


1. INTRODUCTION

At present a problem of building the theoretical methods of
description of elastic nucleus—nucleus collisions is very actual
in high energy nuclear physiecs because of the necessity of in-
terpreting the existing experimental data and a dissatisfaction
of the results of the known theoretical models, most of which
contain considerable arbitrariness in their foundation. Thus
hopes paid to the Glauber eikonal approximation are quite un-
derstandable. Below a key problem of eikonal approach - deter-
mination of differential cross sections of elastic nucleus-
nucleus scattering processes will be considered.

In this approach amplitude is determined by the sum of
2AB_1 terms representing different rescattering processes,
where A and B are mass numbers of interacting nuclei.

Among these terms there are many similar terms, that is
why the amplitude is actially determined by a smaller number
of essentially different terms. For example, if A =B = 3,
there are only 25 essentially different terms from the total
of 511,

Thus reduction of similar terms in the scattering amplitude
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For the flrst time this problem was solved by Czyz and
Maximon/l/. But it was not widely used because of being cum-
bersome. For example in papers/23.4/ only first several terms
of Glauber's series were taken into account.

In papers’/58 7/ combinatorical coefficients are calculated
by the usual method.

In the present work we treat a simple algorithm for calcu-
lation of combinatorical coefficients and differential cross
sections of elastic scattering processes in case of the Gaus-
sian parametrization.

In the following section we consider basic structure of
Glauber's amplitude. The third section expounds the method of
calculation of the scattering amplitude. In section 4 we
expound the idea of general diagram which gives the possibility
of computing combinatorical coefficients. In the last fifth
section a more simple method of calculation of differential
cross sections is presented.

2. CALCULATION OF THE AMPLITUDE OF ELASTIC SCATTERING

According to basic principles of Glauber's approximation
the differential cross section of nucleus-nucleus scattering is
determined by the following expression
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where P is the momentum of the prejectile nucleus; q is the
transverse momentum; ¢Ap wBl and ¢ » g, are the wave func-
tions of nuclei A and B in the 1n1t1a1 ané final states, res—
pectively, y(BS is the amplitude of elastic NN scattering in
the impact parameter representation. {sA} {rgl are the coor-
dinates of nucleus of the nuclei within the plane of the impact
parameter b (in the plane perpendicular to the momentum P).

It is obvious from (1) that the elastic scattering amplitude
is determined by the sum of a large number of terms which have
a form
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where MCI4 @13 and I{C I,, I3C 1, , whilel, and I, are
sets of 1ntegers with eiements Ij=>1,..,4A); I,=-(1,..,B).

Since there are quite many such terms (2AB_1), reduction of
similar terms among those is a non—-trivial problem which can
be significantly simplified if we turn to scattering diagrams.

The scattering diagram which represents a general term of
series (2) is plotted in the following way.

Draw m vertical lines and n harizantal linee nrneq{ng thoe
former ones (m and n are cardinal numbers of sets I{ and
I3, respectively), then points of intersections (nodes) of
these lines represent the set I{@I; . Subset M is shown by
black points (Fig.l). Such representation of terms of series
(1) permits one to determine easily similar terms.

In fact, we shall take, for example, the scat-
tering diagram shown in Fig.l1. It is clear, that
such a diagram may be plotted in two ways. Besides
m elements from I; may be selected by Cahmanners

Fig. 1 and n elements from I, by C% manners.

Consequently, the total number of similar terms represented
by the diagram shown in Fig.1 in expression (1) equals 20202
By analogy one can determine a number of 1somorph1k dlagrams of
an arbitrary form. Since such a problem is partially solved by
Uzhinskii 78/ we will not consider it here, but start calculating
the integral in expression (2).

For this purpose, obviously, it is necessary to know the
explicit form of functions ¢Ai; wBi and ¢A(; wBr.In case of

elastic scattering |; >=|¢, > therefore it is necessary to
have information only on the ground state of systems A and B.
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The following approximations are most popular in the case
of smaller A and B:
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If we also assume that y(b) ==Cae_ab , then the general term
of series (2) can be represented in the form
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where X'T= (8 g .y § T F. seeusy . ), here
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x&=1,2,..,n) are elements of the set I{ and j (k= 1,2,..,m
are elements of set I,, @Qan (m+ n)-by-(m+n)is a symmetrical
matrix, H is a coefficient matrix of vector 8y and 7;, C is
a scalar, XTHT are transposed matrices. Expression (5) is

easily integrated:

NAE. [ exp(-x"Qx - 2DH"X - 20°C + igbta™" " xd®b =

(6)
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here Det Q and Det W are determinants of matrices Q and W, Mat-
rix W is determined in the following way:
QH (7).

W= ( ).
HTC

Order of matrices @ and W depends upon concrete form of the
scattering diagram.

For example, for the diagram with n vertical lines and m
horizontal lines the corresponding matrix Q is (m +n) —by-(m+n)
matrix, and matrix Wis (m+ n+ 1) -by- (@ +n + 1) matrix. Calcu-
lation of determinants of these matrices is a non—-trivial prob-
lem. Therefore, the purpose of the following sections is to
find an effective method for calculation of determinants of
Det Q and Det W and reduction of similar terms in series (1).
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3. DESCRIPTION OF THE METHOD

We shall take the diagram in Fig.l for the sake of simpli-
city. The term of series (2) corresponding to such a diagram
has the form:

\
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+ 228,7) + 2a8,7, + 28B(8, + 8, ~7; ~7p) ~ 2aB% + iqB} x

2 (8)
x d®bd®s d®s,d% 5 d%r, .
Consequently
t+a 0 ~8 0
0 t+a O -a
Q= 9)
~a 0 d+a 0
0 -a 0 d+a .
Hence it is evident that matrix Q corresponding to the
diagram shown in Fig.l has the block structure
Q- T a
a' D (10)

t+a 0
where T and D are diagonal matrices of the form T =( 0 t+a);

d+a 0
D =( 0 d+a.)' Between the matrix q and the scattering diagram

there exists a single valued connection; points of the diagram
lying on intersection of the i-th horizontal and j-th vertical
lines correspond to the element ajj =-a. Empty nodes of the
diagrams correspond to elements of matrix equal to zero. aT is
a transposed matrix.

The structure of diagonal matrices T and D also depends upon
the concrete form of the diagram. For example the matrix T
element t;; equals t;; =t+ n;a, where n; is sum of number of
all points lying on the n-th horizontal line of the diagram. Si-
milarly any element of the diagonal matrix D has the form
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dy=d+nja, where n; is a sum of all points lying on the j-th

vertical line of the diagram.
Thus, for any diagram, for example, the diagram shown in

Fig.2, there is a corresponding matrix

t+4a O 0 -3 ! -a ~a

0 t+2a O -a ~0 ~a ~0

0 0 t+a 0 0 -a 0

Q= -a -3 0 d+2a 0 0 0
-a 0 0 0 d+a 0 c
~a -a -a 0 0 d+3a 0

a 0 0 0 0 0 d+a

The matrix W in expression (6) is formed by bordering the matrix
Qby the one-dimensional coefficient matrix H, elements of
which are also connected with the concrete form of dlagrams in
the following way: H (1< i< n), an element of matrix H is equal

tn tha cum of nrnno-n An +tha i=th havrizantal 1ins mlrinliad h:v
- - - a

~a, but the element H (n<j<n+m) is equal to the sum of
points on the j-th vertlcal Tine multiplied by +a. Therefore,
the matrix W corresponding to the diagram shown in Fig.1 has
the form

t+a O ~-a 0 -2
0 t+a 0 -2 -a
W= -3 0 d+a 0 a
0 -2 0 d+a a 1
-a -3 a d a . Fig. 2

Here angular element of the matrix, according to (5), cor-
responds to the scalar C.

Thus if the form of the diagram is known, then building of
matrices Q and W is not difficult. The calculation of determi-
nants of these matrices in the case of a large number of consti-
tuents is very awkward (i.e., for diagrams containing a large
number of horizontal and vertical lines and representing
scattering of higher multiplicity, matrices Q and W can be of
a very high order).



But the matrix Q can always be presented in a form of pro-
duct of two quasitriangular matrices. Since the matrix has a

T a

structure @ = ( P
a' D

block ),

then

Ta T O I T .
'-'=l=(T ) =( T ) ( ), (11)
a' D a'D 0Y
where I is a unit matrix. To find the unknown blocks T’ and Y
there is a system of equations

{a= TT (12)
P=alT’+1,

hence T’= T 'q , Y=-D! alT’ + I, where T~!and D~! are matri-
ces inverse to the diagonal matrices T and D. They are diagonal
and their diagonal elements are inverse to corresponding ele-
ments of the matrices T and D.

Thus the determinant of the matrix Q is equal to Det Q =
=(t+n;a)..(t+n a)(d+n5a)...(d+mya) xDetY, Hence, evi-
dently, it is necessary to find only the determinant of matrix
Y, the order of which is equal to the smallest of number from
m and n

Just in the same way we can simplify calculation of the
determinants of the matrix W.

We would like to note that

A

T a aN1

W= aT D —a'N2

TT T T
Nla -Nga —NlaN2

1 2 1 1 1

Uy U2 U;=Ug=..=U,=1

ul vt

2 2 v2-u0%-..=0%=-1, hence
N1= : .N2= : ? 1 T Yo Toee =t

1 .2

Un Um

T a TN2+aN

DetW = Det aT D 0

T T )
N,aN, + N; TN,

The last determinant
Det Q.

can be calculated in the same way as

4, INTRODUCTION OF THE NOTION OF A GENERAL DIAGRAM

From the previous sections it is evident that for the calcu-
lation of the amplitude it is necessary to calculate the de-
terminants Det Q and Det W corresponding to 22B_) terms of
series (1).

For reduction of similar terms among 248 .1 terms notion of
a general diagram is introduced.

Case 1. Let now B=2 and A is arbitrary. In this case we
can represent a general diagram in the form of the diagram
shown in Fig.3.

———

nl n3
Fig. 3
Consequently,
n¢ +n n
DetQ = (t+a) ' 2 (t+2) °x
ne® nga ngd®
[d— + J+d+ (@ +ny)a ——
t+ a t+ 2a t+ 2a
x 2 2 2
n_a n,a n,a
~ - -[-2 + -3 ]+d+@y+ng)d ,
t + 2a t+ a t +2a
n1+n2 n3
DetW(nl,ng,na) =(t+a) (t + 2a) x
2 2 2
n.a n,a npa n,at n, at
- 1 + 3 ]+E1- 3 _1____ + 8
t+ a t +a t +2a t+a t+ 2a
n,at n,a? Doa n,at  ngat
x|- -3 -2 1+E, 2 __,.-2
t + 2a t+a t+ 2a t+a t+2a
n,at nqat nyat ngat ng+n n
B ./ + - £, 2 ]+t’z+t3
t+a t+a t+a t+2a t+a t+ 2a +

(13)
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where E (n +ng)d + d; Eg=(@p+ng)a + d; Eg =@+ n, +
+ ng)t. Know1ng ?)et Q(nl,nz, ng) and Dét W(,;,ng, ng) 1t is
not difficult to determine the scattering amplitude

- + + nys+no+
SRORS ROLNOE S 3 ciitret tag 17T
2-A 2 By, Dg, Rg=0
(0<n1+n +n3__ A)
2 (14)
y (n1+n2+n3)!‘0 ny+ng+ ng (_1)1+n1+n2+2n3 Cp 5
nlngtng 172 DetW
n,+p0,+ 20 22 |DetQ(ny,ng,ng ) |
xCgh 2% exp i Lelal,
lDetW(nl,nz.ns)l
where

E,, when n1+n3;40
1, when n,+ng = 0

E =iE2' when n, +ng £0

2 1, when n,+n, =0
and
. {d, when ng +ng # 0
G = 1, when n;+ng= 0,
d, when ny,+n 0
G, =1 2+ Tg#

1, when Dy +ng= 0

K ,(q) and Kg(®) are centre of mass correction factors.
Case 2. The general diagram for B =3 and arbitrary A is

given in Fig.4. The corresponding determinants Det Q and Det W
may be obtained in the same way as in cases 1 and 2.
Slmllarly with the help of general diagrams

we can obtain
" an expression for the scattering amplitude for

any A and B.
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5. A SIMPLER APPROACH

In this section we consider a simpler approach to calcula-
tion of the elastic scattering amplitude using the results
obtained in section I of this paper.

Here we shall also use the connection between general diag-
rams and the structure of matrices a,T and D.

Let us introduce the matrix a in the following form:

(111 (112 vos aln

.o (121022 .ee a2n (15)

an1 an2 aee ann y

where aj; has only two values zero and -a. In such a case mat-
rices T and D have the form

t+ (au+a12+... +ay.) .. 0

(16)
T=| 0 t+(a21+a22+...+42n)...0

0... t+(a1+a2+...a‘m

d + (@ +8gy + e +ap5) e O

0 d+ (agp +agy + .. +an2)... 0

D= an
0 .. d+la, +a, +- +a )
Matrix W can be written in the following form:
T a Hl (18)
W= ’ aT D H2
T T
H1 H2 C
Matrices H, and H, are determined in the following way:
-(all + a12 + .+ aln )
a9)
- ((121 +a22 +...+(12n)
H, =
L . .
-—(an1 +a g, +oeeta ) i




(au +agy t.e tapgg )

H2= (d 12 + Gop + eee + ano ) (20)
s (ay, +ag +.o+ay )
an
- (21)
C = m?; a . - .

Thus in this approach matrices @ and W have the same block
structure as in the previous approach. Therefore to calculate
the determinants of matrices Q and W we can use the technique
of resolution into two quasidiagonal matrices determined in
(11). But in this case the problem of reduction of similar
terms is solved automatically.
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