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INTRODUCTION 

During the past decade, the renormalization group method (RGM) 
has rapidly spaced into various fields of theoretical physics. 
The RGH was first formulated 111 and successfully applied /2/ in 
quantum field theory (QFT) almost 30 years ago. At the beginning 
of the seventies, the RGM was used in statistical mechanics for 
the analysis of critical phenomena!4-6/ Later, the RGM concept 
penetrated into nonquantum fields such as turbulence theory 171· 
and polymer physics!B/ Specific representations of RGM differ 
considerably in mathematical details, thus causing some confu
sion. Even in some review monographs/ 91 there is no clear expo
sition of the mutual correspondence of these representations 
and even the origin of the term "renormalization group" some
times remains obscure / 101 

The purpose of this paper is two-fold. First, we give the 
universal formulation for "different" renormalization groups 
(RG). This is done on the basis of the functional equations 
(FE). Second, we distinguish 11 11 the simple physical property 
uu.l.,LJ..y~ub Li'"'"'"' ££:::.. w"' caii iL i:uncLionaJ. ~eJ.r-simrJ.aru:y. 
This property corresponds to transitivity with respect to the 
method by which the initial (or boundary) conditions for some 
characteristics of dynamic systems are prescribed. On the basis 
of this property, we obtain a simple recipe for the further pro
motion of RG!1 into new branches of physics. 

FUNCTIONAL EQUATIONS OF THE RENORMALIZATION GROUP 

The RG was discovered in QFT by Stueckelberg and Peterman 1121 

in 1953. One year later, Gell-Mann and Low 1131 obtained an equi
valent of RG FEs and used them for the general analysis of ul
traviolet asymptotics in quantum electrodynamics (QED) without 
any reference to their group nature or any relation to refe
rence112~In 1955, Bogolubov and Shirkov/1/ established the con
nection between refs. 11~ 13/ and put forward the idea of using 
the differential group equations (DEqs) in combination with the 
results of perturbation theory. This essential step provided 
a simple regular procedure known now as the RGM. It was reali
zed in QED for the first time in our subsequent papers.121 The 
central role in the functional as well as in the differential 
formulation of RG is played by the invariant charge (or effec-
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tive coupling) g(x,y,g)introduced in reference(1/ This function 
depends on three quantities: x, the main physical variable of 
the problem (in QFT, energy); Y, the fixed parameter related to 
x (in QFT, the mass of the particle); and g,the coupling con
stant, and is involved in the RG transformation 

{x _. x/t, y _. y/t, g _. g t = g(t, y, g)l (I) 

Since the parameter t is continuous, the set ITt I forms a Lie 
group. This group is the RG. The transformation law of the QFT 
functions (correlators, vertex functions, and matrix elements) 
looks like 

s(x, y, g)= Z 8(t).s(x/t, y/t, g(t,y,g)), (2) 

where Z8 is some constant depending on the transformation para
meter. The invariant coupling g satisfies a rather simple FE 

g(x, y, g) = g(x/t, y/t, g(t, y, g)) , (3) 

which is closured and consistent with the "normalization" con
dition g(l,y,g)= g. This is the central FE of RG. 

The important generalization of (3) corresponds to QFT with 
several coupling constants. For the two-coupling case, g -> (g, h), 
we have the system of FEs (first obtained in ref. 114) 

g(x, g, h) 

h(x, g, h) = h(x/t, gt, ht), ht = h(t, g, h), 

A general solution of RG FEs was given by Ovsiannikovf161 For 
(3), it has the form 

W(y, g) = W(y/x, g(x, y, g)), 

(4) 

(5) 

w being an arbitrary function of two arguments that is rever
sible with respect to the second argument. 

The DE corresponding to (2,3) can be written in the form 

ai(x, y, g) = Q [ L , ( ) l 
1-' g X, y, g ' a lnx X 

a lns(x, y, g)= y(..!., g(x, y, g)]' 
a lnx X 

where, e.g., 

~(y.g) ... ~ice. y,g)le= 1 · 
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(6) 

(7) 

(8) 

Within the framework of a standard RGM in QFT, the functions ~ 
and y are usually determined approximately through perturbation 
theory expansion. 

RG AND CRITICAL PHENOMENA 

In the statistical mechanics, the so-called "Wilson#s RG" 
is based on two essential points: (a) Kadanoff#s idea about the 
invariance of macroscopic observables under the appropriate 
change of microscopic scale and (b) Wilson#s hypothesis on the 
scaling behaviour of physical quantities in the vicinity of 
the phase transition point. 

For the moment, only point (a) is of interest to us. It 
was formulated for the problem of an interacting spin lattice 
with spacing a and coupling constant K. Kadanoff proposed 1161 
to consider the "equivalent" effective lattice with double spa
cing 2a and the effective coupling constant K2 • For the cor-

' /6/ f relation length, e it follows (see, e.g., ref. ) rom Kada-
noff# s arguments that e(K 2) = ~ e (K) , where K 2 is some unknown 
function of K. By changing the doubling parameter 2 to an arbit
rary integer n, we obtain e(K) =_ne(Kn)• Now let n be cont,inuous 
and introduce the function K =K(lln, K). This yieldse[K(x,K)]= 
= xe(K) (x = 1/n). 

It is now very simple to check that the effective coupling 
K(x, k) satisfies the FE (Z) for y = 0. . . 

Hence, for a large integer n, the Kadanoff transformat1on 1s 
approximately equivalent to the RG transformation (I). At the 
same time, under alternative formulations of the Kadanoff-Wil
son RG that use the continuous analogue of the Kadanoff trans
formation (e.g., in turbulence theory), the equivalence with 
QFT RG is complete. 

FUNCTIONAL SELF-SIMILARITY 

Let us study the general structure of RG FEs. Restricting 
ourselves to FEqs for g only, we have 

g(x,y,g) = g(x/t, y/t, i{t,y,g)) 

and its "zero-mass" counterpart (for y = 0 ) 

g( x, g) = g(x/t, g(t, g)). 

(9) 

(IO) 

It is convenient to change the notation and introduce the loga
rithmic variables e = lnx, TJ = lny, and 0= lnt, and g(x,y,g)=O(lnx,lny,g), 
We shall refer to the corresponding analogues of (9) and (10), 
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G(~,7J, g)= 'G(~-8, 71-8, 'G(8, 71, g)), 

G(~, g) = G(~- 8, 'G(8, g)) 

(I I) 

(I 2) 

as the additive version of RG FEs. 
Now consider several examples of systems from nonquantum 

physics, that can be described by (11,12). 

ELASTIC ROD 

Imagine an elastic rod with a 
gure I) that is bent due to some 

, , ,,o· 

HYDRODYNAMIC WAVE 

fixed end (see point 0 of fi
external forces (e.g., gravi
tational force). If the rod is 
longitudinally homogeneous and 
the external forces are uni
form, then the angles gi (fi
gure I) at the three different 
points O,I, and 2 are related 
by the single function 'G(t,g), 
g 1 = G (r, g0), g ~ = G ( r + fJ, g 0) = 
= G(fJ, g

1
).Comb1ning these re

lations, we get (I2). 

Let us take the diverging (or converging) wave that propaga
tes through a homogeneous gas or liquid under homogeneous ex
ternal conditions. Consider the maximal amplitude G(t) of the 
wave ~nd consider its subsequ7nt values at the moments t 0 , t 1 , 

t2 (f1gure 2). These values w1ll be related through equations 
similar to (IO) and, again, we arrive at FE (I2). 

RADIATION TRANSFER 1161 

Consider the two-dimensional problem of radiation transfer 
with a given flow g of the particles falling from the vacuum 
on the flat boundary of a region filled with homogeneous matter. 
Let us consider the number of particles moving from left to 
right inside the medium, e.g., at points I and 2 (figure 3). 
The values g, g 1, and g 2 can be related, with the help of 
a single function 'G(t, g), through equations similar to (IO). 
Again, we arrive at FEq.(I2). 

4 

As is shown in detail in ref. 117< this problem allows us to 
make simple generalizations associated with the transition from 
the zero-mass FE (12) to the "massive" FEq (I I) and to the two
coupling-constants case described by the additive version of 
the system (4). 

:£ amplitude 
C) 

9. -)1\--
g1 --- -f- ----

9z -- - 4 -- -/-';\- -7""1'-... 
I I /I '-

Fig.2. Hydrodynamical wave, 
t- radial variable. 

Fig.3. Radiation transfer. 

Thus, we can conclude that the simple property underlying 
the RG FEqs is the property of transitivity of some physical 
characteristic G with respect to the way its initial or boun
dary value g is given. We refer to this property, which is 
reflected in FEs, as the functional self-similarity 114/ (FSS) 
since it can be considered a generalization of the well-known 
concept of Sedov's self-similarity. 

class of dynamic systems and that, for classical systems, it 
can be established in a considerably more simple way than for 
quantum systems. This remark opens the door to application of 
the so-called RG to problems of diverse branches of physics. 

GUIDE FOR USE OF THE RG HETHOD 

Before formulating a set of conditions that should be ful
filled for successful applications of the RGM in new branches 
of physics, let us make several important remarks. 

Remark I 

The group DEs (Lie equations) of the type (6,7) must not be 
physically "trivial", i.e., they should not be equivalent to 
equations that describe the physical nature of the problem. An 
example of such a "trivial" situation is provided by the elas
tic rod problem. Along with the quantum physics an example of 
nontrivial equations is provided by the radiation transfer 
problem, where the physical equations are linear integra-dif
ferential kinetic equations. 
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Remark 2 

For the use of RGM, explicit expressions for the functions ~ 
andy that appear on the right-hand side of DEs (6,7) are ne
cessary. They represent the infinitesimal response of the un
known functions g and s and must be at least approximately 

determinable. 

Remark 3 
As a rule, the use of RGM is especially effective for the 

analysis of singularities of physical quantities. The point is 
that the approximate solutions (e.g., perturbation expansions) 
usually distort the structure of the singularity, which can be 
restored by imposing the FSS in the form of a regular RGH pro-

cedure. 
Taking these remarks into account, we write the final re-

cipe for successful application of RGM as follows: (a) Find 
a dynamic system with a physical quantity 'G obeying the FSS 
property and check that the DEs are not "trivial". (2) Consider 
the physical situation when 'G or a related physical quantity S 
behaves singularly. (3) On the basis of an approximate solu
tion or some other type of analysis of physical equations, eva
luate the response functions ( ~ and y ) • (4) Solve the FSS 
DEs and find the true singular behaviour. 

REFERENCES 

I. 

2. 

3. 

4. 

s. 
6. 

7. 

8. 

9. 

10. 

6 

Bogolubov N.N., Shirkov D.V. Dokl. AN SSSR, 1955, 103, 
p.203. 
Bogolubov N.N., Shirkov D.V. Dokl.AN SSSR, 1955, 103, 
p.391; Nuovo Cim., 1956,3, p.845; see also/

31 

Bogolubov N.N., Shirkov D.V. Introduction into the Theory 
of Quantized Fields. Wiley, N.Y., 1981, ch.IX of the 3rd 

ed. 
Wilson K.G. Phys.Rev., 1971, B4, p.3174,3184. See also 
review monographs./6, 8/ 
Wilson K.G., Kogut J. Phys.Rep., 1974, 12C, p.75. 
Ma Shang-Hen. Modern Theory of Critical Phenomena. 
Benjamin, New York, 1976. 
See e.g., Pelletier G. J.Plasma Phys., 1980, 24, p.421; 
Moffat H.K. Repts.Progr.Phys., 1983, 46, p.621. 
de Gennes P.-J. Scaling Concepts in Polymer Physics. 
Cornell Univ.Press, Ithaca, 1979. 
Nash C. Relativistic Quantum Fields. Academic Press, 
New York, 1978, p.J65. 
See /1,21 , Ch.V in the book;'61 

I 

~ 

.,. 
I 
l 

II. Shirkov D.V. Doklady AN SSSR, 1982, 263, p.63. 
12. Stueckelberg E., Petermann A. Helv.Phys.Acta, 1953, 26, 

p.499. 
13. Gell-Mann M., Low F. Phys.Rev., 1954, 95, p.l300. 
14. Shirkov D.V. Doklady AN SSSR, 1955, 105, p.972. 
IS. Ovsiannikov L.V. Doklady AN SSSR, 1956, 109, p.lll2; 

see /3/ as well. 
16. Kadanoff L.P. Physica, 1966, 2, p.263; see also.f&/ 
17. Mnatsakanian M.A. Doklady AN SSSR, 1982, 262, p.856. 

Received by Publishing Department 
on November II, 1983. 



WILL YOU FILL BLANK SPACES IN YOUR LIBRARY? 
You can receive by po11t the books listed below. Prices · in US f, 

0-12965 

011-80-13 

04-80-271 

04-8D-385 

including the packing and regilltered postage 

The Proceedings of the International School on 
the Problems of Charged Particle Accelerators 
for Young Scientists. Minsk, 1979. 

The Proceedings of the International Conference 
on Systems and Techniques of Analytical Comput
ing and Their Applications in Theoretical 
Physics. Oubna, 1979. 

The Proceedings of the International Symposium 
on Few Particle Problems in Nuclear Physics. 
Oubna, 1979. 

The Proceedings of the International School on 
Nuclear Structure. Alushta, 1980. 

Proceedings of the VII All-Union Conference on 
Charged Particle Accelerators. Oubna, 1980. 
2 volumes. 

04-80-572 N.N.Kolesnikov et al. "The Energies and 
Half-Lives for the a - and ,8-0ecays of 
Transfermium Elements" 

02-81-543 Proceedings of the VI International Conference 
on the Problems of Quantum Field Theory. 
Alushta, 1981 

010,11-81-622 Proceedings of the International Meeting on 
Problems of Mathematical Simulation in Nuclear 
Physics Researches. Oubna, 1980 

01,2-81-728 Proceedings of the VI International Seminar 
on High Energy Physics Problems. Oubna, 1981. 

017-81-758 Proceedings of the II International Symposium 
on Selected Problems in Statistical Mechanics. 
Oubna , 1 9 8 1 . 

01,2-82-27 Proceedings of the International Symposium 
on Polarization Phenomena in High Energy 
Physics. Oubna, 1981. 

02-82-568 Proceedings of the Meeting on Investiga
tions in the Field of Relativistic Nuc
lear Physics. Oubna, 1982 

09-82-664 Proceedings of the Symposium o n the 
Problems of Collective ~lethods of Acce
leration. Oubna, 1982 

03,4-82-704 Proceedings of the IV International 
School on Neutron Physics. Oubna, 1982 

8.00 

8.00 

8.50 

10.00 

25.00 

10.00 

9.50 

9.00 

9.50 

15.50 

9 . 00 

7.50 

9.20 

12.00 

Ordets for the above-mentioned books can be sent at the address: 
Publishing Department, JINR 

Head Post Office, P.O.Box 79 101000 Moscow, USSR 


