


1. INTRODUCTION

In the previous paper’l’/ the development and application of
the method of uniqueness, the method aimed at the calculation
of multiloop Feynman integrals, have been given. It has been
shown that despite wide possibilities the method has limitations
due to nonrealization of the uniqueness conditions at every
step of calculations when the number of loops is large (>5).

In this paper we derive the functional equations for the
coefficient functions of the diagrams of interest. Solving
these equations one can evaluate integrals that are not yielded
by other methods. In addition to the method of uniqueness the
proposed functional equations enable us to enarge the class
of exactly calculable diagrams. As an example of application
of functional equations we give the evaluation of an N-like
diagram in the ¢% theory.

2. DERIVATION OF FUNCTIONAL EQUATIONS

Recall first the notation and necessary formulae of the me-
thod of uniqueness. All the calculations are performed in the
coordinate space of dimension D =4-2¢. Integration is carried
out over all internal vertices. Lines of the graphs are as-
sociated with simple powers like 1/(x%)*,a being called the index
of the line and depicted above the line:
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In what follows the following formulae will be needed "1/
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Consider now the characteristic two-loop diagram (Fig. 1)
discussed in the literature’/3:21/,
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- The dependence of the integral on a single dimensional argument
can be separated explicitly on dimensional grounds. Let a;=ap,=
=ag= a4 = 0, ag=a, Then we have
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Fig.1 = —————— .F, (1 +a),
(x2)1+a+2€

where F, (1 +a) is the coefficient function of interest. We’Per-
form w1th the diagram the following transformations (see /2
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In this way we obtain the first equation for F}(1+a):
Fo(1+a) =F, (1-a-3e). )

To get the second equation, we apply eq. (3) to the upper
integration vertex, that gives
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On the othgr hand, applying the same equation but with another
isolated line we come to

i

. /'

Combining now eqs. (5) and (6) we obtain the desired equation
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or analytically
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a+e ¢ (a+€)T(a+ 1)1 (2-3e~a)T %(1)
where we have used eqs. (1) and (2). Equations (4) and (8) are
the functional equations for F‘(1+-a) we are looking for.
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3. SOLUTION OF FUNCTIONAL EQUATIONS

To reduce the inhomogeneous part of eq. (8), we make the
substitution

r%( - or(a-
F(1+a)-2———(— lie-el@+2d Q,(1+a), (9)
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where the function G, obeys the following system of equations
G,(1+a) =G (1-a-~ 3;) (10)
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To find a solution, we consider the analytical properties of

G,: Tt is known, e.g., on the basis of a-representation
1 1+a+2¢
1
F (1+a) _Tlrar2) f day v da 5(1 - Eai)a:(P-) — (12)
€ F(1+a) 0 Q D

that F (1+a) is a meromorphic function regular at a = O with
simple poles at a=3n-2¢ and 8=21n-¢, where n =1,2,... .
The same conclusion follows from the inhomogeneous part of

eq. (11). Additional poles of G _(1+a) arise from the ['-func-
tions in the denominator of eq. (9). That is why we look for

a solution of eqs. (10), (11) in the form of an infinite series
of poles
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where we have automatically satisfied eq. (10). o
Substituting now eq. (13) into eq. (l11) and equalizing re-
sidues at the poles we get the equations for f and ¢_:
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Their solution is

f ot Lln+1-2) nM—ch (€).
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The inhomogeneous part of eq. (11) fixes ¢;: c4(e) =T/ (2~ 2).
Note that the first series in eq. (13) is a particular solution
of the inhomogeneous equation; whereas the second one,of the
homogeneous equation. To find the coefficient of the homogeneous
part, i.e., cy(€), we compare the obtained solution with the
known one but for a particular value of a. For this purpose

we go back to F (1+a). On uniqueness grounds it is known exact-
ly, i.e., in all orders in ¢, for a =0,-¢, ~2¢, —3¢. Comparing
eqs. (9), (13) with F_(1), we get

TOrl-—e)l'{(l+¢) '
Ire-2)ra-2)ra+ 2)
This leads to

cl(f)y ¢n ‘("‘)

eyl =~

M2 -e)[(~a-e)T(a+2¢) ()
F,(1+a) =2 x
P+ aQ-a-36)T@2-2¢)

i loctegd 1 1, TQ-9CQ+e)
n=1 T(n+eé) N+a+e n-a-2¢ TA-2¢)TQA +2¢)
(14)
. n T(n+1-3¢ , 1 1

x S ,
2, O T ava fasas3)

For the ultimate conclusion about the validity of eq. (14)
one has to be sure that it is impossible to add any arbitrary
solution of the homogeneous equation. Really, such a solution
A(a) possesses the following properties:

(i) A@@) = O due to the normalization on F, (1),
(ii) A@n) =0, n=1,2,... due to eq. (8).
(ii1) |AGx+ iy)] <]A®)|, where x is in the interval between

the poles. This property follows from an analogous rest-
riction of integral (12) and the particular solution (14).

(iv) A(z)has no singularities since they are concentrated in
the solution (14).

Hence, due to the Karlson theorem”%/ A(z) =0. Thus, eq. (14)

gives us the needed solution of eqs. (4), (8).

The last sum in eq. (l14) is equal to -T(l+a)l'1~a-3e),
so the function F,(1+a)can be represented in the form
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Unfortunately, we have not succeeded to find a closed expression
for the first sum.
For ¢ = 0 eq. (15) leads to
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where B(l+x)= 2[‘P(1+ 2) v 3 2)].

4. CALCULATION OF AN N-LIKE DIAGRAM IN THE ¢* THEORY

In the five-loop approximation of the ¢* theory there remains
only one diagram (Fig.2) that has not been calculated analyti-
cally. To do this, one has to find an N-like diagram (Fig. 3)
up to 0Q1).




Fig. 2 Fig. 3

It was calculated numerically in /74 and in”/!/ the answer was
predictied to be 441/8 ¢ (7). The formula (16) enables us to
perform a correct evaluation.

To do this, we choose indices of the lines in the diagram
(Fig. 3) in the following way and apply eq. (3) to the lower
triple vertex:
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We have used here egs. (1-3).
1
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Hence for the evaluation of the N-like diagram up to 0(1) one
has to know a V-like diagram up to O(e?) or a two-loop diagram
(Fig. 1., aj=2aje) up to O(e%).At the same time the tables ob-
tained in’/1/ contain expansions up to Ole) and 0(e2), respecti-
vely. To continue the tables, we use the solution (16). For this
purpose let us consider the expansion of F, (1 + ae)taking into
account the symmetry properties ).

F, 1+ ae) = Cg+ Cpe+ [co(a +1)(a +2) +csa(a+3)]z2 +
+ e, a+1)(a+2) +cpala +3)1e8 +[cq(a +1)a +2) +
+ cqa(a+ 3) + cga(a +1)(a+2) (a+3))et + 0D .

The known expressions for F,(1+ae) for a=0, -1, -2, -3 give
us the coefficients ¢ g-cqy. We get

1
1 - 2¢

x £(6)e? +[45(a+1)(a+2) - -1-2-5—a(a+ 3)128) 3 - [23(a+ N(a+2)-

F‘((1+az) = {82(3) + 9@ e + [21(a+ 1)(@a+2) - 68a(a+3))x~

—8a(a+3)1L2@) 3+ [147(a+1)(a+2) - %2(a+ )1 (Ne* - a7
B e a2 - Baae DG @
rcga(a+ 1@+ 2+ 3)etl,

cg is not determined from the particular values of a. As is
easy to see, it is equal to

; @iF 1+ a)
c8 = e ———————
4! da4 a= 0

To find it, we expand the function F (1 + a) (16) into a series
in a%. We have

< 2n 1
Fg(1+a) = sngoa_ (@+1)Q - “2'531‘2‘)4(2“*3)‘ (18)

This leads to
cg= 189/8.4(7). (19)

The number obtained enables us to complete eq. (17) and also
to construct the expansion up to Of(e4) for an arbitrary two-
loop diagram and up to 0(e?) for an arbitrary V-like diagram,
i.e., to continue the tables obtained in /Y by one order of e.
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e, L*a'“

x 1204 (5) + €[50£(8) + (20 + 6(a, + ag+ ag+ a,NL2@)] +

+ 62[{(7)-7(-3-%-9 +20(a + ag) + 32, + 17(a,+ 3g) + 33(ag+aq) +
+8(af+al) + 8af + 4(af+al) + 8(a§+ aZ) + 8(a + 85)a, + (21)

+ R(@;a, +agag)+ B(@aag+ agd,) + 10(@ag+ aga q) +

+ 8(ajaq+ agag) + 4a,ag+ 4a,+ aglag+ 12(a6+ aglag +



+ 2a 43¢+ '4(a4as+ aza 4 + 6(agaqg+ agag + 10agaqs+
+ -111—(214+a5 +ag + a7) + —;—(a4+ Qg+ ap+ a7)2) +
+C(8)C(4) -3(20 + B(a+ ag+ag+ a,)) + Ole3)} .

Eq. (21) enables us to complete the calculation of the N-like
diagram. The result is '

- Lo,

that coincides with the prediction made before /17, The expansions
(20), (21) can be used further like tables for the multiloop-
integral evaluation.

5. CONCLUSION

We demonstrate here that functional equations can be useful
in calculating multiloop Feynman integrals. Analogous equations
can be obtained for more complicated diagrams. It may be that
aiong tnls way we can See the general structure ot the diagram.
Till now all exactly calculable integrals were represented in
the form of a product of I' ~functions and their derivatives
and hence could be expanded into series in {¢-functions. Whether
it is also true in general is not clear. Anyhow, solving func-
tional equations one can obtain solutions in the form of a one-
fold series like eq. (14).

From a practical point of view, the tables (20), (21) are
sufficient for multiloop calculations up to 5 loops. The task
is to reduce the diagram to the table as it was done in §4. It
seems that the accuracy achieved will be sufficient in real
calculations for a long period.

The auther expresses his deep gratitude to D.V.Shirkov,
P.P.Kulish, and A.V.Radyushkin for useful discussions and
remarks.
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