


I . INTRODUCTION 

The formulation of gauge theories on a space-time lattice 111 

supplies us with the rare opportunity to study such theories 
without reference to any expansion in the powers of the coup­
ling constant. The replacement of the continuous space-time by 
a lattice regularizes the ultraviolet divergencies in a non­
perturbative way and in the same time opens the door for some 
very powerful methods for calculating both gauge invariant and 
noninvariant quantities. At present, the theories which have 
been studied in detail are the pure gauge models Z(N), SU(N), 
etc. On the other hand, any realistic theory should include 
dynamical matter-fields (such as quarks, Higgs-bosons, etc.) 
as well. The presence in the theory of dynamical matter-fields 
could bring about significant changes in the behaviour of the 
quantities relevant to the gauge theory under study. An illust­
ration of the above is the Higgs mechanism thanks to which the 
gauge boson acquires a mass thus rendering the forces short­
ranged. At the same time the introduction of matter-fields, 
'-u 5c'-~••a w.1.Lu Lilt! ut!w paramer:ers (masses ana coup11ng constants) 
which go with them, leads to a theory with a nontrivial phase 
structure. 

According to the present understanding of gauge-scalar sys­
tems there exist at least three main phases: the confining 
phase/ the Higgs-phase and the Coulomb phase (see for instance 
ref. 21 ). On the phase diagram the different phases are usually 
separated by lines of phase-transitions and it is most intri­
guing to investigate the possibility that such lines terminate 
(have end-points). In particular, related to the conjecture of 
an end-point on the time which separates the Higgs phase from 
the confinement phase is the so-called Complementarity prin­
ciple 13•41 • 

Quite a few papers have appeared on the interaction of gauge 
and matter-fields (see 16"71 and the references therein), but in 
the majority of these papers the Higgs fields are radially fro­
sen: 

I <Ill = const. (I. I) . 

The assumption (1. I), which significantly simplifies the model, 
is supported by the popular belief that the continuum limit, 
if it exists, should be taken as a critical point. At such 
a point the correlation length a r~!.~,hes infinity and, there-
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fore, the actual size of the scalar field is irrelevant for the 
regularized lattice action. Unfortunately, the problem of the 
continuum limit for gauge-scalar systems, i.e., of whether such 
theories do exist, is still beyond the scope of our knowledge. 
Yet, provided that a continuum theory of this type exists, its 
properties ought to be better reflected by a lattice model with 
a radially varied scalar field than by its radially frozen 
counterpart. At the same time, as it was shown on the example 
of the Z (2) -gauge theory in ref. 15• 6!, the radial variations 
of the Higgs field could significantly alter the phase picture 
of the theory. 

This paper is devoted to the study of the phase-transitions 
in Abelian gauge theories with symmetry-groups Z(N), where N 
has been given a number of values ranging between 2 and 300, 
coupled to radially varied. Higgs fields in the fundamental 
representation of the gauge group. For sufficiently large va­
lues of N the discrete groups Z(N) are considered as a good 
approximation to the continuous group U(l) • 

In what follows we shall investigate, both by the Monte­
Carlo simulations and through a mean field analysis, the phase 
transitions when varying the "mass" m2 of the Higgs field 
(m 2 < 0) for zero and for infinite value of the gauge coupling 
1/~. For sufficiently small values of the scalar self-coupling 
A we observed a first order phase transition at ~ = 0 for all 
values of N. When A is allowed to increase it reaches a value 
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and, eventually, for even bigger values of A, the phase transi­
tion disappears completely. It is possible, however, that in 
this case the system undergoes the second (or even higher) or­
der phase transition. The demonstrated dependence of the phase 
structure of the theory on the scalar selfcoupling confirms 
the significance of the Higgs radial degree of freedom. First 
order phase transitions were also found in the weak gauge­
coupling limit (~ ~ oo). 

The model we consider is described in the next paragraph; in 
the third paragraph we give the details of our Monte-Ca~lo cal­
culations and,finally, we summarize the numerical results and 
compare them with some mean-field estimates in the fourth parag­
raph of this paper. 

2. THE CHOICE OF THE MODEL 

The action for the system of Z(N)-gauge fields and Higgs 
scalars in the fundamental representation of the gauge group 
has the form: 

(2. I) 

2 

.. 

where So= 1- U1JUjkUkfUfj with the gauge variable Uij = UL 
defined on the l1nk L =(i,j) which originates from the site 
labelled by i and ends at site j. U L is an element of the gro­
up Z(N): 

21TuL 
i-N-

UL = e , uL = O,l, ... ,N -1. (2.2) 

The first term in (2. I) is a sum over all plaquettes. The se­
cond term ~s a sum over all links and is of the form: 

s L = 2 • <I>~ <I> • - [ <I>.* u1 . + <I> . + + h. c. 1 + v (<I> . ) , 
1 1 1 • 1 11. 1 11. 1 

(2.3) 

where 

V (<I> i ) "" _!_. [ ~ • <I>~ <I> + A. (<I>* <I> )2] 
4 2 1 i i i • (2.4) 

The Higgs field <I>. is defined at each site 
the fundamental r~presentation of Z(N): 

and belongs to 

Ri = v <1>.*<1>. ' 
1 1 

. 217¢ i 
1--

<1>1 = R1 e N ¢ 1 = 0,1, ... , N -l. 
(2. 5) 

coh-:31 1 "1C>co11'"'o t-'h.-,t- m2 .,...- f'l rrl-.,... 
---~-- -------- ----- . ~- ....... -

(2.1)-(2.4) will correspond to a U(l) gauge-scalar system as 
N _,""·The "naive" continuum limit of such a lattice action ag­
rees with the well-known expression in the continuous space. 
Indeed, if one substitutes 

<I> 1. _, a . <I> (x) ; rn 2 _, a2. rn 2 ·, U e iag. All (x) 
i; i + 11. _, 

and takes the limit a _,Q~ rn 2,g- fixed (a ~s the lattice spa­
cing) the action (2. 1)-(2.4) will become: 

where Sa is the action for the gauge field. 
In the limit A._,"" the Higgs field is radially "frozen" 

0, 

At the opposite extreme (1..<<1) the radial fluctuations of the 
Higgs field could be very significant. 

3 



As for the limit f3 _. oo, it leads to freezing of the gauge 
field.: U ij = 1. 

3. THE CALCULATION METHOD 

The model (2.1)-(2.4) has been studied numerically by means 
of the Monte-Carlo simulations. Among the Monte-Carlo algo­
rithms two are especially widespread today: the heat bath 181 

and the Metropolis algorithm/9/. While the first offers the 
best performance in terms of convergence per iteration, its 
applicability is limited to integration over a compact measure. 
The heat bath method could be used when the radial mode of the 
Higgs field is frozen: R = 1~1 I =canst. This was done in 
refs. /5, 61 .If we drop the constraint (1.1), the heat bath method 
could not be employed without some restrictions on the integ­
ration domain of the variables. In our calculations we have 
used the Metropolis algorithm. The updating of the variables 
on each link and at each site is done after a certain number of 
tries which improves the convergence. The gauge field is re­
newed by simply generating new elements of the group while in 
the case of the Higgs field the updating undergoes two stages: 
first we try to renew the radial part of the field at a given 
site and then we turn to the angular part (the phase-factor). 
The new values of both the scalar and the gauge degrees of free­
nnm ~rP ~~~P~rPn nr rP~P~rPn in ~~~ornanre with the orescrio-
tion of the Metropolis algorithm. -

In order to study the behaviour of the model in the vicinity 
of the phase transition points we have employed two different 
techniques: 

I. Simulations from different types of initial configura­
tions (starts). 

a) A totally ordered start. This means that initially the 
values of the gauge and the Higgs fields are chosen uniformly 
on the lattice: R \0) .. 0; c/J \0) = 0; u .<0> = 0 . 

1,/-l 

b) A totally disordered start. This means that all the vari­
ables on the lattice are given randomly chosen values and this 
is taken as the intial configuration of the simulation. 

c) A variety of partially ordered (and equivalently par­
tially disordered) starts. Here is an example of such a start: 
the gauge field is totally ordered while the Higgs field is 
angulary ordered and radially randomized. 

The simulations from different initial configurations can 
reveal the type of the phase transition and, when it is a case 
of a first order phase transition, c-type starts can help us 
to determine which is the stable phase. 

II. Thermal cycles. In a thermal cycle one of the parameters 
of the model, e.g., m2 or A is gradually varied up to a given 
value and back. At each intermediate step a given number of ite­
rations is performed starting from the last configuration rea­
ched at the preceding step. If the thermal cycle carries the 
system across a point of phase transition this produces a typi­
cal hysteresis loop on the thermal cycle curve for the order 
parameter. 

All our numerical experiments have been performed on a 4 4-
lattice because further increase of the lattice-size does not 
significantly change the results. The order parameters we have 
used are the mean action per plaquette <8 0 > and the mean squa­
red radial part of the Higgs field <~*~>. 

4. RESULTS AND DISCUSSIONS (INTERPRETATION) 

The results we present in this paper were obtained for two 
characteristic values of f3: f3 = 0 and f3 = oo 

a) f3 = 0. 
For infinite value of the gauge coupling (f3 = 0) and for com­

paratively small values of the scalar self-coupling ,\ we have 
observed a first order phase transition when m2 is varied and 
this holds for all Abelian groups Z(N) we have studied: N= 
= L,J, .•• JU,LU,)U,JUU,LUU,JUU. The dependence or the phase 

• . • 2 
trans~t~on po~nt me on the order of the group N is shown on 
Fig. la,b for two different values of ,\: ,\ = 0.1 and ,\ = 0.25. 

The bars on the graphics span over the intervals which con­
tain the phase transition points m 2(N). We can see that m 2 

. c c 
ceases to depend on N for N b~gger than 5 or 6. 

In order to determine the type of the phase transition we 
have performed both thermal cycles in m2 and observations on 
the evolution of the system beginning from different initial 
configurations. As an example of how this works on Fig.2 we 
have shown a thermal cycle in m2 for the order parameter<~*~> 
and on Fig.3, the evolution of the same order parameter with 
the number of iterations for different values of m2 and for 
different starts. In both cases the symmetry group is Z(200). 

The dots and the crosses in Fig.3 are for ordered and dis­
ordered starts respectively. It is evident that as m2 chan~es 
f 2 2 h d 0 rom m 1 to m3 t e or er parameter <~*~>undergoes a sudden 
change, a jump to its new value which points to a first order 
phase transition. We want to emphasize the fact that the type 
of the phase transition does not change with the order of the 
group. This picture is consistent with the lowest-order mean 
field calculations. At f3 = 0 and in the parametrization (2. 2) 
and (2.5) for the field variables the action (2. I) becomes: 
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Fig. I. The position of the phase transition point m2 . c 
for ~ = 0 as a funct1on of the order N of the symmetry 
group and for two values of the scalar self-coupling 
constant: A = O.l(a) and A= 0.25 (b).The hollow 
circles are the lowest order mean field predictions. 
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The corresponding partition function is: 

oo 
1 

N-1 1 N-1 
Z = ll ( f dR 

1 
- I. ] ll ( - I. ] . e -s . 

i N ¢.=0 L Nu=O 
1 L 

(4. 2) 

After the summation ove: the ¢J, uL in (4.2) has been perfor­
med, we can rewrite Z 1n the form: 

6 

l 
Z2oo 
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Fig.2. Thermal cycle in m
2 

at 
~ = 0 and A = 0. 25 for the group 
z (200). 
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where 
m2 2 >. 4 

S err = I. I (l + -
8 

) R 1 + -
4 

R 1 - W (R1 R 1 +,)I 
i, j! 

(4. 3) 

and (4. 4) 

1 N-1 x·cosW 
W(x) = ln(-· I. e N ]. 

(4.5) 

N j=O 

Next, we follow the recipe given in ref.
110

•
111 

and obtain the 
effective potential Verr(R). We underline that in the aboveS 8 rr 
was used instead of S. This means that the effects of the an­
gular part of ~ have been accounted for in full. This way we 
get the following expression for the V eff in the lowest mean 
field approximation: 
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m2 2 A 4 2 
V etr (R) = (l + -) . R +-. R - W (R ) • 

8 4 

(4. 6) 

The characteristic behaviour of the effective potential is il­
lustrated on Figs.4a-c. 
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We see that V err has two m1.n1.ma. For m2=m~(Fig.4b) the two 
minima are on the same level,the order parameter is discontinu­
ous and therefore the phase transition is of the first order. 

. In ad~ition to providing a qualitatively correct descrip­
tl.on, th1.s crude mean field analysis is in good agreement with 
the Monte-Carlo results as it can be seen from Fig. I (the hol-
low circles). 

Finally, ~h: behaviour of the system at f3 = 0 has proved to 
be very s:n~1.t1.ve t~ changes of the scalar self-coupling A. 
More specl.f1.cally, 1.f we consider thermal cycles in m2 at f3 = 0 

8 

for a sequence of increasing values of A we shall observe that 
the characteristic hysteresis loop gradually shrinks to vanish 
completely for some A =A 0 • This analysis was carried out for 
some groups and the results, obtained for Z(5) are presented 

on Fig.Sa-c. 
In the case of the symmetry-group Z (5) , the value of A 

at which the first-order phase trans1.t1.on disappears is 
close to A

0 
= 0.6. Now, when we go on increasing above 

A
0

, we observe a characteristic change of behaviour in 
the order parameter (on Fig.Sc this happens near m

2
=-8). This 

could indicate a higher order phase transition, possibly of se~ 
cond order. The analysis of the effective potential beyond Ao 
supports this point of view. On Fig.6 we show the effective 
potential for different values of m 2 at A = 0. 9. The gauge 

group is Z (5) • 

verr 

m2 
2 

~m' s of:?'_-/ 
R 

Fig.6. The effective potential 
for different values of m~ 
The gauge group is Z (5) and 
A = 0.9. 
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Fig.7. The position of the 
first-order phase trans1.t1.on 
point as obtained from eq. 
(4.6). 

We see that, for m2= m1 V e~r has only one minimum (at R =0) 
which tends to get flatter (m = m~) and, finally, it slides 
away the origin (m2= m2),0n Fig.7 we show the A dependence 
of the first order pha~e transition point obtained for Z(5) 
by means of eq. (4.6). This way, it has been found that the 
point where the first order phase transition terminates is near 

the value A::: 0. 85. 

b) f3=oc, 
For vanishing values of the gauge coupling constant (f3coc) 

we observe essentially the same dependence as in f3 = 0 case of 9 
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Fig.8. The dependence of the 
phase transition point on the 
order of the group for f3 = oo 

and at A = 0.25. 

the phase trans~t~on point m~ as we 
move from one gauge group Z(N) 
to another. For A = 0. 25 this 
dependence is shown on Fig.8. 
We see that from N = 10 onward 
the position of the phase tran­
sition does not change with N. 
On Fig.9 we show thermal cycles 
in m2 for groups: Z (5) , Z ( 10) 
z (300) . 

The histograms we obtained 
from binning the radial part of 
the Higgs field give a signal for 
the existence of two competing 
minima of the effective potenti­
al. An idea of how this works is 
given on Fig. 10, where we have 
shown the histograms correspond­
ing to simulations from two dif­
ferent initial configurations. 

-J _2 -It -S This was done for the group Z(80) 
-3 

2 
and at m2 = -3, A = 0.25. In 

m c analogy with the reasoning in 
the f3 = 0 case we conclude that-here again the phase transition 
~s of first order (compare with Fig.4). 

At present it is an open question what would be the relation 
of all this to the continuum theory, a question the answer to 
which is being persued. 

5. CONCLUSION 

We have carried out an exhaustive analysis of the phase 
transitions in a number of Abelian gauge-lattice theories for 
two extreme values of the gauge coupling constant. In drawing 
our concl~sions about the character of the phase transitions 
we have referred both to the numerical (Monte-Carlo) calcula­
tions and to a mean field analysis of the theory. We have con­
vincingly shown that the radial variations of the Higgs field 
play a very important role in determining the behaviour ofgauge­
scalar system· and we intend to study this matter further in or­
der to get a fuller picture of the phase structure of such fields. 
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