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I . INTRODUCTION 

In the previous paper 1 1/ the development and application of 
the method of uniqueness, the method aimed at the calculation 
of multiloop Feynman integrals, have been given. It has been 
shown that despite wide possibilities the method has limitations 
due to nonrealization of the uniqueness conditions at every 
step of calculations when the number of loops is large (~ 5). 

In this paper we derive the functional equations for the 
coefficient functions of the diagrams of interest. Solving 
these equations one can evaluate integrals that are not yielded 
by other methods. In addition to the method of uniqueness the 
proposed functional equations enable us to enarge the class 
of exactly calculable diagrams. As an example of application 
of functional equations we give the evaluation of an N-like 
diagram in the ¢4 theory. 

2. DERIVATION OF FUNCTIONAL EQUATIONS 

Recall first the notation and necessary formulae of the me­
thod of uniqueness. All the calculations are performed in the 
coordinate space of dimension D "'4- 2e. Integration is carried 
out over all internal vertices. Lines of the graphs are as­
sociated with simple powers like 1/(x 2)a ,a being called the index 
of the line and depicted above the line: 

a 1 
··------· o:> ---0 x (x2)a 

In what follows the following formulae will be needed 12•11 : 

a 1 a 2 a 1 + a 2 - D/2 
••-~-•-....:::.-•• = v(a 1 , a

2
, a 3 ) •------_. 

(I) 

(2) 

1 
.· 

"'·· 



}. 
Consider now the characteristic two-loop diagram (Fig. I) 

discussed in the literature /3,2,11: 

Fig. 

(3) 

The dependence of the integral on a single dimensional argument 
can be separated explicitly on dimensional grounds. Let a 1= a 2 = 
= a 3 = a 4 = 0, a 6 = a, Then we have 

1 
Fig. 1 = • F (1 +a) , 

(x2) 1 + a + 2f f 

where F f (1 +a) is the coefficient function of interest. We yer­
form with the diagram the following transformations (see 12 ): 

I 
l L l !-ZE.-Q. GnCE>;; 
!. i i i-2f.-lt.i 

~Q.!:~ 
·~~ 

.i i+E.+O.. • .4.. i 
_In this way we obtain the first equation for .Ff (1 +a): 

F ... (1+a) =.Ff (1-a-3f). (4) 

To get the second equation, we apply eq. (3) to the upper 
integration vertex, that gives 

2 

~ = l )(})2. a. t - f8>2 1+: J 
~ -(a.+e.) l 

! 4. i i 1 . 
(5) 

On the other hand, applying the same equation but with another 
isolated line we come to 

~ i i 

-~-a~}. 
~ (6) 

Combining now eqs. (5) and (6) we obtain the desired equation 

l 4.. 

~ = L-2E.-CL 

~ Q+E. 
4 ~ I 

~2 Q..+f )J - u 1 

or analytically 

F ( (1 + a) 
1- 2e- a 

a+ e Ff (a) 

~ -t:l.+E. 

2 2(2a-l+3dr<-a-df(a+2df (1-fl 
+ ---

(a+e)f<a+l)f(2-3f-a)f2(1) ' 
where we have used eqs. (I) and (2). Equations (4) and (8) 
the functional equations for F ( (1 +a) we are looking for. 

3. SOLUTION OF FUNCTIONAL EQUATIONS 
To reduce the inhomogeneous part of eq. (8), we il!ake the 

substitution 

2 
__ 

2 
f (1-E)f(-a-£lf(a+2E) 

F (1 + a) a ( ( 1 + a ) , 
( r 2(1) r (l + a) r (1 - a - 3!) 

(7) 

(8) 

are 

(9) 

where the function af obeys the following system of equatinns 
G( (1 +a) = G( (1- a- 3d, (I O) 
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'G (1 +a)=- a G (a) + 1 (-1- + 1 ) . 
f a-1+3£ £ a-1+3£ a+£ a-1+ 2£ 

(II) 

To find a solution, we consider the analytical properties of 
Gf: It is known, e. g., on the basis of a -representation

141 

1 -, (12) 
0

2-£ 

that F£(1 +a) is a meromorphic function regular at a = 0 with 
simple poles at a=± n-2£ and a= ±n-£, where n = 1,2, .•.• 
The same conclusion follows from the inhomogeneous part of 
eq. (II). Additional poles of G (1 +a) arise from the 1 -func­
tions in the denominator of eq. £(9). That is why we look for 
a solution of eqs. (10), (II) in the form of an infinite series 
of poles 

~ 1 1 ~ 1 1 
G L (1 + a) = I f ( + ) + I <P (-- + _..::.__), (13) 

< n=1 nn+a+£ n-a-2£ n=l nn+a n-a-3£ 

where we have automatically satisfied eq. (10). 
Substituting now eq. (13) into eq. (II) and equalizing re­

sidues at the poles we get the equations for fn and <Pn: 

f 
n 

=-f n+£ 
n+l n + l -2£ 

n 
rP =-¢ ---. n n+l n+l-3€ 

Their solution is 

A.. ( )n r (n + l - 3 E) ( ) 
'+' .. - c2 £ • 

n f'(n) 

The inhomogeneous part of eq. (II) fixes c1: c1(£) =['(£)/1(2-2£). 
Note that the first series in eq. (13) is a particular solution 
of the inhomogeneous equation; whereas the second one,of the 
homogeneous equation. To find the coefficient of the homogeneous 
part, i.e., c2(t:), we compare the obtained solution with the 
known one but for a particular value of a. For this purpose 
we go back to F /1 +a). On uniqueness grounds it is known exact­
ly, i.e., in all orders in t:, for a=0,-£,-2£, -3£. Comparing 
eqs. (9), (13) with Ff (1), we get 

['(f) 1 (l- f) 1 (l + f ) 
. .:..-,..--

1 (2 - 2£) 1 (1 - 2£) ['(l ~ 2£) 
This leads to 2 r {1-E} 1 (-a-£) ['(a+ 2£l ['(£) 
Ff (1 +a) = 2 x 

r 2 (l)f'(l + a}1(l-a-3d1(2- 2£l 

4 

xI l (-)n 1(n +_~..±...¥£) (--1 __ + 
n = 1 1 (n + f) n + a + f 

1 )--_[~l-£)1(1+£) X 

n- a- 2£ 1(1- 2d1(l + 2d 
(I 4) 

n 
X }:_ (-) 

n= 1 

1(n+1-3£) 1 1 
(--+---H 

1 (n) n + a n - a - 3£ 

For the ultimate conclusion about the validity of eq. (14) 
one has to be sure that it is impossible to add any arbitrary 
solution of the homogeneous equation. Really, such a solution 
~(a) possesses the following properties: 
(i) tl(O) = 0 due to the normalization on F (1), 
( 
.• ) f 
n tl(±n) =0, n = 1,2, ..• due to eq. (8). 

(iii) lt!(x+ iy)l < l~(x)l, where xis in the interval between 
the poles. This property follows from an analogous rest­
riction of integral (12) and the particular solution (14). 

(iv) tl~)has no singularities since they are concentrated in 
the solution (14). 

Hence, due to the Karlson theorem 1 51 tl(z) "'0. Thus, eq. (14) 
gives us the needed solution of eqs. (4), (8). 

The last sum in eq. (14) is equal to -1(l+a)f(1-a-3£), 
so the function Ff(l+a)can be represented in the form 

2 
F f (1 + a) = 2 1 (l - £)['(£) 

1 2
(1) 1(2 -2d 

X I 
n=1 

(-) 
11 

! 1(-a-f)~(a_~~x 
['(l + a) 1 (1 - a- 3 E) (IS) 

Unfortunately, we have not succeeded to find a closed expression 
for the first sum. 

For f = 0 eq. (15) leads to 

F0 (1 + a) 

=- 8 I 
n=1 

where 161 

2 I 
a n = 1 

(-)n[ _..:ol __ 
(n + a) 2 

1 ] = 
(n- a)2 

n n 2 
(-) = - [ ~ '(1 + a) - ~' (l - a)], 

(n2-a2)2 a 

~ ( l + X) = _!_ [ 'I' (1 + .!_) - 'I'(_!_ - .!_ )] 
2 2 2 2 . 

4. CALCULATION OF AN N-LIKE DIAGRAM IN THE ¢4 THEORY 

(16) 

In the five-loop approximation of the ¢4 theory there remains 
only one diagram (Fig.2) that has not been calculated analyti­
cally. To do this, one has to find an N-like diagram (Fig. 3) 
up to 0(1). 
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Fig. 2 Fig. 3 

It was calculated numerically in 1 7 ~ and in 1 11 the answer was 
predictied to be 441/8( (7). The formula (16) enables us to 
perform a correct evaluation. 

To do this, we choose indices of the lines in the diagram 
(Fig. 3) in the following way and apply eq. (3) to the lower 

triple vertex: 

L 

i 

:: _j_ 
2E 

~ - t® -H.. 

t L 

2~ 
~ 

r(-E.) r tt-~)f{!+E) 

r(2) rt J.) ru .. -u) 

/{-~)f{!-2t.)/(L+2'i.) 

rt2) /( tt-f. )r( t-~E) 

We have used here eqs. 

6 

(1-3). 

@ + 
!. 2 ~~'2.l 

t 

J1:/;:\_ 
~ \ 

~~ J 
2. 

I(- E.) rtt.-t > r(t +-E.) 

rt2) rU.) r{!-2e.) 

) 

) 

Hence for the evaluation of theN-like diagram up to 0(1) one 
has to know a V-like diagram up to O(t2) or a two-loop diagram 
(Fig. I., ai =aid up to O(t 4 ).At the same time the tables ob­
tained in/1/ contain expansions up to O{d and O(t3),respecti-
vely. To continue the tables, we use the solution (16). For this 
purpose let us consider the expansion of FE (1 +at) taking into 
account the symmetry properties (4). 

FE (1 + at) = c 
0 

+ c 1 E + [ c 2 (a + 1) (a + 2) + c 3 a (a + 3) 1 t 
2 

+ 

+ [ c 
4
(a + 1 )(a + 2) + c 5a (a + 3) 1 t S + [ c 6 (a + 1 )(a + 2) + 

+ c7a(a+ 3) + csa(a +1Ha+2)(a+3)1t
4 

+0(t
6
). 

The known expressions for Ft(1 +ad for a= 0, -1, -2, -3 give 

us the coefficients c 0-;- c 7 • We get 

F (1 +ad= __!_18((3) + 9((4) t + [21 (a+ 1 )(a+ 2)- 6a(a + 3)1 x-
( 1- 2t 

x ((5)t 2 +[45(a+l)(a+2)- 1:-a(a+3)1((8)t
8 

-[23(a+l)(a+2)-

- 8a(a + 3)1( 2 (3) t 8 + [147(a + 1 )(a+ 2)- 9a(a + 3)1((7)t 
4 

- (17) 

- [ 1 ~§(a + 1){a + 2) - 4~a(a + 3))((3) ((4) t
4 

+ 

+ c
8

a(a + 1)(a + 2)(a + 3) t 4 1. 

c
8 

is not determined from the particular values of a. As 1s 

easy to see, it is equal to 

To find it, we expand the function F 0 (1 +a) (16) into a series 

in a2 , We have 

0(1 2n 1 
F

0 
(1 +a) = 8 I a (n + 1 )(1 - ---)((2n + 3). 

n = 0 2 2n + 2 

(18) 

This leads to 
(I 9) 

c 8 ~ 18918·((7). 

The number obtained enables us to complete eq. (17) and also 
to construct the expansion up to 0 {t 4) for an arbitrary two­
loop diagram and up to O(t 2 ) for an arbitrary V-like diagram, 
i.e., to continue the tables obtained in /1/ by one order oft. 
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They are 
,(2) £2]1 

expl-2[yE+ 2 --!A
0
,(3) + 

---1--2£-

+ A 
1 
,(4)£ + A

2
,(5) t 2 + A

3
,(8) Es -

- A 4 , 2 (3)E,3+A 5 ,(7)£ 4 -A
6

,(3),(4)E 4 +0(£ 5 )1 

A 0 = 6, 

A 1 = 9, 

A 2 =42+30(a 1 +a 2 +as+a 4)+ 45a 6 +10(a~+a~+a§+a~) + 

+ 15a2
5 +15a 5(a

1
+ a 2 +a

3
+ a 4 ) + 10(a

1
a 2 + a

3
a 4+ 

t a 1a 4 + a 2a 3 ) + 5(a
1
a

3
+ a 2a 4), 

5 
Aa = 2(A2 -6), 

A 4 = 46 + 'l2(a 1 + a 2 + as + a 4 ) + 45a 5 + 14(a ~ + a~ + a;+ a~) + 

2 
+ 15a 5+ 33a5 (a1 + a 2 + as+ a 4 ) + 50(a 1a 2 + a 3a 4 ) + 

+ 31(a 1 a 3 + a 2a 4) + 14(a 1 a 4 + a 2 a 3 ) + 6a 6(a I+ a~ + a~ + a!) + 

2 
+ 6a 5 (a 1 + a 2 + as+ a 4 ) + 24a 6 (a 1a 2 + asa 4) + 

(20) 

+ 12a 5(a 1as+ a 2a 4) + 12(a 1a 2as+ a 1a 2 a 4 + a 1asa 4 +a2 a 3 a 4) + 

12( 2 2 2 2 2 2 2 2 
+ ala2+ a2al + a3a4+ a4as) + 6(alas+ aaat+a2a4+ a4a2), 

A 5 = 294 + 402 (a 1 + a 2 + a 3 + a 4) + 2223 a 5 + 260 (af + af + a~ + af) + 
4 

3183 2 . 
+ 8 - a 6 + 516a5 (a 1 + a 2 +as+ a 4 ) + 386(a1a2 + asa 4 + a 1 a 4 + 

575 3 s 3 567 + a 2as) + - 2- (a 1a 3 + a 2 a 4) + 84(af+ a 2 +as+ a 4) + -4-a~ + 

168( 2 2 2 2 2 9_ 2 2 ) + ala2+a2al+ asa4+ a4as+ala4+a4'11+ a2aa+aaa2 + 

441 ( 2 2 2 2 ) 945 2 2 2 2 + -r alaS +a3al+ a2a4+a4a2 + Ta6(al+ a2 +as+ a4) + 

2 2 693 + 25 a 5(a1 + a 2 + as+ a 4) + - 2 a 6(a 1a 2 + a 3 a 4 + a 1a 4 + a 2 a 3) + 

8 

... 

945 + ---a 5(a 1a 3 + a 2a 4) + 210(a 1a 2a 3 + a 1 a 2 a 4 + a 1a 3 a 4 + a 2a 3a 4) + 
4 

1 4 4 4 4) 189 4 2 ( s 3 s 3) + 4 (a 1 + a 2 + a 3+ a 4 + - 8- a 6 + 4 a 6 a 1 + a 2 + as+ a 4 + 

189 s 525 2 2 2 2 2 
+ 4-a 5(al + a2+ as+ a4) + Sa5(al + a2+ as+ a4) + 

357 2 106 2 
+ Ta 5(ala2+ aSa4+ ala4+ a2as) + 2-a5(alaS +a2a4) + 

84 ( 2 2 2 2 2 2 2 2 ) + a 5 a 
1 

a 2 + a 2a 
1 

+ a 3 a 4 + a 4 a 3 + a 1 a 4 + a 4 a 1 + a 2a 3 + a 3 a 2 + 

189 ( 2 2 2 2 ) 357 ( + -4a5 alaS+ a3al + a2a4 + a4a2 + 4a5 ala2as+ 

+ a 1a 2a 4 + a 1 a 3a 4 +a 2 a 3a 4 ) + 28(ai~ + aBa 1 + aga 4 + 

3 3 3 s 3 ) 14( 3 3 +a4a3+ata4+a4al+a2as+asa2 + alas+asal+ 

s 3 ) 42( 2 2 2 2 2 2 2 2) +a2a4+a4a2 + ala2+asa4+ala4+a2aS + 

189 ( 2 2 2 2) 42 ( 2 2 2 + -S a 1 a 3 + a2 a 4 + a 1 a 2 as+ a 1a 2 a 4 + a 1asa 4 + 

+ a~a 1 a 4 + a~a 1 a 3 + a~a 3 a 4 + aia 1a 4 + aia 2 a 4 + a~a 1 a2 + 

2 2 2 315 
+ a4a2aS + a4alas+ a4ala2) + 4-ala2a3a4, 

A
6 

=3(A 4 -1). 

exp 1- 3 [ y £ + '(2) £ 2]1 
2 

= ------------------ X 
1 - 2£ 

x {20,(5) + £[50,(6) + (20 + 6(a4 + a 6 + a 6 + a 7 ))' 2(3)] + 

+ £2 [,(7)·7(3~0 +20(a 1 + a 3 ) + 32a 2 + 17(a 4 + ar,) + 33(a6+a7) + 

+6(ai+a~) + 8a~+4(a~+a~) + 8(a:+ a.;)+ 8(a 1 + a 3 )a2 + 

+ 2(a1 a 4 + asa 6 ) + 6(a 1a 6 + a 3a 4 ) + 10(a 1a 6 + asa 7) + 

(21) 

+ 6(a 1a 7 + a 3a 6 ) + 4a 1a 3 + 4(a 4 + a 6)a 2 + 12(a6 + a 7)a 2 + 

9 



Eq. (21) enables us to complete the calculation of the N-like 
diagram. The result ~s 

1 . jj_! ((7)' x-1r s 

that coincides with the prediction made before 11 ~The expansions 
(20), (21) can be used further like tables for the multiloop­
integral evaluation. 

5. CONCLUSION 

We demonstrate here that functional equations can be useful 
in calculating multiloop Feynman integrals. Analogous equations 
can be obtained for more complicated diagrams. It may be that 
along tnis way we can see the general structure ot the d~agram. 
Till now all exactly calculable integrals were represented in 
the form of a product of r -functions and their derivatives 
and hence could be expanded into series in (-functions. Whether 
it is also true in general is not clear. Anyhow, solving func­
tional equations one can obtain solutions in the form of a one­
fold series like eq. (14). 

From a practical point of view, the tables (20), (21) are 
sufficient for multiloop calculations up to 5 loops. The task 
is to reduce the diagram to the table as it was done in §4. It 
seems that the accuracy achieved will be sufficient in real 
calculations for a long period. 1 

The auther expresses his deep gratitude to D.V.Shirkov, 
P.P.Kulish, and A.V.Radyushkin for useful discussions and 
remarks. 
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