed reasonably be neglected for nonleptonic hyperon decays. On the other hand, they anticipated that for charm-changing transitions, where sym-metry-breaking effects are expected to be much larger, parity-violating matrix elements will be quite gignificant, perhape even comparable to their parity-conserving counterparts.

Motivated by these considerations, we shall reinvestigate in this paper the Cabibbo favoured charmed-baryon decays considered in our earlier work $/ 4 /$ by carefully exploring the parity-violating matrix elements, too. The paper is organized as follows. In Sect. 2 we shall eatimate and compare the baryon-baryon matrix elements of the parityviolating and parity-conserving weak Hamiltonian. Their ratio will be listed in Table II. Table III gives a compilation of variour contributions to the S - and P-wave decey amplitudes. Finally, Sect. 3 contains digcussions and conclugions.

2. Nonleptonic Charmed-Baryon Decays

Our analysis is based on the following expression for the charmchanging part of the QCD corrected effective weak Hamiltonian of the Weinberg-Salam model/9/

$$
\begin{align*}
H_{w} & =\frac{G}{\sqrt{2}} \cos ^{2} \theta_{c}\left(f_{-} O^{-}+f_{+} O^{+}\right) \tag{1}\\
O^{\mp} & =\frac{1}{2}\left\{(\bar{s} c)_{L}(\bar{u} d)_{L} \mp(\bar{s} d)_{L}(\bar{u} c)_{L}\right\}
\end{align*}
$$

where $f_{-}=1.96, f_{+}=0.64$, and $(\overrightarrow{S C})_{L}$ is a shorthand notation for $(\overline{S C})_{L}=\bar{S}^{-} \gamma_{\mu}\left(1+\gamma_{5}\right) C^{i}$ (the operators $O^{ \pm}$are underatood to be normal ordered; colour indices are henceforth suppressed). The matrix element for nonleptonic baryon decays $B_{\alpha} \rightarrow B_{\beta}^{\prime}+\mathcal{M}_{k}$ takes the form

$$
\begin{equation*}
\left\langle\mu_{k}(q) \beta_{p^{\prime}}\right| H_{w}\left|\alpha_{p}\right\rangle=i \vec{u}_{\beta}(p)\left[A+B \gamma_{5}\right] u_{\alpha}(p) \varphi_{\mu_{k}}(q) \tag{2}
\end{equation*}
$$

where A and B are the (parity-violating) S wave and (parity-conserving) P wave amplitudes, respectively. Furthermore we denote baryonbaryon matrix elements of the parity-conserving (PC) and parity-violating (PV) parta of H_{w} by

$$
\begin{align*}
& \langle\beta| H_{w}^{P C}|\alpha\rangle=a_{\beta \alpha} \bar{u}_{\beta} u_{\alpha} \tag{3}\\
& \langle\beta| H_{w}^{P V}|\alpha\rangle=b_{\beta \alpha} \bar{u}_{\beta} \gamma_{5} u_{\alpha}
\end{align*}
$$

By applying standard current-algebra techniques/10/ the A and B amplitudes may be expressed as a aum of commutator terms, baryon pole terms and factorizable contributions (for a graphical representation of these expressions in terms of quark diagrams see Fig. 1a-c)

$$
\begin{align*}
A= & -\frac{1}{\sqrt{2} F_{k}}\left(I_{\beta \gamma}^{k} a_{\gamma \alpha}-I_{\rho \alpha}^{k} a_{\beta \rho}\right) \\
& -\frac{1}{\sqrt{2} F_{k}}\left(M_{\alpha}-M_{\beta}\right)\left[\frac{g_{k \beta \delta}^{A} b_{\delta \alpha}}{M_{\alpha}+M_{\delta}}-\frac{g_{k \gamma \alpha}^{A} b_{\beta \gamma}}{M_{\beta}+M_{\gamma}}\right]+A^{f a c} \\
B= & -\frac{1}{\sqrt{2} F_{k}}\left(I_{\beta \gamma}^{k} b_{\gamma \alpha}-I_{\rho \alpha}^{k} b_{\beta \rho}\right) \tag{4}\\
& -\frac{1}{\sqrt{2} F_{k}}\left(M_{\alpha}+M_{\beta}\right)\left[\frac{g_{k \beta \delta}^{A} a_{\delta \alpha}}{M_{\alpha}-M_{\delta}}+\frac{g_{k \gamma \alpha}^{A} a_{\beta \gamma}}{M_{\beta}-M_{\gamma}}\right]+B f^{f a c}
\end{align*}
$$

(a)

(b)

(c)

Fig. 1

Typical quark diagrams for nonleptonic baryon decays $B_{\alpha} \rightarrow B_{\beta}^{\prime}+M_{k}$ contributing to the commutator term (a), the pole term (b) and the factorizable term (c) in eq. (4) of the text. Notice that the first diagram in (c) can be Fierz-rearranged into a form equivalent to the second diagram.
where $I_{\beta \gamma}^{k}$ are unitary-spin matrix elements, M_{α}, etc., are baryon masses and $F_{\pi}=93 \mathrm{MeV}, F_{K}=1.27 F_{\pi}$ are meson decay constants (the index k refers to meson states $\pi^{+}, K^{+}, \bar{K}^{0}$, etc.). As usual, we included additional factorizable contributions $A^{f a c}, \mathcal{B}^{\text {fac which }}$ are associated with quark decay diagrams (cf. Fig. ic) and take the form of a product of matrix elements of currents,

$$
\begin{align*}
& A^{f a c}=-\frac{1}{3} G F_{k} \cos ^{2} \theta_{c}\left[2 f_{+} \pm f_{-}\right]\left(M_{\alpha}-M_{\beta}\right) g_{k \beta \alpha}^{v} \tag{5}\\
& B^{f a c}=\frac{1}{3} G F_{k} \cos ^{2} \theta_{c}\left[2 f_{+} \pm f_{-}\right]\left(M_{\alpha}+M_{\beta}\right) g_{k \beta \alpha}^{A}
\end{align*}
$$

Here $G_{k \beta \alpha}^{\Delta}, g_{k \beta \alpha}^{V}$ are axial and vector coupling constants and the $+(-)$ sign in the brackets refers to $\pi^{+}\left(\overline{K^{\circ}}\right)$ emission. The PC baryon--baryon matrix elements $a_{\beta \alpha}$ may be expressed in the bag model as linear combinations of the two four-quark overlap integrals

$$
\begin{align*}
& \gamma_{1}=\int_{b a g} d^{3} x\left(u_{u}^{2}+v_{u}^{2}\right)\left(u_{s} u_{c}+v_{s} v_{c}\right)=0.29 R^{-3} \tag{6}\\
& 7_{2}=\int_{\text {bag }} d^{3} x\left(v_{u} u_{s}-u_{u} v_{s}\right)\left(u_{u} v_{c}-v_{u} u_{c}\right)=-0.5 \cdot 10^{-2} R^{-3} \\
& u:
\end{align*}
$$

where U_{i}, ${ }^{b a g} \vartheta_{i}$ are the usual large and small Dirac components of the quark spinor in the bag, and R is the bag radius. The axial and vector coupling constants appearing in eqs. (4) and (5) take the form ur inu-yuari invegraio

$$
\begin{equation*}
g^{A}(v)=C^{A(v)} \int_{b a g} d^{3} x\left(u_{i} u_{j}+r^{A}(v) v_{i} v_{j}\right) \tag{7}
\end{equation*}
$$

with $r^{A}=-\frac{1}{3}, r^{\vee}=1$. The indices $i_{1} j$ label the flavour of the quarks in the corresponding transition currents and $C^{A(V)}$ are pure $\operatorname{SU}(4)$ coefficients. We direct the reader to Ref. 4 for a compendium of the various $a_{\beta \alpha}$ amplitudes and coupling constants $\left.g_{A \beta \alpha}^{A(v)}{ }^{*}\right)$. As in this work, we shall use the following set of parameters for quark masses m_{i}, frequencies $\omega_{1_{1}-4}(i)$ and bag radius $R: m_{u}=44$ $\mathrm{MeV}, m_{S}=300 \mathrm{MeV}, m_{c}=1529 \mathrm{MeV}, \omega_{1_{1}-4}(\mathrm{C})=2.148, \omega_{1_{1-4}}(\mathrm{~s})=2.864, \omega_{1_{1}-4}(\mathrm{c})=7.77$ and $R^{-1}=211.9 \mathrm{MeV}$.

Let us now calculate the PV baryon-baryon matrix elements contributing in eq. (4). For definiteness we again consider the procosses $\Lambda_{c}^{+} \rightarrow\left(\Lambda \pi^{+}, p \bar{K}^{0}, \Xi^{0} K^{+}, \sum^{0} \pi^{+}\right), A^{+} \rightarrow \Xi^{0} \pi^{+}, A^{0} \rightarrow \Xi \pi^{+}$
*) Formula (7) in our preprint $/ 4 /$ contains a misprint. Replace. everywhere $O^{-} \rightarrow \frac{1}{2} O^{-P C}$ in this formula. The baryon intermediate state contributing to the A^{+}decay is S°, not A°.

Table I
compilation of the $P V$-matrix elements $b_{\beta \alpha}\left(c=G / \sqrt{2} \cos ^{2} O_{c} f_{-}\right)$

$$
\begin{aligned}
& b_{\Sigma^{+} \Lambda_{c}^{+}} / C \quad \frac{4}{3} \sqrt{\frac{2}{3}}\left(\frac{M_{\Sigma^{+}} M_{\Lambda_{c}^{+}}}{M_{\Sigma^{+}}+M_{c_{c}^{+}}}\right)(X+4 Y-3 Z) \quad-0.49 R^{-3} \\
& b_{\wedge \Sigma_{c}^{\circ}} / C \quad \frac{4}{3} \sqrt{\frac{2}{3}}\left(\frac{M_{\Lambda} M_{\Sigma_{c}^{\circ}}}{M_{\Lambda}+M_{\Sigma_{c}^{\circ}}}\right)(3 x+4 y-Z) \quad-0.27 R^{-3} \\
& b_{\Xi^{\circ} A^{\circ}} / C \quad-\frac{4}{3} \sqrt{\frac{2}{3}}\left(\frac{M_{\Xi^{\circ}}+M_{A^{\circ}}}{M_{\Xi^{\circ}}+M_{A^{\circ}}}\right)(x-2 y+3 z) \quad-0.45 \vec{R}^{3} \\
& b_{Z^{\circ} S_{0}} / C \quad-\frac{4}{3} \sqrt{2}\left(\frac{M_{S O} M_{E^{\circ}}}{M_{s o}+M_{Z^{0}}}\right)(X+2 Y-Z) \quad 0.37 R^{-3} \\
& b_{\Sigma^{\circ} \Sigma_{c}^{\circ}} / C \quad \frac{8 \sqrt{2}}{9}\left(\frac{M_{\Sigma^{\circ}} M Z_{i}^{0}}{M_{\Sigma^{0}}+M_{\Sigma^{0}}}\right)(X+Z) \quad 0.13 R^{-3}
\end{aligned}
$$

Table II
Relative size of $b_{\beta \alpha}$ and $Q_{\beta \alpha}$ matrix elements
$b_{y} \delta / a_{r} \delta$

$\Lambda_{c}^{+} \rightarrow \Sigma^{+}$	-0.71
$\sum_{c}^{0} \rightarrow \Lambda$	0.39
$A^{0} \rightarrow \Xi^{0}$	-0.64
$S^{0} \rightarrow \Xi^{0}$	0.31
$\Sigma_{c}^{0} \rightarrow \Sigma^{0}$	0.11

-0.71
0.39
-0.64
0.31
0.11
and $T^{\circ} \rightarrow \vec{\Xi}^{0} \vec{K}^{0}$. The various sets of baryon intermediate states contributing to the pole diagrams of these processes are ${ }^{*}$)

$$
\left\{\left(\sum^{+}, \Sigma_{c}^{0}\right) ; \sum^{+} ;\left(S_{1}^{0} \sum^{+}\right) ;\left(\Sigma^{+}, \sum_{c}^{0}\right) ; S^{0} ; \Xi{ }^{0} ;\left(S^{0}, A^{0}\right)\right\}
$$

As was explained in Ref. 8, a naive calculation of the matrix element in eq. (3) would yield the uncorrect result $b_{\beta \alpha}=0$, as follows simply from the vaniahing of the bag integral by a parity argument. Following this work one should instead consider the Fourier transform

$$
\begin{equation*}
F_{\beta a}^{P V}(q)=\int_{b a g} d^{3} x e^{-i \vec{q} \cdot \vec{x}}\langle\beta| H_{w}^{P V}(\vec{x})|\alpha\rangle_{B} \tag{8}
\end{equation*}
$$

where the index B indicates the use of MIT-bag wave-packet states. The $l_{\beta \alpha}$ amplitudes are then determined by expanding eq. (8) in powers of q^{β} and working to the lowest nontrivial order. One characteriatically encounters the following three overlap integrala in analytical • expressions for the $b_{\beta \alpha}$ amplitude

$$
\begin{align*}
& X=\int_{\text {bag }} r d^{3} x\left(u_{s} v_{u}^{2} v_{c}-v_{s} u_{u}^{2} u_{c}\right)=0.034 R^{-2}, \\
& Y=\int_{\text {bag }} r d^{3} x\left(u_{s} u_{c} u_{u} v_{u}-v_{s} v_{c} v_{u} u_{u}\right)=-0.045 R^{-2}, \tag{9}\\
& Z=\int_{\text {bag }} r d^{3} x\left(u_{u}^{2} u_{s} v_{c}-v_{u}^{2} v_{s} u_{c}\right)=0.007 R^{-2} .
\end{align*}
$$

Table I exhibits the various $b_{\beta \alpha}$ matrix elements. Observe that in the limit of $\operatorname{SU}(4)$ invariance the $C_{\beta \alpha}$ amplitudes become proportional to $(X+Y)$ which is seen from eq. (9) to vanish in the symmetry limit. This way our bag model results are consistent with the requirements of Ref. ${ }^{17 /}$. The relative size of the $b_{\beta \alpha}$ and $a_{\beta a}$ matrix elements is quoted in Table II. Notice, that theae ratios are generally larger than the typical value 0.1 obtained for hyperon decays but nevertheless amaller than the value 1 supposed in Ref. ${ }^{18 / \text {. Table III contains }}$ a complation of the estimates for the commutator terme, pole contributions and factorizable terme contributing to the A and B amplitudes, and the bag model predictions for the partial widths Γ. In our calculations we have used the following values of the baryon masses, $M_{\Lambda_{c}^{+}}=2282 \mathrm{MeV}^{/ 11 /}, M_{\Sigma_{c}}=2450 \mathrm{MeV}^{/ 11 /}$ and $M_{\mathrm{A}^{+}}=2460 \mathrm{MeV} / 12 /$.

[^0]| i | | c | | |
| :---: | :---: | :---: | :---: | :---: |
| | | - | | |
| | | | $\underset{\sim}{N}$ | |
| | | - | | |
| | | | | |
| 1 | | - | | |

The masses of the T^{0} and S^{0} baryons are taken from the quark masa formulas of hef. $/ 6 \mathrm{~b} /$.

3. Discussion and Conclusions

In this paper we have calculated the baryon-baryon matrix elementa of the parity-violating Hamiltonian for charmed baryons. We indeed find that for charm-changing transitions the ratio of the PV and PC matrix elements $b_{\beta \alpha}$ and $a_{\beta \alpha}$ is generally larger than the typical value 0.1 obtained for nonleptonic hyperon decays but nevertheless amaller than the value 1 anticipated in Refo $/ 8 /$ (cf. Table II). Their relative contribution to the S - and P - wave decay amplitudes A, B can easily be estimated from eq. (4). Let $A_{a_{1}} A_{b}\left(B_{a_{1}} B_{f}\right)$ denote the contributions to the $A(B)$ amplitude from the a and b matrix elements. Using $g_{k \beta \alpha}^{A} \sim 1$ we then have

$$
\begin{equation*}
\frac{A_{b}}{A_{a}} \sim \frac{B_{b}}{B_{a}} \sim \frac{M_{c}-M}{M_{c}+M} \frac{b}{a} \sim 10^{-1} \tag{10}
\end{equation*}
$$

where $\left(M_{c}-M\right) / M_{c}+M \sim 1 / 3$ is a typical mass splitting between charmed and ordinary baryons. Note that unlike the case of hyparon decays, the PV matrix elements contribute now already at the $10-20 \%$ level. The increase of the ration $A_{b} / A_{a}, B_{b} / B a$ for charmed baryons by an order of magnitude with respect to hyperon decays in eq. (10) is a combined effect of both the larger factor of mass splittings atu whe fucrease or the d/a ratio. The same order of magnitude estimate (10) roughly holds also for the ratios $A_{b} / \widetilde{A}, B_{B} / \widetilde{B}$ where $\widetilde{A}, \widetilde{B}$ include now the factorizable contribution, too. However, as a more careful analysis shows, the ratio (10) may be significantly enhanced in some processes, when the respective commutator and factorizable terms in the A amplitude or the pole and factorizable terms in the B amplitude interfere destructively. Thus, by inspec${ }^{\text {ting }} \tilde{\sim}^{\text {Pable III, we have, for example, }} A_{b} / \tilde{A}^{\prime} \quad\left(\Lambda_{c}^{+} \rightarrow \Sigma^{0} K^{+}\right)=24$, $B_{f} / \tilde{B} \quad\left(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^{+}\right)=1.6$ and $B_{b} / \widetilde{B} \quad\left(T^{\circ} \rightarrow \Xi^{0} \mathcal{K}^{\circ}\right)=-0.6$. By compsring the partial widtha listed in Table III with our earlier results (cf. Ref. ${ }^{/ 4 /}$) we generally find corrections at the 20% level due to the PV baryon-baryon matrix elements ${ }^{*}$). The changes are, however,

[^1]more dramatic if one considers such subtle quantities like the asymmetry parameter α,
\[

$$
\begin{equation*}
\alpha=\frac{2 k \operatorname{Re}\left(A B^{*}\right)}{|A|^{2}+k^{2}|B|^{2}} \quad ; \quad k=\sqrt{\frac{E-M}{E+M}} \tag{11}
\end{equation*}
$$

\]

In this case we find, e.g., $\alpha\left(\Lambda_{c}^{+} \rightarrow \Xi^{0} K^{+}\right)=-0.9$ instead of -0.1 or $\alpha\left(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^{+}\right)=-0.7$ instead of -0.2 . Finally, let us compare our resulta ith the existing experimental data. Note that our estimate $\Gamma\left(\Lambda_{c}^{+} \rightarrow p \bar{K}^{0}\right)=1.7$ is compatible with the experimental value $\Gamma\left(\Lambda_{c}^{+} \rightarrow p \bar{K}^{\circ}\right)$ $=\left(1.00_{-0.78}^{+0.86}\right) \times 10^{11} \mathrm{sec}^{-1} / 11 /$. Moreover, our ratio $\Gamma\left(\Lambda_{c}^{+} \rightarrow \Sigma O^{+}\right) / \Gamma\left(\Lambda_{c}^{+} \rightarrow p K^{0}\right)$ $=0.71$ is consistent with recent data on Λ_{c}^{+}decays obtained with the Fermilab bubble chamber ${ }^{13 /}$. However, as before the decay
width $\Gamma\left(\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}\right)$unfortunately comes out too large by a factor of sbout three when compared with experiment. In this process the commutator term vanishea and the factorizable term asems to be overestimated. The inclusion of the FV term actually does not solve this diacrepancy. The question whether excited $\left(70,1^{-}\right)$or ($168,1^{-}$) baryon intermediate states, as proposed in Ref. $14 /$, may yield the needed suppression deserves further study.

In conclusion, we have proved the conjecture of Ref. ${ }^{/ 8 /}$ that PV baryon-baryon matrix elements may give non-negligible contributions to nonleptonic charmed-baryon decays and should therefore be included in careful theoretical calculations. In fact, such effects are expected to become even more important for weak decays of deauty oaryons because of a larger breaking of SU(5) aymmetry. This point and the implications of the $P V$-terms for $\Delta C \neq 0, \Delta B \neq 0$ weak radiative transitions deserve further attention.

Acknowledgements

We would like to acknowledge the hospitality of the Laboratory of Theoretical Physice of the Joint Institute for Nuclear Research, Dubna, where this investigation has been performed.

References

1. Chodos A., Jaffe R.I., Johnson K., Thorn C.B. Phys.Rev., 1974, D10, p. 2599.
2. Donoghue J.F., Golowich E. Phys.Rev., 1976, D14, p. 1386; ibid. 1980, D21, p. 186.
Donoghue J.F., Golowich E., Holstein B.R., Ponce W.A. Phys.Rev., 1981, D23, p. 1213.
3. Galić H., Tadić D., Trampetić J. Nucl. Phys., 1979, B158, p. 306.
4. Ebert D., Kallies W. Proceedings of the XVI International Sympoeium on Quantum Field Theory, GDR, Ahrenshoop, 1982, p. 22; Ebert D., Kallies W. GERN-Prepr., 1983 TH 3598 (to appear in Phys. Lett. B, 1983).
5. Guberina B., Tadić D., Trampetić J. Z. Phys. C - Particles and Fields, 1982, 13, p. 251.
6. For other approaches to charmed-baryon decays aee also:
a) Voloshin M. B. , Zakharov V.I., Okun L.B. Yad.Fiz. 1975, 22, p. 166.
b) Körner, J.G., Kramer. G., Willrodt J. Z. Phys. C - Particles and Fields 1979, 2, p. 117.
7. Lee B.W., Swift A.R, Phys.Rev., 1954, 136, p. B228.
8. Golowich E., Holstein B.R. Phys.Rev., 1982, D26, p. 182.
9. Ellis J., Gaillard M.K., Nanopoulos D.V. Nucl. Phys., 1975, B100, p. 313.See also: Gaillard M. K., Lee B. W. Phys.Rev.Lett. 1974, 33, p. 108; Altarelli G.A., Maiani L. Phys.Lett. 1974, 52B, p. 351.
10. Marshak R.E., Riazzudin, Ryan C. P. "Theory of Weak Interactions in Particle Physics", Wiley, New York, 1969.
11. "Review of Particle Properties" Phys. Lett., 1982, 111B.
12. Biagi S.F. et al. Phys.Lett. 1983, 122B, p. 455.
13. Kitacaki T. et al. Phve.Rev.tipt.t. 1980. $45 . \mathrm{m} .055$: ibid. 1982, 48, p. 299.
14. Le Yaounc A. et al. Nucl. Phys., 1979, B149, p. 321.

WILL you fill blank spaces in your library? You can receive by post the books listed below. Prices - in US $\%$,
including the packing and registered postage
D4-80-385 Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980.
D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the $a-$ and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10, 11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Problems of Mathematical
Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Symposium
 Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.
 lear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Problems of Collective Methods of Acceleration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982
D2,4-83-179 Proceedings of the XV International School on D2,4-83-179 Proceedings of the x for Young Scientists. Dubna, 1982
Proceedings of the VIII All-Union Conference on Charged Darticle Accelerators. Protvino, 1982. 2 volumes.
D11-83-511 Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna, 1982.
D7-83-644 Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.
D2,13-83-689 Proceedings of the Workshop on Radiation problems and Gravitational Wave Detection. Dubna, 1983.

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR
Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

\section*{| Index | Subject |
| :--- | :--- |}

1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Каллис В., Зберт А.
 E2-83-863
 Матричные элементы слабого гамильтониана с нарушением четности для очарованных барионов в модели мешка
 Вклад матричных элементов от нарушамщей четности части слабого гамильтониана с $\triangle C \neq 0$ может оказаться значительніы, даже сравнимым с вкладом матричных элементов от сохраняющей четность части гамильтониана вследствие более сильного нарушения симметрии. В работе найдены выражения для этих новых матричных элементов в рамках MIT-мешка и изучено их значение для ранее рассмотренных нелептонных распадов очарованных барионов
 Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983
Ebert D., Kallies W. E2-83-863
Bag-Model Matrix Elements of the Parlty-Violating Weak Hamiltonlan for Charmed Baryons

Baryon matrix elements of the parity-vlolating part of the charmchanging weak Hamiltonlan might be signiflcant and comparable with those of the parity-conserving one due to large symmetry breaking. In this work we derive expression for these new matrix elements by using the MIT-bag model and estimate thelr Implications on earller calculations of nonleptonic charmed-baryon decays.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: $S^{\circ}(c\{s, d\})$ notion is $N_{c}^{+}(c[u, d]), A^{+(o)}(c[s, u(d)]), \Sigma_{c}^{0}(c d d)$, $S^{\circ}(c\{s, d\})$ and $T^{\circ}(c s s)$.

[^1]: *) This concerns also the processes with enhanced ratios mentioned before. Since the contribution of the B amplitude is suppresged in the partial width relative to the contribution of the A ampthe decays $\Lambda_{c}^{+} \sum^{0} \mathbb{J}^{+}, T^{\circ} \rightarrow E^{0} \vec{k}^{\circ}$ lead only to relatively amall changes in . Note also that the partial. width of the decay $\Lambda_{c}^{+} \rightarrow \Xi^{-} K^{+}$ in predominantly determined by the B amplitude since the $A \quad A_{a m p l i-~}^{c}$ tude is rather small.

