





The space configuration $® can be described by the only anti-
symmetrical colour spin-isospin WF of the six—~quark bag with
the deuteron quantum numbers /.1t can be written as follows
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Here ¥y~ is a spin-isospin-colour part of the nucleon WF; Fgl

is a spin-isospin part of the WF describing relative motion of
three-quark clusters in a deuteron. The space part of ‘Fil which
is denoted by f(R) is parametrized in the form
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The first term in (5) describes the configuration of two nuc-
leons separated in space, z (=1, 3.21 =.-2Rd2 , where R, ,= 2.55 fm/m,/
Other terms in (5) with i>1 are introduced to describe f(R)
in the region of N-N repulsive core. We shall fix further
N =2 and use two sets of parameters: I. zp = -1, ag= 0.5 fm,
II. 2p ==-4, ap=-0.34 fm. In the former case the function ;I(R)
at R<2 fm is similar to the S —component of the Reid WF /11
with soft core. The function f y (R) corresponds to the deuteron
WF changing a sign at R = 0.4 fm, as was proposed in paper /18/,
It is noteworthy that f(R) behaviour at large R does not in-
fluence the result of calculations of As,, which is sensitive
to small R only. The normalization condition for the WF (2)
has the form
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where Io=<lp6q|leN>. (6)

The relative phase of a and
B is assumed to be zero to avoid
additional unknown parameters.
This is true if two—quark inter-
action Hamiltonian is real. The
main part of Hamiltonian used
which reproduces the confinement
is real but terms with spin-or-
bital and tensor interaction are
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The dependence of overlap integral To on Rg vah'le is shown
in fig.! for the case f(R) = f;(R). One can see that if Rg>0.5 fm,
then WF”s Wyy and ¥q are essentially nonorthogonal.

3. CALCULATION OF AoQ IN THE DOUBLE GLUON MODEL
OF THE POMERON

To make specific calculations we use the double gluon appro-
ximation (DGA) 71214/ for the pomeron. This model predictsz in
contrast to the additive one/15ﬂ the dependence of hadronic to-
tal cross section both on number of quarks and on the c?lour
distripution inside hadron. Thus for the identical partlc}es
ohb o« <r®> the mean square of hadronic radius. In splFe.of
tﬁgtobvio$s oversimplification of the model it gives surprising-
ly good description of the hadronic data. The correction Acg
in DGA can be written as
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where 028 1is the cross section calculated in DGA. The oFdina—
Ty doub{® scattering Glauber correction is not c?ntained in the
DGA. It is calculated correctly in GA and for this reason 1t 18
omitted in (7). It is clear that the contribution of long inter-
nucleon distances is cancelled in (7) because of small N-N over-
lapping. o

Now, the total cross section of two systems, containing n,
and n, quarks has in DGA a form
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Here a_=g%/4r, where g is the QCD coupling constant. )t.(l)
are the cc?lour matrices of SU(3), which affect the quark with
number i. If hadron WF’s are parametrized in the Gaussian form,
then one obtains for the h-N scattering
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where J{(a, B) = aln(a:B ) + B In( a+Bﬁ )i ap=<r§>/2; a, =
= 2<r%/3. Substituting R, = 0.8 fm and ¢, (NN)= 3.9 fm?in



(10) one can obtain ag = 0.348, This value will be used
further.
In the case of deuteron function (9) has a form
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and abbreviation ¥ ‘WN.N’ Yo=Yy, is used.
The total cross sectlon can be written in the same manner
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The most cumbersome calculations are needed to find Gy, (k®).
Substituting WF (1) into (12) one obtains
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After some transformation§ in colour and spin-isospin parts
of WF one can represent h“(k“) as follows
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The Gaussian form of all WF's in (16) allows to perform ex-
plicit integration over ry and to get glil(kz) in the form
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Expressions for matrices A (n,m) and CLB(n.m) are too cumber-
some and can be easily foundey using (17) and formulae for WF.
Performing integration in (18) one obtains
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Finally, from expressions (15) and (19) one obtains ¢
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The first term in the sum over i here is responsible for the
most part of the hd cross section and secures the compensation
of the contributions from the region of long internucleon dis-
tances in formula (7).

The calculation of o, is less difficult. By using the
condition of colourlessness of the six-quark configura-
sxc sic C
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pression tor O0gp 1s derived from expression (1U) 1or alo‘\np)
after replacing Ry by R,y and ny by ng. Thus if Rg=Ry, the
cross section of hadron scattering on the. 51x—quark deuteron
component in the configuration 8% is doubled in comparison
with the hadron-nucleon one.

The calculating procedure in the case of o, is analogous
to oy,. Omitting the details let us give the final result

tion <‘{1 , one can show that the ex-
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The matrices A (n), Ci (n) , (n) can be found by calculat1on
of the exgonen ial factor fotB products of the following type
¢e(r sely )Q ¢ 3 ,rz,r3)¢3 (r4,r5.r6)f(R). where Q1=1, Q2= P14

4 .NUMERICAL RESULTS

If one uses the deuteron WF (1) without the six—quark com-—
ponent, then for the case of pd-scattering one obtains
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It is seen that both parametrizations lead to similar small va-
lues of Aog. To verify the weak sensitivity of Aog to the form

of f(R) we have considered also the triple Gaussian parametri-

zation of f(R). Acgq has been calculated for a; = 0.5 fm, ag =

= 0.25 fm and variety of parameters Zgy Zg restricted by

-3 <zy,, 24<1. All sets of parameters give the values of AaQ =
= -0.02+ -0,027,

It seems that regardless of the form of the radial WF f(R)
used the correction to the Glauber approximation turns out to
be very small. It is noteworthy that separate terms in the sum
over i in formula (20) are not small at all for i> 1, but have
value of about |1 mb. The reasons for deep compensation are ob-
scure,

Inclusion of the six-quark deuteron component changes the
situation drastically. The calculation with WF (2) has been
performed for the case f(R) = f;(R). The results are shown in
fig.2 in the form of As,(pdy-dependences upon the value of 8
with different values o? 8g-radius Rg. It is seen that for
some values of 8, Rg correction reaches significant value,
exceeding even the Glauber correction. It is interesting that
if Rg= Ry=0.8 fm, then the correction Acg is independent of
the 8g-component weight and is small: Ag,<0.06 mb for |8|% < O.1.

The differencelafc‘tp--ogt | for pd -scattering is less than
0.3-0.5 mb in the whole measured energy interval’!®/If one im-
poses such a restriction on Asg one can get some bounds for
values of parameters 8 and R,. The shaded region in fig.3 shows
the permitted sets of 8 and Rg, for which Ag.<0.4 mb, It is
seen that for B2 > 0.04 one can predict the Ry value quite
precisely Rg=~0.76+ 0.84 for positive 8 and Rg= 0.66+0.85 for
negative
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Fig.3. The shaded area shows
the collection of the values
of the parameters Rg and B,
which are consistent with the
experimental data on g, . (pd).
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Fig.2. The correction As g(pd)

depending on the Ry- radius of
the six-quark bag and its am-
plitude B in the deuteron WF.

5. CONCLUSION

Due to pomeron colour structure and nucleon overlapping in
deuteron one can believe that the Glauber approximation, which
does not take into account all these effects should have some
corrections. The calculations performed here in the DGA have
given the following results:

i) two clusters WF (1), antisymmetrized over quarks, pro-
vide a small correction AaQ, regardless of the form of function
f(R), describing the relative motion of clusters.

" ii) if one adds the six-quark bag to the deuteron WF one
can obtain considerﬁPle correction Aocg much larger than the
difference (at?tp—o?m ), for some values of the radius Rg and
weight B2 If B%is not too small (82 >0.01) then experimental
restriction on the value of Aoy allows to determine with high
precision the value of the radius Rg.

These two results seem to be in contradiction. Indeed, WF (1)
in the region of NN repulsive core can be approximated by the
sum over eigenfunctions of the six—-quark bag. Nevertheless,
this sum is organized in such a way that though each term is
large the sum becomes small after considerable compensation,
regardless of the form of the radial WF f(R).

One can compare the above radius Rgwith the value R,=0.9 fm
claimed in’2% The method used there, however, demands exact
knowledge of the two-nucleon WF of deuteron f(R) and some model
oL deuteron sctripping on nuclei,

The authors are indebted to F.Niedermayer who has read the
manuscript and made some valuable comments.

After completing the work the authors were informed that the
analogous results were obtained by N.N.Nikolaev.
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